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Abstract. We consider a theorem due to Michel [1] which relates the invariance properties in
peculiar directions in a linear space on which we represent a Lie group G to the extremal points of an
arbitrary smooth G-invariant function.

The group we are interested in is SO{4) and we apply the mathematical results to the following
problems:

i) mixed linear Stark Zeeman effect in a hydrogen atom,
ii) perturbation of a finite Robertson-Walker metric,

iii) gas evolutions preserving angular momentum and vorticity.

Introduction

Among the solutions of a theory covariant under the action of a group G there
may be peculiar ones which are invariant under a subgroup of G.

For example among the orbits of a mass point in a central, stationary and
attractive field the circular ones are invariant under rotations around the axis
perpendicular to the plane of the orbit.

As it is well known the orbits of a mass point in a central stationary field are
specified, modulo a transformation of the covariance group, by the energy E
and by the square of the angular momentum J2.

Now, if we consider the orbits with a fixed value of J2

E ^ +
2

we see that the allowed values of E1 go from Emin to infinity. Moreover Emϊn

corresponds to a circular orbit and vice versa.
This example illustrates a property frequently satisfied by highly symmetric

solutions, if suitably normalized. Such solutions are extremal i.e. each invariant
smooth function defined on the space of "normalized" solutions has a vanishing
differential on them.

In the case of Lie groups Michel [1] has proved a theorem which relates
invariance properties to extremal points of the invariant functions.

In this paper we want to apply this theorem to the study of three problems
which are invariant under the group 50(4).

1 If Iimr2 |(7(r)|< 1.
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In section one we quote Michel's theorem, we list some general results con-
cerning abstract SO(4) representations and we explicitly analyze some con-
sequences of Michel's theorem.

A simple application concerning extremal splittings of the energy levels of a
hydrogen atom in a magnetic and electric field is given in section two. In section
three after examining the properties of a perturbation of a metric tensor in General
Relativity we consider a finite Robertson Walker metric. Then we decompose
a generic perturbation of a Robertson Walker metric into irreducible components
and we look for extremal perturbations.

In section four we consider a class of uniform or quasiuniform evolutions
of a gas cloud which are SO(4) invariant.

1. Critical Orbits and Extremal Points

Let us recall the following definitions.
Definition 1. Let G be a transformation group acting on a set S. We call

G-orbit of s, s e S the set Os defined by

Definition 2. We define the isotropy subgroup of se S the subgroup Gs of G:

y°s = s VyeG s. (1.2)

The isotropy groups of points belonging to the same orbit are conjugated i.e.

3 y e G : y o G 5 o 7 - i = G s , s ' = y o S . (1 .3)

Definition3. The orbits whose elements have conjugated isotropy groups
belong by definition to the same stratum.

Let us now assume S to be a manifold.
Definition 4. We call an orbit 0s isolated in its stratum if \/s' EOS a neigh-

bourhood IS' of s' exists such that Vs" e /s,: s" φ Os the isotropy group of s" is not
conjugated to that of s.

Definition 5. We call an orbit 0s critical if for each G-invariant real smooth
function / defined on S the differential vanishes on the orbit i.e.

The following two theorems hold [1].

Theorem 1. Let G be a compact Lie group acting smoothly on a smooth para-
compact manifold S then a G-orbit on S is critical if and only if it is isolated in its
stratum.

Theorem 2. If the isotropy group of a stratum (modulo a conjugation) is maximal
then the stratum is closed and if S is compact either it contains only a finite number
of orbits, which then obviously are isolated, or for each G-invariant smooth function
f from S into ]Rdf = 0 for at least two orbits in the stratum (the actual position of
these orbits depends in general on the function f).
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Definition 6. Given two spaces A and B and a group G acting on them (i.e. given
two maps G x A-^A and G x B-^B with the due composition laws) we call a map
from A into £ G-equivariant if it commutes with the group action. The use of
equivariant maps allows us to study the representations of the group G on abstract
linear spaces.

In the remaining part of this section we will study orbits and strata of some
SO(4) representations and we will give a general result about S0(3)d invariant
vectors. The application of these results to physical problems will be given in the
following sections.

Since each stratum is characterized by an isotropy subgroup we give now a
list of those we will meet in the following analysis.

Let Lα and Kβ α, β= 1,2,3, be the infinitesimal generators of SO(4): their
commutation relations are

(1.4)

where εaβγ is the usual three index antisymmetrical symbol. Let J=j(L +
and H=\(L — K)\ then we have

(1.5)

i.e. SO(4) is isomorphic to SO(3)i x SO(3)2 (where 1 labels the group generated
by the J's and 2 the other one). The universal covering group of 50(4) is SU(2)1

xSU(2)2.
The four dimensional subgroups are S0(3)ι x O(2)2 and 0(2)ι x SO(3)2 which

are both maximal. The three dimensional subgroups we will be interested in are:

S0(3)u

SO(3)2,

and S0(3)d

(and all the conjugated ones) where d means diagonal, which is generated by the
L's and is maximal.

All two dimensional subgroups are Abelian and are conjugated to 0(2) ι x O(2)2.
All the irreducible representations of £0(4) are finite dimensional and can be

labelled by a pair of integer or half integer positive numbers (p, q) such that p + q
is an integer.

a) The (1/2, 1/2) Representation

It is the lowest dimensional faithful representation. Let x be a vector of IR4:
the action of G on IR4 is given by the law

Xi = OijXj (1.6)

where 0 is an orthogonal 4 x 4 matrix.
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From the decomposition

(1/2, l/2)(χ)(l/2, 1/2)-(0,0)0(1, 1) (1.7)

it follows that there is only one independent bilinear scalar form (which is positive
definite since the group is compact) namely

<x9y>=Σ*iyi *>yeIR4. (1.8)

Each vector belonging to IR4 is conjugated through SO(4) to a vector of the
form (α, 0,0,0) where 0 :g a = <x, x>*. Thus the invariant <x, x> = α2 is sufficient
to label the orbits.

Moreover only two strata exist, namely the origin [α = 05 isotropy group
£0(4)] and IR4 minus the origin [ α > 0 isotropy group S0(3)d].

In our physical applications we will be interested in normalized vectors.
If we normalize to α = 1 there is only one stratum with only one orbit (obviously

on the sphere α = 1 all invariant functions are constant) and thus the criticity
of the orbit becomes trivial.

b) The Reducible Representation (1/2, 1/2)0(1/2, 1/2)

The group action law follows from Eq. (1.6) i.e.

x ^ l R 4 x2eIR2

x' = x\®x'2 = 0xί®0x2

(the same orthogonal matrix O for both xt and x2). From

®2[(l/2, 1/2)0(1/2, l/2)]-© .©4 (0,0)0.•• (1.10)

it follows that there exist four independent scalar bilinear forms, i.e.

< X i , j Ί > , <x2>3>2>> <*i9)>2>> <>2>)>i>. (1.11)

Each vector belonging to IR8 is conjugated through the action of the group
to a vector of the form

x = xί®x2

xL = (α, 0,0, 0) α = <x l 5 x ^

x2^(β,y,00) αj8=<x l 9x 2> β2 + y2 = <x2 ?x2>

α , y ^ 0 .

Thus the orbits are labelled by the three invariants

σ1 = <x l Jx 1> σ 2 -<x 2 ,x 2 > τ = <x l J x 2 >.

The strata into which IR8 is partitioned are:
i) a = β = 7 = 0=>σx = σ2 = 0. The isotropy group is SO(4),

ϋ) y — 0 and either α or β or both are different from zero => either σ2 = λτ — λ2 σt

or σί = μτ = μ2σ2 λ,μelR. The isotropy group is SO(3)d,
iii) α + O φ ^ + Oφy isotropy group O(2)d.
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The following two normalizations are useful:

a) < X I , X 1 > = < X 2 > ^ 2 > = 1

In S3 x S3 (where S3 is the unit sphere in 1R4) there are two strata: the collinear
(ii) and the general (iii) ones.

Only two orbits belong to the collinear stratum and are isolated; thus from
Theorem 1 they are critical.

b) <x1,x1> + <x2,x2> = l.

In SΊ we have two strata as before but there are no longer critical orbits.
Moreover since the collinear stratum is closed Theorem 2 holds.
We will now verify explicitly in these cases Theorems 1, 2. Let / be a real

smooth SΌ(4)-invariant function defined on 1R8, then

f = f(σuσ2,τ).

Compiuting the differential with the constrains σ1=σ2 = ί we have

dτ dxt
(1.12)

df „ df
dτ

where λ and μ are the Lagrange multipliers.
The condition df = 0 V/leads to:

-^xι + ^-x2dσ1 dτ \ x j
(1.13)

df df\2 x 2 + x 1 τ + 2
dσ2 dτ \ dτ dσ

i.e. xλ parallel (and thus equal or opposite) to x2.
Vice versa iϊ x1//x2

—t-=δxi and —~=ζx 2 (1.14)
dxι dx2

(5, ζelR and thus

since the gradient is orthogonal to the hypersurface

σi — σi — const .

In case b) from df = 0 V/ we get :

oτ

(1.15)

x + 2λ(Xl + x2) = 0
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i.e.

^xι2^x2 + f
dσ1 dσ2 dτ

(1.16)

from which it follows xt = kx2 and k = fe(/) and since the conditions α2 + β2 = 1
and y = 0 define a circle in the orbit space, f\Xχ/jX2 must have at least a maximum
and a minimum. Vice versa iϊx1//x2 from Eq. (1.14) it follows that df is orthogonal
to the hypersurface σi-\-σ2 = i at the point δx± = ζx2 where ^ and ζ depend on /.

cj The (1,1) Representation

It is a nine dimensional representation. If we realize 1R9 as the linear space of
real symmetric traceless 4 x 4 matrices, m e 1R9, the action law is

m' = 0mt0 (1.17)

where m e IR9 a n d 0 e SO{4).
Another useful real ization of IR9 is as the linear space of the 3 x 3 matrices

with the action law

rtGlR9 ri = 0^*02 (1.18)

where Oγ e SO(3)ί and 02 e SO(3)2. This realization is interesting in relation to the
similar (3, 3)©(3, 3) representation of SU{3) xSU(3), see [2], and will be used in
Section 4.

If riij are the elements of the 3 x 3 matrix the elements of the corresponding
4 x 4 are

n23-n32 n31-n13 n12-n2

n23-n32 nlί~n22-n33

^12 + ̂ 21 ^22-^33-^11 ^23

n33-nίl~n22

(1.19)

From the tensor decomposition (symmetrical part)

® 2 [( l , l)] = -Θ(0,0)Θ(i , i ) (1.20)

it follows that there exists only one bilinear form and one G equivariant sym-
metrical algebra: i.e.

<m,ift'> = i t r m m \ (1.21)

m V m' = \(mm' + m'm)- \\xmm' 2 . (1.22)

This algebra contains: nihil potent vectors

mVm-0 (1.23)

The three dimensional version of this algebra is

B V B ' = I 1 (tr n tr ri — tr wn') — \ xn tr n' — \ 'ri tr n + \ (tin' + n' n).
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all conjugated to m0

47

i d e m p o t e n t vectors

all conjugated to mγ

— α

m Vm — λm

αeIR (1.24)

(1.25)

mί=(x\ χ

- 3 /

(1.26)

Each m e IR9 is conjugated to a diagonal matrix

α

7
(1.27)

The orbits can thus be labelled by the numbers α, jβ, and y or equivalently by the
three invariants

The strata are:

<m, m) = σi

(m V m, m> = σ2

<m V m,m\/ m) = σ3 .

isotropy group

α = jS = y = 5 = O trivial 50(4)

? = y idempotent 50(3)^

J= - 7 nihil potent 0(2)λ x O(2)2

or

or

0(2)d

(1.28)

α φ ^ Φ y φ 5 general stratum .
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The natural normalization is <m, m> = l. In S8 there are three critical orbits
i.e. two idempotent and the nihil potent vectors of the symmetric algebra as it
follows easily from the following equations: / = /(σ1,σ2,σ3)>

i ^ ^ ^ m V m \ / m . (1.29)
5m dm 5m

dj Tfce Reducible Representation (1, 1)®(1, 1)

The group action law follows from Eq. (1.17) or from Eq. (1.18). Each pair of
matrices m = m 1 © m 2 G IR9©ίR9 is conjugated to a pair whose first element is
diagonal according to Eq. (1.27). The orbits are labelled by the twelve invariants

(mx,mγy <mx V mί9mly (m1\/ m1,m1V m t >

m2,m2y <m 2 V m2,m2V m2y

V 1ΛΛ tΛΛ \ / ΈΛΛ \/ 1ΛΛ ΈΛΛ \l 1ΛΛ \

m^^m2) \V^\ v mγ^ϊtiγ v m2/>

\m2 V m 2, m^/ \ ^ i V m^, m2 V m2y

(mι V m 2, m2 V m2> .

Besides the general stratum the others are
isotropy group

m1 = m 2 = θ trivial 50(4)

m1 and m 2 idempotent and parallel S0(3)d

mx and m 2 nihil potent and parallel 0(2^x0(2)2

mx and m 2 invariant under the same 0(2)d 0(2)d.

With the normalization <m1 ? mx> = <m2, m2> = 1 the second and the third
stratum are critical.

e) The Adjoint Representation

The adjoint representation ( l , 0 ) © ( 0 , I ) 3 is six dimensional and can be
realized on the linear space of the real antisymmetrical 4 x 4 matrices with the
transformation law.

m e IR6 0 e 50(4)

m^Om'O. (1.31)
We define m* e ER6

where ε is the completely antisymmetrical four index symbol. Thus the decomposi-
tion of m into irreducible components becomes:

m, = { (m + m*)e (1,0)
2

Λ (1.33)
m _ _ = ! ( m - m * ) e (0,1).

Which is reducible since the group is not semi-simple.
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From

it follows that there exist two independent bilinear scalar forms.
The orbits can be labelled by the two invariants

(1.35)
σ2 = — t r m l .

The strata are

σί=0

<72=0

σ1= -trml

σ2 = —trml .

isotropy group

trivial SO (4)

SO(3)

0(2),

0(2),

i x O(2)2

x SO(3)2

x 0(2),.

If we normalize to σγ + σ2 = 1 the second and the third stratum contain only
one orbit which is critical.

f) Criticity of a SO(3)d Invariant Orbit on a Reducible Representation

Untill now we have examined only single irreducible representations or direct
sum of at most two of them. Now we want to give a general result concerning a
SO(3)d invariant vector X belonging to an arbitrary finite dimensional, reducible,
representation.

In the decomposition of the vector X the multiplicity of a given irreducible
representation can be greater than one.

From the assumption of SO(3)d invariance it follows that in the decomposition
of X only the representations of the form (/, j) can appear, where j is an integer or a
half integer.

Let Γs be the set of these representations.
Each (jj) representation contains once and only once the scalar representation

oϊSO(3)d.
Thus for each representation belonging to Γs there is a one dimensional linear

space to which all SO(3)d invariant vectors belong.
Let us consider a S 0(4)-equivariant operator from (j,j)®{k,k) into (/, m)

[obviously (/, m) must appear in the decomposition oϊ(jj)®(k, fc)]. If it is applied
to SO(3)d invariant vectors [belonging to the (jj) and (k,k) representations
respectively] the image vector must be SO(3)d invariant. Thus if Z=t=m the image
vector must be the null vector whereas if / = m it must belong to the one-dimen-
sional, SO(3)d-invariant sub space.

Thus the following theorem holds

Theorem 3. Given a set Γs of representations belonging to Γs, the direct sum of
the SO(3)d invariant linear spaces belonging to these representations is closed for
all the G-equivariant operators from 7 i®72^?3 'yi?72?);3 G ^

This is a generalization of the concept of idempotent vector that we have met
in the study of the (1,1) representation.
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Let now / be a real SO(4) invariant smooth function defined on a linear space
acted on by a representation which is the direct sum of a finite number of irreducible
representations belonging to Γs. Then f(X) = f(oc1(X\ ...,αp(X)) where α f i = l...p
are all the invariants which are necessary and sufficient to label the orbits on fs

and X is a generic vector. Then

df -Y df daί (136)
dX T dat dX

Since all the invariants at can be obtained using scalar products and SO (4)-
equivariant operators it follows from the previous theorem that if X is SO(3)d

invariant then Vz—-φ- belongs to the space of SO(3)d invariant vectors.

Thus:
i) if we normalize the vector X to

(Λγ,Xγ) - 1 VyG ls

where Xγ is the y-th irreducible component of X, then the SO(3)d stratum consists
of a finite number of isolated orbits which are critical

ii) if we normalize the vector X to

the stratum is closed and since SO{3)d is maximal there must be at least two
stationary points4.

We will now apply the foregoing mathematical concepts to the cases of physical
interest.

2. The Mixed Stark Zeeman Effect on the Hydrogen Atom

The results of the previous section can be applied to all problems in which
we are looking for maxima and minima (or extremal points in general) of an SO (4)
invariant function /. This method does not give the actual positions of all the
extremal points for each given / but it exhibits a certain number of them that
must necessarily be found in well defined positions. This can be an important a
priori information. The simplest example is given by an hydrogen atom in a
magnetic and electric field.

It is well known [3] that it is possible to classify the bound eigen states of the
spinless non relativistic hydrogen atom using the (jj) representations of SO(4).
(In Section 1 we called the set of these representations Γs.)

This classification follows from the conservation in a Coulomb field of the
angular momentum and of the Lentz vector which are the group generators L
andX.

4 This theorem can be easily generalized to SU(3)xSU(3) and applied to the SU(3)d invariant
orbits belonging to an arbitrary representation. The vectors of these "critical" orbits satisfy a quadratic
equation since they are idempotent (see [2]).
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The eigenvalues of the Hamiltonian are

^Γ (iR atomic units) (2.1)

where n — 2j-\- 1.
Let us now apply the linear perturbation theory to the determination of the

energy corrections to the states of a hydrogen atom in a uniform electro-magnetic
field (mixed Stark and Zeeman effects). Let \ψ} be a normalized energy eigen
vector describing a bound state. It belongs to the complex Hubert space of the
hydrogen atom states and thus to apply the results of the previous section we must
write it as the direct sum of its real and imaginary parts which transform like two
equivalent real SO(4) representations.

The correction to the mean energy is5

where μ0 is the Bohr magneton (in atomic units) 34? and £ are the magnetic and
electric fields and E is the unperturbed energy eigen value.

From Eq. (2.2) it follows that the perturbation term of the Hamiltonian
operator on the bound hydrogen energy eigen state transforms like a vector
depending on $ and Jf which belongs to the (1,0)0(0, 1) £0(4) representation.
Thus AE = AE(ψ, S, J/f) is a SO(4) invariant function and we can look for extremal
points of A E i.e. for those fields configurations and atomic states for which A E
is critical.

The energy difference AE is invariant under the phase transformation group
1/(1) whose action on \ψ} is

l ^ > - ^ φ l ^ > (2.3)

while it acts trivially on the perturbation hamiltonian.
The real and the imaginary parts of \ψ} belong to a SO(4) x (7(1) representation

which is irreducible on the real numbers.
From Section 1 it follows that (apart from the trivial case n= 1) 0{2)ί x O{2)2

is the largest isotropy subgroup of a vector belonging to an arbitrary (1,0)©(0, 1)
©(/, j) representation of SO(4) x (7(1) with the normalization conditions

+ 9-^-n2=tt2 g tf = β. (2.4)

The corresponding 50(4) x 1/(1) strata contain (2/4- I)2 critical orbits: the
orientation of the electric and magnetic fields is arbitrary and \ψ} is an eigenvector
of the perturbed Hamiltonian (cf. the results of the secular equation).

A representative element of these orbits can be chosen in the following way:
$ and Jf lie along the z-axis and \xp} is an eigen vector of Jz and Hz (see Section 1).

The results in terms of 50(4) strata would have been different: ifj is an integer
there is only one critical orbit O(2)ί x O(2)2 invariant corresponding to AE = 0
Vα, β in Eq. (2.4) ifj is a half integer there is one closed O(2)d invariant stratum.

5 See for example Landau Lifshitz Vol. 3 Quantum Mechanics p. 269.
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3. Perturbations of a Robertson Walker Metric

a) Perturbations of the Metric Tensor, Linearized Einstein Equations

Let (W, g) be a Riemannian space. W is an open subset of a four dimensional
manifold and g(x), x e W, is the metric tensor.

Let us now perturb slightly the metric tensor and let (W, g + δg) be the
perturbed Riemannian space.

If <. I and I. I are the Christoffel symbols of (W, g) and (W, g -f δg) respec-

tively, it follows

(IJ) [IJj

where Q is a tensor field.
Equation (3.1) is equivalent to

Uΰij + δgi/= Vk(δgij) = {gn + δgn) Q)k (3.2)

where V is the covariant derivative of the Riemannian space (W, g).
The Riemann and the Ricci tensors of the two spaces are related by

Ĵ '.i J{\ — y Q\ y Q\
(3.3)

QlJQik

and
«j* - Λ>*=p'kQji - ^ Q}fc ( 3 4 )

+ QhpQi

hk-Qh

JkQi,i.

Similar formulae relate the tensors we obtain by covariant differentiation of
the Riemann tensor.

All these equations involve linear terms in δg and its derivatives as well as
higher order terms.

Definition 7. (W, g + δg) is a perturbation of (W, g) if in Eqs. (3.2), (3.3), (3.4)
and in all the equations we obtain by differentiating Eq. (3.3) for Vx e W the
higher order terms are much smaller than the linear ones.

According to this definition δg and all its derivatives must be small compared
to the corresponding unperturbed quantities.

Thus restricting ourselves to first order terms it follows

rδ Q

δRi^FCik-Rίk=VkQίj-VjQlk. (3.6)

From (3.6) the linearized Einstein equations follow

-^g^δTj-^Tjδg^ (3.7)

where Tik is the momentum energy tensor and δTik its first variation.
Let us now suppose that the isometry group of (W, g) is a Lie group G.
Then the covariant derivative is invariant in form under the transformations

of G.
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If we write Eq. (3.6) in the form

3f{δg) = δR (3.8)

from (3.5) and (3.6) it follows that 3) is a G-scalar operator i.e. it commutes with
the isometry transformations of (W, g). Thus if y e G

δg' = y°δg (3.9)
then

δR' = y°δR.

Thus in discussing Eq. (3.8) it is meaningful to subdivide the infinite dimensional
linear space of symmetric tensor fields (to which the tensor fields δg belong) into
G-invariant subspaces (possibly irreducible).

The definition or perturbed metric given previously is to a certain extent
ambiguous.

Indeed the perturbation δg is determined up to terms

Vjξt+Viξj (3.10)

where xn = xι + ξι is an infinitesimal coordinate transformation acting on the
unperturbed metric which leaves the unperturbed momentum energy tensor
invariant6.

We can use this ambiguity by choosing ξ to simplify the form of 3),
For example if the Ricci tensor of (W, g) vanishes (empty space) it is always

possible to fix the gauge conditions so that

giJQh = O (3.11)

and if in particular (W, g) is flat 3) becomes the usual d'Alambertian operator.
In the general case we must use G-covariant gauge conditions such as Eq. (3.11).

b) Finite Robertson Walker Metrics
Decomposition into Irreducible Representations of a Perturbation of a R.W. Metric

A well known class of cosmological models is based on a Robertson Walker
metric i.e. [4]

ds2 = - R2{t) I dV

 2 + r2 dθ2 + r2 sin2 θ dφ2\ + dt2 (3.12)

where k= + 1 , kr2 < 1 and R(t) is an arbitrary function of time which can be
interpreted as the radius of the universe. These models describe in a comoving
frame a homogeneous and isotropic world with a hydrodynamic energy
momentum tensor; the mass density ρ and the pressure p depend only on time.

6 For example a linearized plane gravitational wave has only two independent helicity states
while δg has ten independent components.
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The isometry group of a Robertson Walker metric is the product of the group
of space rotations and space "quasi-translations". The latter are defined by

(i - kx2f -|1 -(1 - kaψ\(^f)\ (3.13)X — X ~\~ Cl

where x is the set of the three cartesian space-coordinates and a is an arbitrary
three-vector satisfying

ka2<\. (3.14)

The Lie algebra of the isometry group is equivalent to that of 50(4) for k— 1
and to that of 50(3, 1) for k= - 1.

In both cases the minimal invariant submanifolds are three dimensional and
coincide with the physical space at a given time.

If k= 1, from the conditions kr2 < 1 and ka2 < 1 it follows that both the group
and the minimal invariant submanifolds are compact i.e. the universe at a given
time is finite.

If k = — 1 the isometry group is not compact and the universe is infinite.
The results of the previous sections can be applied to the compact case and

only partially to the non compact one.
The energy momentum tensor of a R.W. metric is

Tιj = p(t)gιj — (p(ί)-f ρ{t))διo δjo g00 (3.15)

where the pressure p and the density ρ are both positive definite.
If p Φ 0 the coordinate transformations commuting with Tιj are those and

only those which commute with gιj; the gauge is therefore fixed. If p = 0 (pure dust)
they are all the invertible transformations

x' = x'(x, t)
(3.16)

t =t.

In this case we can impose the gauge condition

9 β~ (3.17)
α, 0 = 1 , 2 , 3

which is evidently covariant under the isometry group.
Let us consider a perturbation of a given finite R.W. metric. We want to

decompose it into components belonging to irreducible representations of the
isometry group.

The following result is well known: since 50(4) is compact each function
from 5 3 into IR where 5 3 is the unit sphere in IR4, i.e. each real function of x in our
case, can be written as [5]

/ ( * ) = Σfymγym- (3 1 8 )
γ,m

where: y e Γ and Γ is the set of the irreducible inequivalent representations of
50(4); m is an index varying from 1 to nγ where nγ is the dimension of the yth
representation; /y

m are real numbers and 7γ

m form a basis in the linear space on
which the yth representation acts.
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Equation (3.18) says that it is possible to write / as a sum of finite dimensional
irreducible components.

We want now to decompose the tensor field δg into irreducible representations.
The transformation law of δg under the action of the isometry group is

dxι dxm

Wij(x'> 0 = -^r -^τ δglm(x9 t) (3.19)

where x = (x, t), x! — (x',t) and χ' = χ'(x) is a transformation belonging to the
isometry group.

Thus it follows that under the action of the isometry group δg00, δgOa, and δgaβ

transform like tensor fields of ranks 0, 1, 2 respectively, α, β = 1, 2, 3.
In the decomposition of δg00 we can use Eq. (3.18).
For δgOa

Ί we must construct a linear space of vector fields such that:
i) it is invariant under SO (4),

ii) the vectors, tangent to the unit sphere in 1R4, belong to it,
iii) it is possible to write in a unique way

δgOa= ΣKpv
p (3.20)

P

where vp are vector fields which form a basis in the linear space and hap are
functions.

Let x, y, z, w be a set of cartesian coordinates in 1R4 and let i^, ii>o i z, iιw be four
vector-fields with constant components (1,0,0,0), (0,1,0,0) etc. respectively:
IR4 and the linear space of the vector fields ii transform under SO{4) like two
irreducible (j, 3) representations. Among the components of their tensor product
the six-dimensional linear space which transforms like the (1, 0)©(0, 1) represen-
tation satisfies the previous requirements (see Appendix).

N o w applying Eq. (3.18) to the functions hap we obtain the decomposition of
the vector fields δgOa into irreducible components i.e. symbolically 8

>, 1)] (3.21)

where ai} are real numbers and (i,j) label the representations into which the
functions h have been decomposed.

In an analogous way we have

)1®(1, 1) (3.22)

J
where (1, 1) denotes the nine-dimensional representation on the linear space of the
tensor fields we obtain by tensor product of the (1,0) and (0, 1) representations
given by Eq. (A.3).

Now if we try to apply these results to a SO{3, 1) invariant (i.e. infinite) R.W.
metric we find that:

i) finite dimensional representations are no longer unitary and do not
exhaust the set of irreducible representations,

7 See for example (with some changes) [5].
8 In the decomposition of the tensor product the scalar representation (0, 0) is automatically

excluded.
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ii) Eq. (3.18) is no longer true,
iii) the relation between isolated and critical orbits is no longer true since

50(3,1) is not compact (see Section 1). We can find exceptional isolated orbits
which are not critical (light like orbits).

c) Scalar Functionals of the Perturbations

In order to apply the mathematical results of Section 1 to a perturbation of a
Robertson Walker metric we will construct two classes of smooth S0(4)-invariant
functions describing the perturbation and its evolution. It is clear that, since the
unperturbed metric is 50(4) invariant, any physical information on the linearized
perturbation can be written as a 50(4)-invariant function.

Let δg(t0) and
dδg

be the perturbation and its time derivative at a given

initial time t = to Then from the linearized Einstein equations (3.7) and the
conservation of the momentum energy tensor we know δg{t) Vί > ί0.

Since the unperturbed metric is 50(4) invariant from

y e 50(4) (3.23)

it follows

Vί>ίo

Let dί9 ...,d10 be the ten algebraicly independent functions we obtain con-
tracting δg and g. We shall call the quantity

10

A1(δg)= ΣίlίV-βM)2 d3xl=-t (3.24)
1

the amplitude of the perturbation δg at the time t = t where g3 is the spatial
determinant of the unperturbed metric. At(δg) is a 50(4) invariant functional ofδg.

If we decompose δg(t) into irreducible representations Λt(δg) becomes a
smooth function of the irreducible components of δg(t). Since δg(t) is determined

by δg(t0) and —δg\ t = t o i.e. by a vector (which we call Xo and gives the initial
(X t

conditions) belonging to an 50(4) reducible representation, we can define a 50(4)
invariant function ft

ft(X0) = At{δg). (3.25)

Now if we normalize the vector Xo to one, we can study the stability {ft{X0)
<>λ V/ Vδg λeWt) or the asymptotic stability (\imft(Xo) = 0 Vδg) of a Robertson

Walker metric looking at the behaviour of the functions ft.
The study of the maxima and the minima of the amplitude of the perturbation

obviously determines the stability or the instability of the unperturbed metric.
From the results of the previous sections we know
i) where stationary points must be necessarily found if δg belongs to a given

representation (possibly reducible),
ii) that there must be stationary points of the amplitude among the spherically

symmetric perturbations.
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Another class of physically interesting 50(4) invariant functions is given by
the integrals

ϊV^Aδφfd'x (3.26)
where

φa is one of the functions obtained by contracting the Riemann tensor, the
tensors covariantly derived from it and the products of these tensors with
the metric tensor

and δφa is its first variation when we perturb (W, g) to (W,g + δg). The search
of the extremal points of the functional (3.26) amounts to look for extremal
variations of the space mean values of the square of the pressure, the density,
the tidal forces etc. according to the physical meaning of the function φ.

4. Spinning Gas Cloud

There is a class of hydrodynamical systems [6] whose evolution can be
described in term of a time dependent 3 x 3 matrix F which relates the Euler
coordinates x = (x1? x2? ^3) to the Lagrange coordinates a = (a1, a2, %) i.e.

xi(t) = Fij{t)aJ. (4.1)

These uniform motions of the fluid are completely determined by the knowledge
of F as a function of time: the hydrodynamical problem is thus reduced to a
mechanical one with, in general nine degrees of freedom.

Under suitable assumptions [6] such systems are invariant under the trans-
formations of a S01(3) x SO2(3) group with the following infinitesimal generators

J^FΨ-FΨ (4.2)

i.e. the components of the angular momentum and

where ζ is the vorticity.
The action of SO1(3)xSO2(3) on F is given by (see Section lc)

OιeSO1(3)9O2eSO2(3).
The matrix F can be canonically decomposed as

(44)

F^TD'S (4.5)

where T and S are orthogonal matrices and D is a diagonal one whose elements
are the semi-axes of the elipsoidal distribution of matter. (Thus D must be a
positive definite matrix.)

In the case of an isothermal spinning gas cloud, Dyson [6] finds the following
equation of motion for F

F+dU/dF = O (4.6)
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where U, the internal energy density, is a function of detF. Equation (4.6) can be
derived from the following Lagrangian

) = {tΐFΨ- U(F) (4.7)

which is explicitly 50(3) x SO(3) invariant.
The corresponding Hamiltonian is

H(F, F)=^tΐFΨ+ U(F). (4.8)

If we use the four dimensional notation (see Section 1 c) and we call Φ the 4 x 4
traceless symmetric matrix which corresponds to F we can write [6]

(4.9)

where A is the four dimensional counter party of D.
Γaβ = Γaβ{D) is defined by

0 D2 + D3 D3 + D1 Dι+D2

- D2 - D3 0 D1-D2 Dί— D3

~D3-DX D2-Dι 0 D2-D3

— DΛ -D7 Do - Dλ Dτ- D7 0

and

(4.10)

Λaβ is the six dimensional angular velocity i.e., in the notation of Section 1 e),
the matrix m with m+ and m_ equal to the derivatives of T and S re-
spectively.

The term \ tr AιA can be interpreted as the expansion kynetic energy, \ tr Γ2 tA2

is the kynetic energy due to rotation and vorticity and A is the six dimensional
angular velocity. This decomposition is SO(3) x SO(3) invariant.

Since the equation of motion is a second order differential equation, Φ(t) is
uniquely determined by the matrices Φ(0) and Φ(0). Thus any invariant function
of Φ and its derivatives can be written as an invariant function of Φ(0) and Φ(0)
i.e. of a vector belonging to a (1,1)® (1,1) representation of S0(3)x SO(3).

Equation (4.9) gives the most natural normalization for this problem i.e.

H = \ trΦ ιΦ + U(Φ) = \ <Φ, Φ> + t/«Φ V Φ, Φ » - E (4.11)

where £ is a fixed value of the energy of the system.
From Theorem 3 it follows that each smooth real invariant function defined

on the submanifold of 1R18 H(Φ0, Φo) = E must have at least two extremal points
belonging to the SO(3)d stratum i.e. to the set of the evolutions of the gas cloud9

whose initial matter and velocity distributions are spherical symmetric.
If in particular we consider the function \xAxA which gives the square of the

expansion velocity at time ί, from Eq. (4.9) it follows that one of the two points

9 Since for these evolutions Φ is idempotent the equations of motion become very simple i.e.

d = f(d)d

where d is the radius of the sphere.
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must be a maximum since from the assumption of S0(3)d symmetry we have
A ΞΞ 0 and U in general is a decreasing function of detΦ.

Let us now consider a class of evolutions more general than those described
by Eq.(4.1).

We assume the following relation between Euler and Lagrange coordinates10

Xi{t) = X?{t) + Ftjiήaj + Aijk(t)ajak (4.12)

where A is a tensor symmetric in the last two indices, ^°(0) and ^°(0) can be set
equal to zero without loss of generality and the third term is much smaller than
the second one. This means that Eq. (4.12) is assumed to be valid for all t and for
all a such that \F(t)a\ <̂  \A(t)aa\. Up to higher order terms Eq. (4.12) can be
inverted in the form

at = FtJ' (Xj - X?) - Fr. Ujhl F^t

 1FΓS

 ι (xt - X?) (x5 - X?). (4.13)

Thus we have

i) U^Xΐ + Fuaj + Aijtajat (4.14)

where U is the fluid velocity

a» £-|^-^1-JF»14'-*'S'>-s7 (4J5)

iii) div U = (F{J '-IFr^ A^a.F'j1) (Fjf + 2Ajkiak)

at

From the equation of continuity

ρ=-ρdivU (4.17)

where ρ is the density we get

Q = f(a)dGt(F-1)e2itF~1Λa

(4.18)
- / ( α ) φ ~ 1 ( l - 2 t r F ~ ι ^ l α )

where / is an arbitrary positive function and φ = detF.
From

i) the equation of state

p = RρT (4.19)

where p is the pressure and T the temperature,
ii) the dependence of the internal energy density upon temperature

U = U(T), (4.20)

iii) the energy equation

QU = (P/Q)Q, (4.21)

1 0 This is a special case of an expansion of the Euler coordinates in powers of the Lagrange
coordinates in which the first order term is much greater than the following ones.
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iv) the assumption that the only dependence of T on a is through ρ/ρ we deduce:

^ ^ ^ (4.22)
dφ ^ dφ

and

U = Uίφ(i + 2trF~1Aa)'] = U0(φ)+ Ux. (4.23)

The Euler equations of motion are

^ ^ l ^ / (4.24)

/ daj 2Fm" A"

The most general form of / we can assume in Eq. (4.24), possibly redefining
the α's, is

fπe-ia^ + iWwaja* { 4 2 5 )

where Wijk is a constant small tensor.
Collecting terms according to the powers of a and neglecting terms of second

order in A in the case W = 0 the equations of motion become

XΛO I 3^0 τ-1— 1 -Λ T--— ΐ A

~dφ~ Ji '
(4-26)

mn mnj ?

-*U* (4.27)

A -^L(F-ιA F~^A

8U , δ2U \, _,

Ί^ + φ-dF^φΓr"
3U , d2 U

(4.28)

From these equations it follows that
i) The equations of motion (4.26, 27, 28) are 50(3) x SO(3) covariant where

we transform X°, F, and A as vectors of the (1,0), (1,1), and (1,2)0(1,0) representa-
tions respectively.

ii) X° is a small quantity.
iii) The equation for F is unchanged up to second order terms [see Eq. (4.6)].
iv) The expression of the angular momentum and of the mean vorticity are

not changed up to second order terms.
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Thus equations (4, 2.3) are still valid and J and K are conserved as it follows
from Eq. (4.27).

These statements are valid only if W vanishes since it explicitly breaks the
invariance.

This problem represents almost uniform evolutions of (the central part of)
a spinning gas cloud. If an inhomogeneous and a (small) quadratic term [see
Eq. (4.12)] are added to Eq. (4.1) the divergence of the velocity and thus ρ/ρ and,
through assumption (iv), T and U differ from the corresponding uniform quantities
by a small linear term in x (up to second order corrections). If the function f(a)
of Eq. (4.18) is assumed to be isotropic (i.e. W=0) the gas is still 50(3) x 50(3)
invariant (if second order terms are neglected) since all the linear terms in x
average to zero. It is thus possible to analyze small departures from a uniform
evolution in the frame work of the 50(3) x SO(3) invariance.

Any invariant function of X°(t), F(ί), and A(t) and their derivatives can be
written as an invariant function of the initial data F(0), F(0% Λ(0) e Λ(0) i.e. as a
function of a vector belonging to a (1, 1)0(1, 1)0(1,2)0(1, 2)0(1,0)0(1,0)
representation of SO(3) x SO(3) [satisfying the restriction D positive definite see
Eq. (4.5)]. Since no nontrivial vector belonging to a (1,2)©(1,O) representation
can be SO(3)d invariant, it follows that if we normalize to an n— 1 dimensional
submanifold, n being the dimension of the representation, (e.g. <F(0), F(0)>
+ <F(0), F(0)> + <v4(0), A(0)} + <i(0), i(0)> = 1) there is only one closed stratum.
It is the SO(3)d invariant stratum with A = A=0 (=>X°(ή = 0 and A{t) = OVt).
Thus among the linear spherical-symmetric evolutions there are at least two
extremal points of any normalized invariant function. One of these functions is
the mean energy of the gas (second order terms included).

On the other hand if we require that the non linear perturbation does not
vanish i.e. if we normalize to an —2 submanifold [such as for example <F(0), F(0))
+ <F(0),F(0)>-α (A(0),A(0)} + (A(0\A(0)y = β~] the stratum with the largest
invariance is the O(2)d one. Since it is closed there must be among the axial evolu-
tions at least two extremal points for each invariant function. One of these func-
tions, for example, can be the mean value of the square at time t of the quadratic
correction to x(ί), proportional to (A(t), A(t)}, or the square of the inhomogeneous
correction <X°(f), X°(t)}. We can use these functions to judge the stability of the
linear evolutions (see Section 3).

If instead the function / in Eq. (4.18) is not assumed isotropic the system is no
longer 50(3) x 50(3) symmetric since the distribution of matter is asymmetric
also in the limit A(0) = A(0) = 0.

Nevertheless we can look for extremal breaking configurations by con-
structing the following class of invariant functions:

a) write the complete equations of motion with W different from zero [they
are not 50(3) x 50(3) invariant],

b) define a mean solution by the average of the initial conditions over a given
compact 50(3) x 50(3) invariant manifold [e.g. <F(0), F(0)> = α <F(0), F(0)> - β

c) write a scalar function of this mean solution X, F, and A at a given time t
and integrate it over a 50(3) x 50(3) invariant domain in the α-space (e.g. for all
α<,α:\Fα\>\Aαα\).
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The function thus constructed is a SO(3) x SO(3) invariant function which
can be used to weight the effect of the breaking term W u .

W transforms as a (0, 3)©(0, 1) representation. If we normalize to <FF, Wy = 1
the only closed stratum is the SO(3)1x O(2)2 invariant one.

Thus extremal breaking effects are found when /(α) is axisymmetrical.

Appendix

Let us introduce in 1R4 the polar coordinates ρθ1θ2θ3 [in the notation of
Eq. (2.1) φ = θ3,θ = θ2,r = ρ cosΘJ.

We have
x = ρ cos θί cos θ2 cos θ3

y = ρcosθ1 cosθ? sinβ 3
7 ' 3 (A.1)
z = ρcosθί sin0 2

w = ρ sinθj .

The tangent vectors to the unit sphere of 1R4 a r e 1 2

eί = ( — sinf^ cosθ2 cosβ3, — s i n ^ cosβ2 sinβ3, — s i n ^ s i n θ 2 ?

c o s ^ i )

e2 = (— sin θ2 cos θ 3 , — sin θ2 sin θ3, cos 02,0) (A.2)

e3 = ( — sin03,cos03,0,0).

A basis for the (1,0)0(0,1) representation linear space is

vf ° = fej k - <5ik<5j0 ± δioδjώXj ik

v°il = fejfc + δffc^ o + δio^Jxjifc (A.3)

X; = X, )/, Z XQ = W .

1 1 To illustrate the meaning of these functions let us consider the following simple mechanical
system

mx = a — kx where — kx is the breaking term .

The unperturbed solutions are

x(t)= — — ί 2 + υ 0 ί4-x 02 m

the mean unperturbed solution v0 e [— 1, 1], x0 ε [— 1, 1] is

1 a 05c(ί)=— — ί 2 .
2 w

The perturbed solutions are
ί ma m

the mean solution is
_ a ma

it we choose τ so that kτ/m > 1

xp(τ)/x{τ) = m/kτ very far from one .

Thus the "breaking" effect becomes larger and larger.
1 2 The linear space generated by <?l3 e2, and e3 is not invariant under SO{4).
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Then we can write

υ{° + V®1 ^ c o s ^ i sin03 e2 — cos6^ sin02 cos03 e3

\° — v^1 = cos0 cos03 eί +81110! sin02 cos03 e2 + SΪI10! sin03 e3

x cos03 e2 — cosθ 1 sinθ2 sin03 e3

sin03 ex +s in0 x sin02 sinθ3 e2 — ύnθ1 cos03 e3

vl° + V%1= COS0! COS Θ2^3

^3° —ί^ 1 = sin02 ^x — sinβi cos02 ^2 .

Since at every point the linearly independent vectors are only three, the
decomposition given by Eq. (3.20) is unique.

Acknowledgments. Thanks are due to Prof. L. A. Radicati and Prof. L. Michel for their interest
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