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Abstract. It is shown that a Euclidean version of the formulae of Matthews and Salam for the
Green's functions of a two-dimensional Yukawa model with interaction in a finite space-time volume
makes sense, if renormalized correctly.

1. Introduction

Twenty years ago Matthews and Salam [1] presented formulae for the Green's
functions of a Yukawa theory which arose from formally integrating out the
fermions in Feynman's "sum over histories" [2]. Those formulae expressed the
Green's functions as functional integrals over the Bose field of certain combinations
of determinants.

In this paper we show that a Euclidean version of those formulae for a two-
dimensional Yukawa ("Y2") model with a space-time cutoff for the interaction
actually makes sense, if the necessary renormalization is carried out in the ap-
propriate way.

We do not discuss here the problem of removing the space-time cutoff which
would hopefully lead to Schwinger functions fulfilling all the axioms of Oster-
walder and Schrader [3,4] guaranteeing the existence of the corresponding
quantum field theory fulfilling Wightman's axioms.

Recently Osterwalder and Schrader [5] have constructed Euclidean Fermi
fields and proved a Feynman-Kac type formula which relates Euclidean expres-
sions in a finite space-time valume (and containing ultraviolet cutoffs) to quantities
of the "physical" Y2 theory. This gives a connection between our integrability
statements and the semiboundedness of the Y2 Hamiltonian which was first
proved by Glimm [6] (see also Glimm and Jaffe [7], Schrader [8], Brydges and
Federbush [9], and Brydges [10]). But we are not able to construct an independent
proof of this semi-boundedness at this stage; this would involve the removal of
at least the time cutoff.

Osterwalder's and Schrader's fields can also be used to derive an ultraviolet
and space-time cutoff version of the Matthews-Salam formula (1.1) which we take
here simply as a heuristic starting point. This derivation also guarantees the
physical ("Osterwalder-Schrader") positivity of the approximate Schwinger func-
tions (see [5]) for suitably chosen space-time cutoff.

* This work was supported in part by NSF Grant No. GP-16147 A No. 1.
** On leave of absence from Max-Planck-Institut fur Physik und Astrophysik, Munchen,

Federal Republic of Germany.
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Our starting point is the following expression for the Schwinger functions
with a space-time cutoff (compare [1]):

Sg(xl9...,xn;yu...ym;zu...,zm)

= -i- f dμo(Φ)detikSF'(yi9zk; φg) f\ Φ(xt) (1.1)
Z 9" 1 = 1

where
Z=Sdμo(Φ)de\ren(\+λK(Φg)). (1.2)

dμo(Φ) denotes the functional measure for the free Euclidean Bose field of mass μ
(see e.g. Nelson [11]; Guerra, Rosen, and Simon [12]) which can be realized on
^ , the space of tempered distributions. SF(x,y;Φg) denotes the two point
Schwinger function for the fermions in the external field Φg(x) = Φ(x)g{x),
where g[x) is a suitable spacetime cutoff function (e.g. geCo, or g = χΛ, the
characteristic function of a bounded region ΛcJR2). K(Φg) is the "integral"
operator occuring in the "integral" equation for SF

f(x,y; Φg):

(ί+λK)SF

f = SF (1.3)
where

is the two point Schwinger function for the fermions. K{Φg) has the kernel

K(Φg){x,y) = SF(x-y)ΓΦ(y)g{y) (Γ = 1 or iγ5) (1.5)

(since SF and Φ are distributions, X is not really an integral operator see Section 2).
detren(ί+λK) denotes a suitably renormalized Fredholm determinant which
will be defined in the next section. Our conventions for the y-matrices are the
following:

yv} = -2δμv (1.6)

75 = ^ 7 ^ 7 *
and, of course

2. Definition of the Renormalized Fredholm Determinant

First we want to show that the kernel K(Φg) (1.5) defines almost everywhere
(with respect to dμ0) a compact operator on the Hubert space

^ = ^ Θ ^ = C 2 ( 8 ) ^ , (2.1)
where

J^ = L2 (j/p2 + m2 d2 p). (2.2)

This will follow from a general fact about operator valued random variables and
the finiteness of certain Feynman graphs. Let %?p denote the set of compact
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operators C on Jf with ||C\\pp : = Tr(C*C)pl2 <oo. We now consider operator
valued functions

A\Sr-*<€p (2.3)

which are weakly measurable1 and we define

Lemma 2.1. The spaces ^p;q = {A : 9" -+^>p\A weakly measurable, \\A\\p.q < oo}
(p? 4 ̂  1) are complete.

Proof. This can be shown in exactly the same way as the completeness of the
ordinary Z^-spaces, using the fact that cβp is complete (see Schatten [13]).

We now introduce a sequence of ultraviolet cutoff functions hn e C00 for the
bosons:

1

Then Φ

ϋ)eC'ξ>;hn(p) = ί for

7 G C00 for Φ e 9' and

SeipxK(p)d2p (n=

= 0 for

(2.5)

(2.6)

is a ^ 4 operator on J f for all Φ e / and it is obviously a weakly measurable
function on 9". It is now easy to check that the Kn(Φg) form a Cauchy sequence
in ^ 4 ; 4 and therefore converge to a limit in ^ 4 ; 4 which we denote by K(Φg),
as n-> oo. This, and the independence of the limit of the cutoff procedure, follows

from the convergence of the Feynman graphs Fig. 1 and Fig. 2 where — / / —

denotes
yP

2+m2

Fig.l Fig. 2

which arise in the computation of | |K | | 4 ; 4 = J Tr(KK*)2 dμ0. For AE^n+ί we
now define (cf. [14,24])

The (norm convergent) power series for B = (1 +A)ek=1 —1 starts with
An + 1, that means θ = ,4 n + 1 D with some bounded operator D, which implies
Be(£1. Therefore the right hand side of (2.7) makes sense (cf. Ruston [15]).
Since for almost every Φe9" i ( e ^ 4 , det ( 3 )(l + λK) is an almost everywhere

1 By this we mean that all matrix elements are measurable.
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Fig. 3

Fig. 4

finite random variable2. The same is true of TrX 3 [it is in L2(dμ0), because the
Feynman graphs Figs. 3, 4 etc. are all finite] this allows us to define

det ( 2 )(ί + λK): = det ( 3 )(i +λK)e3 (2.8)

as an a.e. finite random variable (the measurability is obvious).
ΎYK2 is logarithmically divergent (it corresponds to the Feynman graph

Fig. 5).
This forces us to introduce an infinite mass counterterm as to be expected from
perturbation theory: We introduce an ultraviolet cutoff function hKf for the fermion
propagator: i

K M ) [ / ^ (29)

and consider

Ίτ .KKί

2: + λ-nμKί

2:Φβ

2: = FKίKΦβ), (2.10)
where

If we choose the ^-dependence of δμKf

2 suitably

(e.g. δ μKf

2 = ~λ2\n [(κf

2 + m2)/m^ +,

Fig. 5

this provides the necessary subtraction for the graph Fig. 5 (cf. Appendix A) and

M2

F^Φ^^BMΦ^—ΎY^.K2: + ^±-S:Φg{xf:dx (2.11)

in L2(dμ0), where BM is a Hilbert-Schmidt operator on the real Hilbert space ^ ,
the completion of Sf with respect to the scalar product (/, g\ = ( / , ( — J + μ2) g).
The Wick ordering in (2.10) is necessary because BM is not trace class (the Wick
subtraction term is infinite). BM depends on the renormalization parameter M
which expresses the fact that the renormalized mass can be chosen arbitrarily
and independently of the bare mass μ.

2 Measurability follows from the power series expansion in λ (which is convergent for all λ e C).



Schwinger Functions for Y2 167

We are now ready to define

det r e n ( l+/lX) = d e t ( 2 ) ( l + l K ) e " τ " : ί Φ ' β M Φ ) i : . (2.12)

If we compare (2.12) with the formal expression for det(l -f λK) we see that we
have introduced three types of counterterms: A constant (hidden in the Wick
ordering of :(Φ,BMΦ){), a term linear in Φ (since we dropped ΊrK altogether)
which corresponds to Wick ordering for the fermions, and a term quadratic in Φ
(the boson mass counterterm) (2.12) defines an a.e. [dμ0) finite random variable
on/3.

Next we show

Lemma 2.2.
d e t r e n ( l + A K ( Φ 9 ) ) > 0 for Γ = iγ5

d e t r e n ( l + A K ( Φ s ) ) ^ 0 for Γ = ί.

Proof. First we show that det r e n is real for λeTR.
a) Scalar case (Γ = 1)

4 ^ ^
p2+m2 9 ] \

With the unitary operator

yp2 + m2

we get
=K", (2.16)

det ( 2 )(l + λK) = det ( 2 )(i + λK*) = det ( 2 )(l + λ UKU~ι) = det ( 2 )(i + λK). (2.17)

:(Φ, BMΦ\: is obviously real,
b) Pseudoscalar case (Γ = iγ5)

There is a conjugation 7 (antiunitary), such that

iyμi
( 2 1 9 )

Take e.g. 70 = I . )»)Ί = ( _ l Vo7i = - ^5 = I , J and j = complex con-

jugation.

det ( 2 )(l +λK) = det ( 2 )(l + /ijXj) = det ( 2 )(l +λy5jKjγ5) = det ( 2 )(l + λK). (2.20)

The reality of :(Φ, £ M Φ)x: is again clear.

3 After completing this paper, I learned that Bellissard [lόjalso has established the renormalized
determinant as an a.e. finite random variable.
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Remark. With the above U (2.15) we have UKU'1 = -K*, hence

det ( 2 )(l + λK) = det ( 2 )(l - λK*) = det ( 2 )(l - λK). (2.21)

If we expand In det(2)(/ + λK) for small λ, we see that

T r K 2 n + 1 = 0 (rc = l,2,...) (2.22)

("Furry's theorem").
Now we turn to the positivity statements (2.13). It is sufficient to show

= deti3)(ί+λK)>0 for Γ = iγ5\

^0 for Γ = ϊ J

F(λ) is an entire function and F(0) = 1. If (2.23) does not hold, there is a real λ0

h F(λ0) = 0. Then —

a) Pseudoscalar case

with F(λ0) = 0. Then — —— is an eigenvalue of K (see e.g. Brascamp [14]).
λ0

wf _J_ γvj

Let V = , (V unitary)
1 /p2 + m2

\\(ί+λK)ψ\\ ^ \(ψ9 V(t+λK)ψ)\ ^ |Re(φ, V(i+λK)xp)\ = (ψ, ,™ . ψ) >0
\ ]/p2 + m2 /

(since VK + K*V* = 0).
This shows that K has no real eigenvalues, therefore the first line of (2.23) is

proved.
b) Scalar case
Here the situation seems to be different. We cannot prove the absence of real

eigenvalues for K = —, =- Φa. But let us consider a modified operator
p2 + m2 g

With K= iy5 ~ Λ + m T ^ 5 ^ - and φ e Jf7, | |φ | | - 1 we have
J//r + m 2 + m / 2

||(1 +λKm,)ψ\\ ^ |Re(φ, 7

hence

det ( 3 )(l + 2Xm0 > 0 (1 G 1R) (2.27)

[the reality of det ( 3 )(l +λKm) follows as in Eq. (2.23)].
If we let m'-»0, (2.21) follows (the continuous dependence of det ( 3 ) on m' is

no problem; it actually follows from estimates of the type proved in the next
section).
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3. Integrability of the Renormalized Determinant

This is the main point of this paper. Since the proof is rather complicated,
let us first outline the strategy. We have

det r e n(i +λK) = uv, (3.1)
where

2 :(Φ,BMΦ)i

u = e 2 ϋ = det ( 2 ) ( l+AK), (3.2)

From v we will extract a second Gaussian factor:

•^:(Φ,BιΦ)ι:

v = v1 υ2; v1=e2 (3.3)

where Bx again is Hilbert-Schmidt. For any given q > 1 we can choose the finite
mass renormalization parameter M in such a way that

_^. ;(φ,j3Λ ίφ) i : + 4i:(φ,β1φ)1: -J^L:(φχφ)ι:

uVί=e 2 2 =e 2 el?(dμo)9 (3.4)

v2 will be shown to be in f] LP hence uv e Lqi for all qγ < q. Now let us turn to
p < oo

v = det(2)(l + λK). To estimate υ, we proceed in a similar way as Nelson [11,17]
in his proof for P{Φ)2 theories. We introduce an ultraviolet cutoff function hκ(x)

ί d2
f d2 p eipx e C00 and study the behavior of

(2π)2

 p

vκ = deti2)(ί+λK(hκ*Φ)g) (3.5)

for large K (hκ(x)-+δ(x), κ-*co). We should like to estimate |lnt? — lni J by some-
thing like a polynomial inΦ which goes to zero fast enough for K -> oo. The problem
is that v or vκ might become small when eigenvalues of K(Φg) or (K(hκ * Φ)g)
come close to the real axis. But this should not affect the integrability. Therefore
we "cut out" the regions in 9*' where this might happen.

We define for λ elR

A: = λ K + λK* + λ2 X* K, (3.6)

Aκ: - λKκ + λKκ* + λ2KK*KK

{KκKκ = K((Φ*hκ)g)).
Then

lnι;2 = ln(det ( 2 )(l+/lX)) 2

^ i ( 3 ' 8 )

= In det ( 3 )(l + A) - -y- Tr(KK*) 2 - 2A3 TrK 2 K* + -j ΊτA3.

By ^4+, Aκ+ we denote the positive parts (including 0) of the selfadjoint ^ 4 -
operators A, Aκ, respectively. Then

^ In det ( 3 )(l + Aκ + ) -f |ln det ( 3 )(l + ^ κ + ) - In det ( 3 )(l + A+)\.
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/ X2 X3

(The first inequality in (3.9) follows from ln(l-hx) — x-\—— — — r - ^ 0 for\

— 1 < x < co. I What we now need is an estimate for

This is provided by the following two lemmas:

Lemma 3.1. Let C, D e ^ 4 C, D ^ 0. We denote the eigenvalues of C and D by
λk, μk respectively and assume λx ^ λ2 ^ ^ 0; μλ ^ μ2 ^ ^ 0. Then

d = |ln det ( 3 )(l + C) - In det ( 3 )(l + D)\

k I i = O

with some constants cι.

Proof. We put vfc(ί) = tλk + (1 - t) μk (k - 1, 2, 3,... t e [0, 1]).

- ln(l+ μk) + μk - \μk + i

t o at Vk

1 4 - μk ,

k 0

1

k 0

(We have used Holder's inequality in the next to last step.)

Lemma 3.2. (Generalization of a theorem of Lidskii; see Kato [18], II.,
Theorems 6.10 and 6.11.) Let C,D be selfadjoint ^p-operators with eigenvalues λk,
μk respectively (k = 1, 2, 3,...). We define

\μk\) (fc = l , 2 , . . . ) (3.11)

(3.12)

and assume that the λk

+, μk

+ form a decreasing sequence. Then

Proof We approximate C, D in the p-norm by finite rank operators CN, DN

in the following standard way. Let PN be the projection onto the subspace corre-
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sponding to eigenvalues \λk\ ^ — then we take CN = PNC. DN is defined analo-

gously. According to an easy application of Lidskii's theorem (see [16])

Σ i ; (N) .. (N)\p <- i i ^ JΛ up /o A o\

k

where λk

(N\ μk

(N) are the eigenvalues of CN, DN, respectively. The inequality
remains true if we replace the left hand side by Σ \λk

+{N) — μk

+{N)\p. If we let JV->oo
the assertion (3.12) follows. By combining the two lemmas we get

|ln det ( 3 )(l +A+)-]n det ( 3 )(l + Aκ + )\

Σ
ι = o

We note that

l n d e t ( l + ^ ) ^ i T r ^ 2 i T r ^ 3

Combining (3.8), (3.9), (3.14), and (3.15) we get

ln{det{2)(ί + λK))2 S±ΊΐAκ

2 - ±Ίr Aκ

3

- — - Tΐ(KK*)2 -2λ3ΊrK2K* + ^TrA3 (3.16)

Σ\\A-AK\U Σ ck\\A\\k

4\\Aκ\ l - k

or
k=0

l n ( d e t ( 2 ) ( l + A K ) ) 2 ^ ^ -

+ ^ Ίτ((KκK*)2 - (KK*)2) + 2λ3 Ίv(Kκ

2K* - K2 K*)

+ ±Tr(A3-AK

3)+\\A-AK\\4 £ ck\\A\\\ \\Aκ\\l~k • (3-17)
/c = 0

The first term on the right hand side needs further discussion: For κ-κx)

I Tr:(Kκ + K*) 2 :^:(Φ, #!<!>)!: in L2(dμ0), (3.18)

where Bx is a Hilbert-Schmidt operator on J ^ . For some constants c, κ0 and large
enough K we have

(3.19)
κ0

(see Appendix A for details). We define now
22

lnj;2 := In det(2)(l +λK)--γ :(Φ, Bt Φ\:. (3.20)
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From (3.17)—(3.20) we get for υ2 the estimate

l n - ϋ | ^ c λ 2 l n — + -^-[Γr:(.

+ WA-AJt £ ck\\A\\l

This can be summarized in the following form:

N λr

Scλ2\n—+ Σ \Pr(Φ)-PΛΦκ)\* (%ΊΊλ

\Qr{Φγ\Rr{ΦX {λre{U4})

where Pr, Qr, Rr are (nonlocal) polynomials in Φ (or Φκ = Φ* hκ) of degree at
most 24. They have the important property (which can be seen by looking at the
corresponding Feynman graphs which all converge like a negative power of the
cutoff as can be seen by simple power counting): There is a ε > 0 such that

\2 \\QΛΦ)Rr(Φκ)\\2 (3-23)

= O(κ-*) (r = l ΛΓ).

We can therefore apply Nelson's reasoning [15]: By hypercontractivity for p ^ 1
we have

\\QΛΦ)RΛΦκ)VP

12 ύCκ-*p{p-\)2? (3.24)

for some C, ε > 0 and therefore (cf. Nelson [17])

μo{\Pr(Φ)-Pr(Φκ)\ \Qr{Φ)Rr{Φκ)\ ^ 1} ύ e~bκ'E (3.25)

for some b, ε > 0. This implies as in Nelson's case

υ2elf(dμo) for p e [ l , o o ) . (3.26)

We now have to investigate the Gaussian factor uvi (3.4). We need the following
rather obvious (and perhaps well known)

Lemma 3.3. Let C = C*bea Hilbert-Schmίdt operator on3tf1.u = e~*'{φ>Cφ)i: e Π
if andonly if l + p C > 0 ( p ^ l ) .

Proof. Assume 1 + pC > O.By introducing a suitable orthonormal basis (en)ίΓ=i
in J ^ , C can be diagonalized (Φn = (Φ, en)x)

00 00

:{Φ,CΦ\:= Σ y»:Φ»2:= Σ 7n(Φn

2-i)- (3-27)
n=l n=ί
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We approximate u by

( f V (3.28)
\ ^ 11 = 1

Since ln%->lnw in L2 {dμ0), there is a subsequence uNk converging to u a.e. (dμ0).

N i oo

W"N\\P

P= ft τ i = ί

^2π

. f>2 P rn

(3.29)

By Fatou's lemma u e Lp. The converse statement is trivial.
In our case

iΦ,CΦ): = λ2:(ΦΛBM-B1)Φ)1:

= -λ2Ύrrι;g:KK*: + M2 $:Φg(x)2:d2x.

Therefore C has the form (cf. Appendix A)

^ g, (3.31)

where G r e g is a multiplication operator in momentum space \_g denotes multiplica-
tion by g(x) in configuration space]. G reg is bounded from above

G r e g ( / c ) ^ α < o o 4 (3.32)

[see Appendix A, Eqs. (A. 12) and (A. 14)], therefore

C ^ 2

 l

 2 g(-aλ2 + M2)g. (3.33)

In order to have uvί (3.4) in Π(r ^ 1) it suffices according to Lemma 3.3 if

(V>> V)i + (9Ψ> 9ψ)o {-aλ2 + M2) r > 0 (3.34)

for each ψ E J ^ (( , )0 denotes the scalar product of L2 (d2 x)). For 0 ^ g ^ 1
(̂  measurable)

', #ip)0 ^ (tp, tp)0 ^ -^- {ψ, ψ\ . (3.35)

Therefore (3.34) is fulfilled, if we choose

^-. (3.36)
r

This is actually true for a = 0.
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Let us summarize: For every given q ̂  1 there is a choice of M2 such that
det ren(ί + λK)e 13. Actually we have shown that

det r e n ( l+ λK) ^wM(Φ)eI3 (3.37)

for suitable M — M (q), where

wM(Φ)2 = e-λ2'{φ>BMφ):det{3){ί +A+)

| J . (3.38)

4. The Renormalized Matthews-Salam Formulae for the Schwinger Functions

We now come back to formula (1.1) for the Schwinger functions

S'(xl9...,xn; yl9...,ym; z l 5 . . . , z j

= -ym$d^ Π Φ(xι)detikSF'(yhzi;Φg)dQtren(ί+λK(Φg)). ( 4 1 )

Z W 1 = 1

In Section 3 we showed that det r e n(l +λK)e L1 (for suitable choice of M), hence
Z(λ)<oo(λeJR). The next question is whether Z(λ) might vanish. The answer is

Lemma 4.1.
Z(λ)= Jdet r e n ( l+AX)dμ o +O for λeiR. (4.2)

Proof. Z(λ) = 0 implies
det r e n(l+AK) = 0 (4.3)

for almost all Φ e 9"' and therefore

deti3)(l+λK) = Q (4.4)

for almost all Φ e £f'%
In the pseudoscalar case this is excluded by (2.23).
This simple argument does not work in the scalar case. But we remark that

for all ΦtST' for which \\λK\\ < 1

det ( 3 ) (l+ΛK)Φ0 (4.5)

[and hence > 0 by (2.23)].
Since | | jq ^ ||X||4, it suffices to show that the set oίΦ9" for which ||AX||4 < 1

has nonvanishing measure. This follows from

Lemma 4.2. μo{||X||^<ε} > 0 for all ε>0.

The proof of this lemma, which is not quite as trivial as one might expect,
follows from a more general statement about monomials in the free field which
is proven in Appendix B.

Next we discuss the numerator of (4.1). Of course we have to smear with suitable
test functions. We prove

Lemma 4.3.

£ Π i l/^l l^l^ l l M / 1 2 w(φ) (4>6)
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where wM is given by (3.37), and || | |^* denotes the norm of the Hilbert space
C 2 ® J f l i , the dual of 34? (2.1) (the first factor on the left hand side does not neces-
sarily have an independent meaning for all λ in the scalar case).

Proof Let fi9 g^tf* (i = U ..., m). According to (1.3)

T I)

mι̂
Mi+ λKΓiSrgk

(( , ) 0 denotes the scalar product of (C2 ®L2 (d2 x\ ( , )#> the scalar product of Jf).
Since in the scalar case we cannot exclude the possibility of real eigenvalues,

let us consider the product

X = det.i
1 1

ί+λK (4.8)

We note that Sp = and D =
p2 + m2

from 3V* onto Jf7. If we define

φ = Df1A- ΛD/ m ; ψ =

φ,ψe l\m ffl (m-fold antisymmetric tensor product of Jf) we can rewrite (4.8) and
obtain

ί* K).

(the duality map) are isometries

(4.9)

det ( 3 )(l

(we choose the normalization as in Greub [19]). We now split A:

and denote the eigenvalues of A_ by αfc(l ^ αx ^ α2 ^ •)•

„ 1

(4.10)

(4.11)

ί-A ψ

(4.12)

" i > 5 . i ( 1 "
If we use the fact

1 = 1

(ί-x)ex+χ3/2+χ3/3S

and the Def. (4.9), we get

m
2 II Λ II 2

(4.13)

(4.14)
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Using the relation between d e t ( 3 ) ( i + X ) and det r e n (l + λK) [(3.1), (3.2),
(3.8)] and the definition of wM (3.37), we get the assertion (4.6). Since

f[Φ(/ι f )e Π LP(dμo) for hie3#'-ί(i=l,...,ή)9 we have shown that for

suitably chosen M the definition

S(hl9...9hn;f1,...,fm;gu...9gJ

1
7m-S dμodetikSFU,0k',Φβ)dttnn{t+λK) ft
6\A) r = ί

makes sense.
Because of

Π *W Π *(Λ,

(see Nelson [11]) and

Π

we get the following bound:

^i 2"

with some constants c l 5 c 2, c 3 .

(4-15)

(4.16)

(4.17)

(4.18)

5. Remarks

Osterwalder and Schrader [5] have proved a Feynman-Kac formula for
Boson-Fermion models with ultraviolet and volume cutoff, as mentioned earlier.
From this formula and the integrabihty of the renormalized Fredholm determinant
without cutoff it follows that

(Ωo, = J dμ0 det r e n(l + λKκ(Φ)) (5.1)

stays bounded for K->GO (ΩO is the Fock vacuum, HκV the doubly cutoff Hamil-
tonian with interaction in the volume V, g the characteristic function of Vx[0, ί]).

Since we have actually shown that det r e n(l + λK(Φg))eLq with q>{ (for
suitable choice of the renormalization parameter M), J |det r e n(l + λKκ(Φg))\1 + εdμ0

stays bounded for some ε > 0 and K -> oo. By a criterion for "uniform integrability"
(see for instance the appendix of Doob [20])5 it then follows that the limit of the
integral equals the integral of the limit, that is

(β 0 , = J dμ0 det r e n(l + λK(Φg)). (5.2)

I am indebted to H. Ezawa and J. R. Klauder for bringing this criterion to my attention.
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An analogous result is true for more general Fock space states ψ0, χ0 which are
created from Ωo by applying polynomials in time zero Bose fields. By using
Nelson's hypercontractivity (see [11,12]) it is easy to show that for large enough t

\{Ψo,e-Hvtχo)r\^\\ψo\\\\Xo\\C{V,t) (5.3)

which expresses boundedness below of Hv for a "pure boson" subtheory. But in
order to show boundedness below of Hv on the full Fock space from our results
it seems to be necessary to take the infinite time limit. It would be desirable, in any
case, to perform the Euclidean infinite volume limit for the Schwinger functions
and to check Osterwalder's and Schrader's axioms which then would imply all
the Wightman axioms for the corresponding quantum field theory. Unfortunately
the methods which were so successful in P(Φ)2 models like the cluster expansion
of Glimm, Jaffe and Spencer [21] or the method of Dimock and Glimm [22]
are not directly applicable, since the effective interaction for the bosons is non-
local. Nevertheless the coupling between distant regions should fall off ex-
ponentially and this fact should lead to the existence of the infinite volume limit.

Acknowledgements. I thank A. Wightman for bringing the problem to my attention and I. Herbst
for reading the manuscript. I profited from discussions with P. Federbush, I. Herbst, K. Osterwalder,
B.Simon, and A. Wightman on the subject of this paper. Furthermore, I should like to thank the
Institute for Advanced Study for the hospitality extended to me.

Appendix

A. Computation of the Feynman Integrals Corresponding to ΎrK2 and ΎrKK*

We want to prove Eqs. (3.18) and (3.19). Formally we have

- τ ) +m

where
εΓ = l for Γ = l and sΓ=—ί for Γ = iγ5 (A.2)

In (A.I) of course the p-integral is logarithmically divergent. We consider instead

\ Tr r e g Kκ

2 = J d2k\ΦgιK(k)\2 Fnt{k), (A.3)

/ k

where with p+ = p ± —

Similarly
$ΎτngKκK* = id2 k\Φ09K(k)\2 Greg(/c), (A.5)
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where

( p +

2 + m 2 ) H p J + m2f " 2 — 2 Ί > ( A > 6 )

Note that not only formally the subtraction term in (A.4) is the negative of the
one in (A.6), but actually

Kΐ) = iΎr(K + K*)2

reg(/c))

which means that the left hand side of (A.7) is finite without any subtraction.
By simple power counting it can be seen that

kr + μ

(here by g we mean the operator of multiplication by g in x-space, by F r e g + Greg

multiplication by F r e g + Greg in momentum space) is a (self-adjoint) Hilbert-
Schmidt operator on J ^ therefore

K, 1 κ l ( A 9 )

-> :(Φ, Bi Φ)i: in L(dμ0) as κ;->oo
which is (3.18).

In order to show (3.19), we need the explicit form of F r e g and G r e g. The integrals
(A.4), (A.6) can easily be computed by Bogoliubov's exponential method [17]

— = ——— j" dx xa~x e~xa, (A.10)

The results are

Free(k) = ^ \ ~* l n ^ (1 H (1 +ε Γ ) , (A.ll)
reg 1^4 + ρ 2 \ ρ UJ

1 - ^ -
Greg(/c) = - π In ίl + | - j - 2π In 2

 A + Q , (A.12)

where

The asymptotic behavior of these expressions is

G r e g = - π l n ρ + 4πln2 + O ( τ ^ ) , (A. 14)

(A. 15)
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Now according to (A.7)

y(K.. + K*)2du.» = 4 U2k(F. Jk\ + G..Jki\
(A.16)

J Tr(Kκ + Ktf dμo = 4$ d2 k(Freg(k) + G reg(

ίdμo\ΦgJk)\2;

\Φg,κ(k)\2 = co J d2p\g{p-k)\2-τ±-Ύ. (A. 17)

(A.15)-(A.17) show that

( A . l
f Λ 2 1

J Λ P n2 • ..2

Λ κ2 + μ2 , K μ2

= q + c3 In j — = ci + 2 c 3 ^n ^ C3 ~ΐ
μ μ K

from which (3.19) follows. Let us now turn to Eqs. (3.10) and (3.31). According to
the definition (2.11)

* m kz + μz

and therefore

BM~B,= * 2g{λ~2M2-2Greg(k))g

which is Eq. (3.31).

B. Localized Monomials in the Free Bose Field

Let F: IR2n ->(C be a function with the following properties.
a) i7 has support inΛx -xΛ(n times) where Λ is a compact subset of IR2.
b) F e L 1 (IR2").
c) Σ

• δ(Pσ{l)- Pσ(2)) -•• δ(Pσ(2n-ϊ) ~ Pσ(2n)) (B 1 )

' Π T2 ^7-γd2p1...d
2p2n<co,

where S 2 π is the group of permutations of {1, 2,..., In}. Under these conditions
we can define a random variable μF by

uF = L2- I i m 4 κ ) , (B.2)
7C-> 00

where

Φκ(x) = (Φ*ftJ(x), (B.4)
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Assumption c) just guarantees the existence of the limit in (B.2):

j \uF —uF i aμ0 — j \μF \ aμ0

+ J \u(p\2 dμ0 - 2Re j 7 # H κ # ) du0 (B.6)

(all integrals over dμ0 can be done and lead to expressions similar to (B.I); the
interchange of the limit with the p-integration is justified by the dominated con-
vergence theorem).

We call uF a monomial of degree n in the field Φ.
The set Mn of monomials of degree n obviously is a linear subspace of L2(dμ0)

but it is not closed in general. We do not want to close it, since the closure Mn

in general contains functions which are quite different from what one would like
to call a monomial of degree n.

For example
1 e M2 . (B.7)

This can be seen as follows:
Let fl9 f2, f 3 , . . . be an orthonormal sequence in Jif_1. Then

But ^ϊfli^^ (R8)

% —• 1 (N —> oo) in L2 .

Our main result is the following:

Proposition. // ue Mn, μ0 {\u\ < ε} > 0 for all ε > 0.

Proof. We start with the following trivial observation: Let

υeLHdμo), υ^O, Svdμo = \, (B.9)

J \u\2 v dμ0 = ε2. Then μ0 {\u\2 < ε2} > 0.

All we have to do is therefore to find a suitable v. Consider the following
operator in Jf_1:

Λκ,Λ = eΛθκeΛ, (B.10)

where eΛ is the projection onto the subspace of Jf_x supported in Λ, θk is the
projection onto the subspace of JfLx which has momentum space support in the
ball p2 S κ2.

AKtΛ has the following properties:

a) AKtA^0. (B.il)

b) ί-Aκ,Λ>0. (B.12)

c) AKtΛ is trace class .

Proof a) is trivial.

b) i-AKtΛ = (ί-eA) + eA{i-θκ)eA^O. (B.13)

Assume (1 — AKtA)f = 0 for some fs^_ι. Because of (B.13) this implies
(1 _ eΛ) - f = 0 and eA(l - θκ)eΛf = 0. Therefore supp / C A and

(f(ί-θκ)f) = O (B.14)
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or

ί I/(P)I2

hence
f(p) = O for p2^κ2. (B.16)

But / is an entire function, therefore this implies / = 0, which completes the proof
ofb).

c) Let g e CQ g(x) = ί for x e A and let g also denote the operator of multiplica-
tion by g.

Then
TΐeΛθκeΛ = TτeAg*θκgeA

^ rr * f\ ιr\ \ - 4 Γ ι~/ \ ι 2 P ~^~ ^ J 2 J 2 (β'Ί-7)

<Trq oκq — (2π) §IP — <7) —0 κ-d pa a

[this is true because eΛg*θκgeA = C*C with C = θκgeΛ and therefore the trace
is given by the integral appearing at the end of (B.I7)]. (g* denotes the adjoint
of g as an operator on J^'_1.)

By using

P2 + μ2 = q2 + μ2 + (p-q)2 + 2q (p- q) (B.18)
we obtain

(2πfΎτeΛθκeA£ J Jg(p- q)\2 d2pd2q

+ J ^p-q)2\g{p-q)\2{q2+μ2y1d2pd\ (B.19)

+ 2 j \p — q\ \ι

since g is strongly decreasing
Because of b), c)

Bκ Λ = (p2 + μ2)'1 AκΛ(\ — AKfΛ)~1 (p2 + μ2) (B.20)

is a trace class operator on JfL x.
Therefore we can define

in an obvious way as a L2 -limit (by approximating Bκ Λ by finite rank operators).
An elementary calculation shows

SϋKίΛdμ0 = (det(ί-AκJf (B.22)

If we set

vKtA = (det{ί - AKJY*exp(-i(Φ15KjylΦ)1) (B.23)

vκA fulfills the conditions (B.9). vκΛdμ0 is a Gaussian measure with covariance

Cκ,A = Co(l-eAθκeA), (B.24)

where Co is the free covariance.
If we now compute J \uF\

2 vKtA dμ0 we can forget about the eΛ in (B.24) because
of the support properties of F. We obtain an expression similar to (B.I), but each
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factor —2 r *s replaced by —^ γ^(Pj2 ~κ2) Because of the fmiteness

condition (B.I)

f l μ F l 2 ^ μ o - + 0 (κ->oo). (B.25)

This completes the proof of the proposition.
Lemma 4.2 now follows from the simple observation that ||X||4

4 = Tr(K*iC)2

is a localized monomial in the sense defined above.
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