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Abstract. It is shown that the time-slice axiom and the diamond property are equivalent for the
generalized free field. If, in addition, there is a mass gap, duality is equivalent to either causality re-
quirement. It is further shown that the local rings associated with certain space-time regions are
factors in the case of causal generalized free fields with mass gap. Necessary and sufficient conditions
for causality and duality and some examples for causal and acausal generalized free fields are also
given.

Introduction

In their paper on the postulates of quantum field theory [27], Haag and
Schroer considered, among other requirements, three restrictions on Wightman
fields which they called "primitive causality", "Einstein causality" and "duality".
The first two requirements are completeness postulates for the algebra of field
operators associated with certain space-time regions:

A field is said to be primitively causal if the von Neumann algebra R(Sδ)
generated by the field operators associated with an arbitrary time-slice Sδ of
non-zero thickness δ already contains all field operators:

R(Sδ) = R(M), all δ>0, (0.1)

where M denotes Minkowski space. If (0.1) is valid, it is also said that the time-
slice axiom holds (see Fig. 1).
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Fig. 1

A field is said to exhibit Einstein causality if the von Neumann algebra of
field operators associated with an arbitrary cylinder Zfl ε contains all field operators
associated with the double cone sustended by Zβ ι β:

all α>0, all ε > 0 . (0.2)
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In this equation, Z'aε denotes all points space-like to Zfl ε, Z"aE = (Z'aJ, and (0.2)
is assumed to hold for all base diameters a and heights ε (see Fig. 2). In case (0.2)
is valid it is also said that the field has hyperbolic propagation character or that
the diamond theorem holds.

Fig. 2

Duality is a requirement more restrictive than locality; whereas the latter
requires field operators to commute whenever they are associated with regions
which are situated space-like to each other,

R(X) C Rf(Xf) for any region X, (0.3)

for duality to hold it is assumed in addition that a field operator commuting with
all field operators associated with a given space-time region X is actually localized
space-like to X:

R(X) = R(Xr). (0.4)

Duality does not hold for all regions X; a counterexample can be found in
[10]. It seems reasonable to restrict the admissible regions for the duality pos-
tulate (0.4) to cylinders Za>ε and the double cones Z"aE sustended by them, and
this will be done throughout the paper.

Duality has been proved for the simplest possible case, the free field of mass m,
in [10, 16, 17]. The proofs all use the diamond property and the time-slice axiom
which also hold for the free field.

For the generalized free field, the situation is more complex: [27] contains an
example of such a field which is not primitively causal. The same method actually
yields a field which does not possess the diamond property and for which, con-
sequently, duality is no longer valid. This poses the problem of investigating the
relationship between duality, diamond property, and time-slice axiom in the
simplest case where these properties do not necessarily hold. This investigation
may conceivably shed some light on the validity of duality in the general case;
the renewed interest in this question stems at least partly from the fact that duality
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is a basic assumption in recent work of Doplicher et aί [28] on the superselection
structure of quantum fields.

The first section of this paper very briefly lists some well-known properties
of generalized free fields and their associated local rings which reduce the study of
local rings to the study of the two-point function; the second section is concerned
with reducing duality and the causality requirements to equivalent properties
of the Kallen-Lehmann-weight of this function thereby investigating the relation-
ship between these properties. In the third section, some simple corollaries and
examples are given.

Some time after completing this work, a paper by Landau was published [29]
in which duality of generalized free fields is investigated also. It contains a
thorough discussion of the relation between duality (which, as also shown by
Landau, does not hold for all generalized free fields) and a weak form of duality
which is valid for all such fields. This weak duality property allows the construc-
tion of a maximal local extension of the system of local algebras such that the
extended system will satisfy duality. Though it is mentioned that the methods
employed are useful for discussing the time-slice axiom, no result on the relation
between diamond property, time-slice axiom and duality is stated or proved.
The investigation of the relations between these properties is the main concern
of the present paper.

1. Local Rings for Generalized Free Fields

In the Wightman framework of quantum field theory [1], generalized free
fields are characterized by the fact that the commutator is a complex number.
As a consequence, if the one-point function is normalized to zero, the theory is
given by the two-point function [2, 7] which according to the Wightman axioms
and a theorem of Bochner and Martin [9, p. 276], is the Fourier transform of a
Lorentz invariant measure of polynomial growth with support in the forward
light cone:

(β, A(x)A(y)Ω) = j dμ(p) exp(ip(x-y)). (1.1)
v+

(For further characterizations of generalized free fields, see [3-6].) The field
operators in momentum space, obtained from the Wightman functions via the
reconstruction theorem, act on the Fock space over L2(μ); the corresponding
field operators in x-space, for real testfunctions / in the Schwartz space £f9 have
stable domains on which they are essentially self-adjoint [8, p. 45 ff.]. One can
therefore define the unitary operator

): = exp{L4(/)} (1.2)

for fe <£fr, where the bar denotes operator closure, and the von Neumann algebras

R(X):={W{f)/fe@r{X)}" (1.3)

where Sιr(X) is the space of all real, infinitely differentiable functions with compact
support in the open space-time region X. Duplicating the proof in [10] which
uses the Fock space structure of the free field yields the
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Lemma 1.1. The system of von Neumann algebras {R(X)/XCM open} is
a local ring system in the sense of [11].

Since the field operators A(x) have been obtained by Fourier transformation
from momentum space, the operators W(f) depend only on £fr/N where N is the
space of all fe^r whose Fourier transformations have zero μ+-norm, μ+ being
the symmetric continuation of μ to V. On the real space SfγjN, a real scalar product
can be defined by

(f9g):=$dμ+(p)f(p)g(p) (1.4)

where the tilde denotes Fourier transformation

f(x) (1.5)

Let K denote the closure of Sfr/N in the norm induced by (1.4). One then obtains
a representation of the CCR, in Segal's form, over K:

Lemma 1.2. (i) The operators W(f) are defined for all feK, are unitary and
obey the CCR

W(f) W{g) = W(f + g) exp {{(/, βg)}. (1.6)

The operator β:K-+K is defined by

jS/(p):=iβ(po)7Γ^) (1.7)

where ε is the sign function, and obeys

β2=-i, j8*=-/* (1.8)

(ii) The vacuum functional is given by

(Ω,W(f)Ω) = exp {-i (/,/)}. (1.9)

The proof of this lemma can be found in [12].
As a result of this lemma, von Neumann algebras R{L) can now be defined for

an arbitrary closed subspace L C K by

R(L):={W(f)/feL}". (1.10)

Consider the lattice of all closed subspaces Ka of K, and denote the lattice opera-
tions by v and Λ , where Λ Ka is the intersection of the spaces Ka and v Ka is
the closed subspace generated by all finite linear combinations of vectors in the
spaces Ka. The operation K\-^βK^ (K^: orthogonal complement of Ka in K)
is a complementation in this lattice. There is a corresponding lattice structure for
the von Neumann algebras R(KJ; simply define

"; ΛR(KJ:= nR(KJ (1.11)

and observe that

Rh+R'

is a complementation. A general theorem of Araki, proved in [13], then states that,
due to Lemma 1.2, these two complemented lattices are isomorphic:
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Theorem 1.3. (Araki). The complemented lattices of all closed sub spaces of K
and of the corresponding von Neumann algebras, defined by (1.10), are isomorphic:

R(KJcR(Kp) iff KaCKβ, (1.12)

R(vKa)=vR(Ka), (1.13)

R(ΛKJ=ΛR(Ka), (1.14)

. (1.15)

This theorem reduces relations between local rings such as (0.1), (0.2), (0.3),
(0.4), to relations between corresponding subspaces of K. In a sense, (1.15) is already
a sort of duality theorem; however, for Ka = Zaε, the identification of βK^ with
Z^ ε remains to be done.

2. Duality and Causality

Theorem 1.3 reduces the study of duality and causality to the study of subspaces
of L2(μ+). By using the Lorentz invariance of the measure μ, the investigation can
be simplified still further. In fact, it becomes in essence a single variable problem
since a Lorentz invariant measure is uniquely determined by its associated
Kallen-Lehmann weight:

Lemma 2.1. Let μ be a Lorentz invariant measure with support in the closed
forward light cone of momentum space, and put m2:— p2. Then there is a uniquely
determined measure ρ of the variable m with support in the semi-axis [0, oo) such
that

dμ(p) = dρ(m)d3p (p2 + m2y1/2 (2.1)

The proof can be found, e.g., in [18, Theorem 2].
For the further discussion, it is convenient to introduce subspaces of L2(ρ)

which correspond to the Fourier transformed subspaces K(X) of K:
Let 3)(δ) be the set of all infinitely differentiable functions with support in the

open interval ( — δ, δ), denote by 3)(δ) the Fourier transformed set and by N(ρ) the
set of all ρ-measurable functions with zero ρ-norm. Let H(δ) be the closure in the
ρ-norm of @(δ)/N(δ). Then there is a convenient necessary condition for the
time-slice axiom to hold:

Lemma 2.2. Let μ be the measure of a generalized free field for which the time-
slice axiom is valid, and let ρ be the Kallen-Lehmann weight associated with it by
the previous lemma. Then

H(δ) = L2(ρ) for all δ>0. (2.2)

Proof. Choose δ > 0 and pick a function / in the orthogonal complement of
H(δ) in L2(ρ). In order to show / = 0, consider the distribution

Ax, s):= J dμ+(p) ε(p0) exp(ipx) f((pψ2) cos(s(pψ2) (2.3)
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with x e M, s e R It is immediate from the definition that fe Sf'(x, s), and that /
is a solution of the five-dimensional wave equation

Since the wave operator is hypoelliptic in x0, the initial values of / on the hyper-
plane x0 = 0 are well defined distributions in £f'{x, s) given by

/(0, x,s)=\ dμ+(p) φ 0 ) exp(-ipx) /((p 2) 1 / 2) cos(s (p 2 ) 1 / 2 ), (2.5)

(df/dx0) (x, s)U0 = 0 = j dμ+(p) Ipol exp(-ϊpx)/((p 2 ) 1 / 2 ) cos(s (p2)1 '2)

= 2ϊ(2π)3 <5(x) J dρ(m) /(m) cos(s m).

The integral in (2.5) vanishes identically for parity reasons; the integral in (2.6)
vanishes if smeared in the variable s with testfunctions in Q)(S) since / is assumed
to be orthogonal to H{δ\ i.e. the xo-derivative of /vanishes for all x and \s\ < δ
in the hyperplane x0 = 0. In fact, all higher xo-derivatives of / vanish in this region:
the even ones vanish identically, just as / itself does, for parity reasons; the uneven
ones are generated by applying powers of the operator ft/dxl to df/dx0 which
yields zero if (2.4) is combined with (2.6). Hence, /, together with all its x0-
derivatives, vanishes in the region x0 = 0, |s| < δ. But the support properties of
solutions of the wave equation [14, Theorem 7.3] now guarantee that / vanishes
in the whole five-dimensional region {{xo,x9s)elR5/\xo\ + \s\<δ}. This means
that for 5 = 0, the distribution /(x, 0) [which is a well defined element of &"(x)
because pf the s-hypoellipticity of the wave operator in (2.4)] vanishes on the
time-slice Sδ: = { x e M / | x o | <<5}, i.e.:

0 = j dμ+ (p)ε(p0) exp(ipx)/((p2)1 / 2); xeSδ. (2.7)

Replace x b y x + α, where a = (0, a) with a e R 3 is arbitrary, and integrate over a
with an arbitrary rotation-invariant test function keί/?{x) to obtain

0 = f dμ+ (p) ε(p0) exp(ipx) /((p 2) 1 / 2) k(\p\); xεSδ. (2.8)

It is easily checked that f-keL2(μ+); smearing (2.8) in x with an arbitrary
testfunction ce^(x) yields ("v" denotes inverse Fourier transformation):

0 = (βc,U'kT) (2.9)

if the definition of β in Lemma 1.2 and of the scalar product in K is used. (2.9)
means that [/• kyefiK(Sd)

lm

9 combine Theorem 1.3 with the time-slice axiom
(0.1) which holds by assumption to get f k = 0 in L2(μ+). Now choose k(x)
= exp( —jc2); since its Fourier transform nowhere vanishes, / = 0 follows.

The condition of this lemma is actually also sufficient; this will follow as a
special case of the following lemma which deals with the more general situation
of an arbitrary region X C M symmetric with respect to the hyperplane
So:= {x0 = 0}, X being substituted for the time-slices Sδ of the previous lemma.
Notice that for such a symmetric region the even and odd parts /+ and /_ of a
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function feK(X), defined by

are in K(X\ too. With this notation, one obtains

Lemma 2.3. Let Xbea region of Minkowskί space symmetric with respect to Sθ9

and let feβK(X)1. Then:

(i) f+,f-eβK(X)\
(ii) //, in addition, H(δ) = L2(ρ) holds for all δ>0, then, as distributional

equations in @'(XnS0),

ip-x)f+(p2 + m2,p) = 0, (2.11)

\d3 pεxp(-ίp x)(p2 + m2)-112 f_((p2 + m2)1/2, p) = 0 (2.12)

for ρ-almost all m.

Proof, (i) fe βK{X)L is equivalent to (/, βg) = 0 for all g e K(X). This is true,
in particular, for all even and odd parts g+9g- of functions g e K(X):

(f,β9+) = 0 = (f,βg-) (2.13)

which are in K(X) since X is symmetric. Subtracting from this the equations

(f+,βg+) = 0 = (f_,βg_) (2.14)

which hold for parity reasons by definition of β9 yields

(f-,βg+) = 0 = (f+,βg.). (2.15)

Reading (2.15) from right to left and adding it to (2.14) gives

(f+,βg) = 0 = (f_,βg),

i.e.f+,f-eβK(X)\

(ii) First consider /+ and define, analogously to (2.3),

Λ(x,s):= jdμ+(p)ε(p0)exp(ipx)f+(p)cos(s(p2)ί'2); (2.16)

/+ is a solution of (2.4) in Sf'(x9 s); its xo-derivative on So is given by

(df+/dx0)(x, 5)1^=0 = iί dμ+ (p) \po\ exp(-ipx) f+(p) cos(s ip2)1'2)

= 2Ϊ J dρ(m)d3p exp( — ipx) f+ (p2 + m2, p) cos(s m).

Notice that /+ and all derivatives of /+ with respect to s and xk9 k= 1,2, 3 vanish
for s = 0 and xeX: the odd s-derivatives vanish for s = 0 anyway because of the
factor sin(s(p2)1/2) which appears in the integrand; the even s-derivatives and all
^-derivatives vanish since /+ e βK(X)λ.

Assume that XnS0 is not empty (otherwise the assertions are trivial), and
choose an arbitrary point (0, x)eXnS0. Since X is open, there exists a positive
number δ depending on JC and open balls U2δ in 1R3 (with center JC and radius 2δ)
and U'2δ in R1 (with center x0 = 0 and radius 25) such that the Cartesian product
U= U2ό x U2δ is in X. Again the support properties of solutions of the wave
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equation (2.4) [14, Theorem 7.2] guarantee that the vanishing of/+, together with
all s-derivatives, for s = 0 and xeU implies /+ = 0 for JCe U2δ and |χo | + \s\ <2δ
simply consider any time-like curve in U and notice that J+ must vanish on the
double cone sustended by that curve. /+ = 0 implies df+/dxo = 0 in the same
region; in particular, for xo = 0, <9/+/δxo = 0 for |s|<2<5. Integrating (2.17) with
an arbitrary test function g e £&(U2) yields

0 = jdρ(m) cos (s m)F+(m,0) for |s|<2<$ (2.18)

where

F+(m,g): = $ d3xg(x) F+(m,x)
and

F+(m,x):= $d3pexv(-ίpx)f+(p2 + m2,p). (2.19)

Smearing (2.18) in s with a testfunction obtained as the convolution product of
cos(ί m) in t and an arbitrary function h e 3)(δ) results in

0=fdρ(m)cos(ί m)Λ(m)F+(m,flf) for | ί | < δ . (2.20)

Since h F+ eL2(ρ), the assumption H(δ) = L2(ρ) implies h-F+=Qρ- a.e., for
arbitrary h e Q){S). Notice that Q){8) contains, along with a function h, also the
translated function ha, defined by /zα(m): = h(m + a) where αeIR1 is arbitrary. As
<3}(δ) Φ {0}, to every point m0 one can find a function himo) e 3>{δ) which is not zero
in m0. Hence F+(m,gf) = 0ρ-a.e. which implies in particular F+(m,gίv) = 0ρ-a.e.
for any countable base {gv} of @{Uό). Since F+ (m, g) is continuous in g [as a linear
functional on ^'(C/^)], it follows that F+(m,jc) = θρ-a.e. as a distribution in
@'(Uδ). As the neighbourhood ί7δ was chosen around an arbitrary point x such
that (0, j t)eS o nX, (2.11) follows.

In the case of /_, the proof proceeds similarly, with /+ replaced by /_
throughout. The only other change in the argument occurs in the lines just before
(2.18) where /_ is now evaluated on So instead of its xo-derivative (which would
be identically zero for parity reasons). This accounts for the extra factor of p0

= (p2 + m 2 ) 1 / 2 in (2.12) which does not cancel.
The lemma just proven is, in a way, the essence of all arguments which follow;

by allowing statements for fixed m in the support of ρ, it achieves the reduction to
the free field situation (for which an independent proof of duality will be provided,
however). As an immediate corollary, the second part of the lemma shows that
the necessary condition (2.2) of Lemma 2.2 is also sufficient for the time-slice
axiom to hold; hence

Theorem 2.4. Let μ be the measure of a generalized free field and ρ be its
associated Kallen-Lehmann weight. Then the time-slice axiom holds if and only if

H(δ) = L2(ρ) for all δ>0.

Now the relation between the time-slice axiom and the diamond property
can be investigated. Even for a general local ring system, the latter implies the
former as is easily seen by taking, for an arbitrary but fixed time-slice Sδ, a sequence
of cylinders Zn such that vZn = Sδ. For generalized free fields, the converse is
also true:
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Theorem 2.5. A generalized free field has the diamond property if and only
if it is primitively causal.

Proof. Assume that the time-slice axiom holds, i.e. that H(δ) = L2(ρ) for all
δ > 0 by Lemma 2.2. Choose an arbitrary cylinder

Zα>ε: = {x e M/\xo\ < e, |x| < a}

and a function feβK(ZaJ
λ. Now by a general result of Borchers [15], R{ZaJ

= R(Zaε\jZr\ see Fig.2 for the notation, which implies by Theorem 1.3 that
feβK(Zaε\jZr)

L. Lemma2.3, for X = Za>εκjZr now yields

j" d3 p exp(-φx) f+(p2 + m\ p) = 0

j d3p(p2 + m2)-1/2 exp(- ipx) /_ ({p2 + m2)1/2, p) = 0

for ρ-almost all m and |x| < α H- ε. Integrating the first equation over m with weight
dρ(m) cos (s m) shows that the initial values on xo = 0 of the distribution /+
obtained from /+ by the defining Eq. (2.16) vanish for |x|<<z + ε and all 5. As
explained in Lemma 2.3, this implies that /+ vanishes in |xo| + |x| < a + ε, i.e. in
Z£e which means that /+ e βK(Z'άJλ. Analogously it is shown that /_ e βK{Z"az)

L

implying feβK(Z"aε)
L. By Theorems 1.3 and Lemma 1.1, the inclusion

is equivalent to the diamond property (0.4) for Zβfβ.
Henceforth, generalized free fields which are primitively causal or have the

(equivalent) property of Einstein causality will simply be called "causal".
To investigate the relationship between duality and causality, notice first that,

even for a general local ring system, duality for a cylinder Z, R(Z) = R'(Z%
implies the diamond property: Since Z'DZ, R{Z")^R(Z) = R'(Z'\ whereas
locality implies the converse inclusion R(Z")cΛ'(Z'). Comparing R(Z") = R'(Z')
to the duality equation for Z yields R(Z") = R(Z), the diamond property for Z.

At least for generalized free fields with a mass gap, the converse is also true.
It is necessary, however, to recall first some properties of local Sobolev spaces of
fractional index which will be used in the proof:

For the definition of the global Sobolev spaces, consider the operator

M f : = ( - z l + m 2 ) ί / 2 (2.21)

(where A is the Laplacian, m > 0 is a fixed number, and t e 1R is arbitrary) acting
on the space L2 of all real, Lebesgue square integrable functions in IR3 with scalar
product ( , ). Let its domain of definition be D(Mt) and denote by L+ the com-
pletion of D(M1 / 2)nL2 with respect to the scalar product ( , )+ given by

(f9g)+:=(M1/2f9M^2g) (2.22)

and by L_ the completion of L2 with respect to the additional scalar product
( , )_ defined by

(2.23)

L+ and L_ are global Sobolev spaces of fractional index +(1/2) resp. —(1/2). To
obtain the corresponding local spaces, consider a measurable set BciR3 with
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non-empty interior intB, and define

L+(B):= {/eL + /supp/Cint5}> (2.24)

L_{B): = feeL_/(M-1/2^M1/2/) = 0 for all feL+(Bc) (2.25)

where B° denotes the complement of B in IR3. With the use of the isometric mappings

corresponding subspaces of L2

r can be defined as

N+(B):=M1I2L+(B); ΛL(B): = M~ 1 / 2 L_(B) (2.26)

for a general set B C IR3, N+ (B) and N_ (B) denote the intersection of all spaces
JV+(^i) and N-(BX) where Bί runs over all regions with non-empty interior
containing B.

For these spaces, various relations hold which are proved in [10] and [19],
and of which only the ones used later are listed below for convenience.

Lemma 2.6. Let B, Bλ, B2 be regions in IR3 with non-empty interior, and assume
their boundaries dB, dB1, dB2 to be piecewise infinitely often differentiable two
dimensional surfaces. Then

(i) JV+ (B)1 = N_ (Bc) JV_ (B)1 = N+ (Bc), (2.27)

(ii) N+ (B) = N+ (B) JV_ (B) = N_ (B), (2.28)

(iii) N+ (dB) = {0} N_ (dB) ={0}, (2.29)

(iv) N+(B1)nN+(B2) = N+(BίnB2); N_(B1)nN_(B2) = N.(B1nB2). (2.30)

Relations such as (2.27) to (2.30) do not hold for general sets, see [19] nor do
they hold for Sobolev spaces with general fractional index, see [20]. However, for
generalized free fields only the indices (+1/2) and (-1/2) accur in which cases
Lemma 2.6 holds and permits the proof of duality:

Theorem 2.7. Let μ be the measure of a causal generalized free field, and
assume in addition that μ has a mass gap, i.e. that

Eo: = inϊ{p0 e TR/(p0, p) e suppμ, p0 φ 0} > 0 (2.31)

or equivalenty (see Lemma 2.1)

E1: = inf {m e IR/m e suppρ, m φ 0} > 0. (2.32)

Then the duality equation (0.4) holds for every cylinder Z.

Proof. 1. Choose an arbitrary cylinder Z = Zaε; by locality and Borchers'
result [15], it is enough to prove R(Zf)DR'(ZvjZr) which reduces to K(Z')
DβK(ZuZr)

λ by Theorem 1.3. Choose fe βK(Z\jZr)
L', by the symmetry of

Z u Z r , Lemma 2.3 yields / + , f_e βK(ZuZr)\
Consider first / + and notice that the equation
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had it been proved for all geJ:=βK(Z')\ would imply feβJL = K{Z'\ as
required. But (/+, βg+) = 0 for all g+ e K for parity reasons, hence it is sufficient
to prove

(f+,βg.) = 0 (2.33)

for arbitrary g_ eJ.

2. Lemma2.3 implies for f+eβK(ZvZr)
x and g_ eJ = βK(Z')1:

F+ (m): = J d3p exp(- ipx) f+ (p2 + m2, p) = 0, |x| < b, (2.34)

ll2 = 0 \x\>b (2.35)

for ρ-almost every m, (see Fig. 2 for the meaning of b = a + ε). Define
Kb:= {jtelR3/W <b}, for abbreviation.

Now choose an arbitrary, but fixed m > 0 ; it is immediate from the definition
of F+ and G_ that F+ eL_, G_ e l + . (2.34) and (2.35) show furthermore, that
F+eL_((Kb)% G_eL+(Kb) which gives, by Lemma 2.6,

hence

0 = $d3x(M1!2G_)(M-1/2F+)= \(PpG_ • F+

= \d3pf+ (p2 + m2, p) g_ ((p2 + mψ2, p) (p2 + m2)^'2

if ParsevaΓs equation and (2.34), (2.35) are used. Integrating the last equation
over m with weight ρ, which, because of the mass gap, is an integration over m > 0,
finally yields

0 = j dμ(p) f+(p)g-(p) = 2-1$ dμ(p) ε(p0) f+ (p)g.(p)

which is (2.33).
The same technique of proof actually shows that the rings R(Z\ R(Z") for the

causal generalized free fields are factors:

Theorem 2.8. Let XCM be a region symmetric with respect to the hyperplane
So:= {χo = 0}, and assume XnS0 = Ka, X'nS0 = int(Ka)

c, where

Then the local ring R(X) for a generalized free field with a mass gap is a factor.

Proof. Choose feK(X)nβK(X)1; by Theorem 1.3 it suffices to show / = 0.
By Lemma 2.3, / + , /_ e βK(X)λ which implies as in the previous proof that,
for every fixed m > 0

F_(x):=μ3p e x p ( - ipx) /_ ((p2 + m 2 ) 1 ' 2 , p) (p2 + m 2 ) " ^ 2 e L+ ((KaY).

Hence

Mll2F,eN+((KJ), M-^F+eN^iKJ). (2.36)
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/ + , / _ eK{X) implies / + , / _ eβK{Xf)L, by locality, which shows, by the same
reasoning as above that

M 1 / 2 F_ G N+ (Ka), hi'1/2 F+ e ΛL (Ka) (2.37)

(2.36) and (2.37) imply, by Lemma 2.6, that

M1/2F_eN+(dKa)={0}, M-ί/2F+eN_(dKa)={0}

which gives /+ = 0 = /_ by Fourier transformation.
The proof of duality and the factor property for generalized free fields as

given above uses in detail the structure of Sobolev spaces which arise from the
Lorentz in variance of the measure μ; a proof based upon only the finite Lorentz
covariance of μ guaranteed by the work in [23] would require major modifications.

3. Conditions and Examples for Causal Fields

The results of Section 2 show that duality, diamond property and time-slice
axiom are all equivalent for a generalized free field with mass gap. Theorem 2.4
even gives a characterization of causal fields in terms of the defining measures μ
which is, however, rather an implicit one. In this section, conditions equivalent
to (2.2) will be listed which are somewhat easier to handle.

Equations such as (2.2) play a certain role in probability and prediction theory
and have been investigated before [21, 22, 24]. Chapter 8 of [21] contains a rather
neat condition, which, for a restricted class of measures ρ, is equivalent to (2.2):

Lemma 3.1. Let ρ be a measure on IR+ with Jg5 dρ(m)< oo, and assume there
exists a number m0 ^ 0 such that for m^.m0

(i) ρ decreases monotonically,
(ii) ρ is absolutely continuous with respect to Lebesgue measure dm.
Then the measure μ constructed from ρ via Eq. (2.1), is the measure of a causal

generalized free field if and only if
00

J dm-m~2 log{dρ/dm)= -oo . (3.1)
mo

For arbitrary measures, there exist conditions equivalent to (2.2) which,
however, explicitly depend on δ and are thus less convenient, see [22].

Lemma 3.1 leads directly to examples of causal and acausal fields; thus, a
measure ρ which can be represented as

dρ(m) = dm exp (— (mα))

for large m, leads to a causal field for α ̂  1 and to an acausal one for α < 1.
A special class of generalized free fields are those which can be defined, together

with all xo-derivatives, on a time-slice of zero thickness. This class contains precisely
those fields for which the moments of the corresponding measure ρ are finite.
A sufficient condition for these fields to be causal is given in the following

Lemma 3.2. Assume that all moments

cn:=]dρ(m)mn n e N (3.2)
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of the measure ρ are finite and that the moment problem defined by (3.2) has a unique
solution; then the generalized free field constructed from ρ is causal.

Proof. To prove H(δ) = L2(ρ) for all δ > 0, fix δ and choose feH(δ)\ i.e.

J dρ(m)eismf(m) = 0 for \s\<δ;
o

differentiate n-times at s = 0 to obtain

00

J dρ(m)'mn>f(m) = 0, n e N ,
o

and use the fact, which is proved in [25, p. 45] that the polynomials are dense in
L2(ρ) whenever ρ defines a determined moment problem, to conclude / = 0, as
required.

There are several necessary, sufficient and equivalent conditions for a moment
problem to have a unique solution, see [25, 26]. A rather simple sufficient
criterion is

Σ(c«r 1 / 2 "=«> (3-3)
n

which means roughly that the moments should not increase too fast [26, p. 19].
Additional conditions beyond the existence of the moments (3.2) are indeed

needed to guarantee causality: Chapter 11 of [21] contains an example of a
measure with finite moments such that H(δ) + L2(ρ) for all δ > 0.

Acknowledgments. The author wishes to thank Professor Dr. H. J. Borchers for proposing the
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