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Abstract. The description of symmetries in indefinite metric spaces is investigated. It is shown
that ray transformations preserving the modulus of an indefinite scalar product can be implemented
by linear or antilinear vector transformations which are generalized unitary or antiunitary operators
with respect to the indefinite scalar product. A number of interesting features arise since such operators
need not to be bounded.

1. Introduction

Wigner’s theorem [1,2] on ray transformations in Hilbert spaces plays a
fundamental rdle in the foundations of quantum mechanics [3, 4] and it has deep
connections with the mathematical theory of projective spaces [5—7]. In the
proof of the theorem a crucial rdle is played by the Hilbert space structure and, in
particular, by the positivity of the scalar product. On the other hand it has become
more and more evident that indefinite metric spaces may be more useful both
for the discussion of physical problems as well as for more genuine mathematical
questions. As far as the physical applications are concerned the growing evidence
comes mainly from the theory of quantum fields for which the use of an indefinite
metric has been advocated several times in the past [8—10] as a solution of the
divergence problem in quantum field theory [11, 12] and as a method to obtain
better segularity properties for theories previously regarded as untractable
[13—16]. For several physically interesting theories the use of an indefinite metric
is not only a promising suggestion but an unavoidable feature if one wants to
preserve some basic properties of the fields like relativistic covariance and locality
[17-19].

From a mathematical point of view the interest of indefinite metric spaces
has been pioneered by the Russian mathematicians [20—22] and we refer to their
papers for general motivations as well as for an exposition of the results obtained
in that field. It may be interesting to stress that indefinite metric spaces appear
very useful also in solving stability problems in the classical theory of damped
oscillations and in general as a powerful tool for solving systems of differential
equations [24]. In particular canonical linear differential equations with a periodic
Hamiltonian have been studied with success using indefinite metric spaces [25].

In the following by an indefinite metric space we mean an Hilbert space H
equipped with a bounded symmetric sesquilinear form {-,-)» =(-,#-), where (-, )
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is the ordinary scalar product in H and # has a bounded inverse. In the physical
as well as in the mathematical applications mentioned above the basic quantity
of the theory is the product <-,-)> rather than (-,). For example it is in terms of
{-,-» that one computes all the physical quantities of the theory or one discusses
the mathematical properties of a given differential operator.

It is therefore natural to ask the question analogue to the statement of Wigner’s
theorem: given a ray transformation between rays of the Hilbert space H, preserv-
ing the modulus of the product {-,-), is it possible to implement such a trans-
formation by a linear or antilinear vector transformation. The answer to this
question is crucial for the foundations of a quantum mechanical description of
symmetries in indefinite metric spaces as well as for the existence of semigroups
associated to time evolution, space translation etc.

As it will be clear in the following there are fundamental differences with
respect to the Wigner’s case, mainly because vector transformations preserving the
indefinite scalar product need not to be bounded and therefore non trivial domain
question arise. Another delicate point is the linear structure of the domain on
which the transformation is defined: as it will appear in the following it plays a
crucial role.

Before stating and proving the theorem it is necessary to give some basic
definitions and discuss some crucial features of vector transformations preserving
the indefinite metric (y-unitary operators) (Section 2). The hypotheses of the
theorem and their relevance will be stated and discussed in Section 3. The proof
will be given in Section 4.

2. Unitary Operators in Indefinite Metric Spaces and Their Basic Properties

Definition 1. By an indefinite metric space we mean a complex (separable)
Hilbert space H equipped with a bounded, hermitian and not degenerate sesqui-
linear form {:,-> =(-,#"), (-, -) being the ordinary scalar product in H, such that y
is a self-adjoint operator with bounded inverse.

Proposition 1. Without loss of generality an indefinite metric space can be
assumed to have a metric operator with the property n* = 1.

Unless explicitely stated, we will in the following assume that an indefinite
metric space has #% = 1.

Definition 2. An operator U with D, = H = A and such that
<UX, Uy>=<x7y>5 VX,J/EDU (1)

is called a unitary operator in the indefinite metric space or briefly a n-unitary
operator.

In the physical applications Eq. (1) is usually the most one is allowed to require
since it may be difficult to justify additional properties of U like linearity, existence
of the inverse and/or its boundedness on the basis of purely physical considerations.
For example in quantum field theory the invariance of the Wightman functions
under a given mapping U, yields the validity of Eq. (1) for the dense domain
obtained by applying local fields to the vacuum. The extension of the mapping to
every vector of H is often not possible. From a technical point of view, since U is
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usually an unbounded operator, the closure properties of U are often useful. For
these reasons it is of some interest to state the following

Proposition 2. A n-unitary operator is a linear operator, it has an inverse which
is a y-unitary operator and it is closable.

Proof. We start by proving that U has an inverse, i.e. that Ux = Uy implies
x=y. In fact, for any ze Dy

0=(Ux—=Uy, Uz)=<{x,2) =<y, 1) ={x =y, 2) =(x =y, 1 2)

and since 7Dy = H, one has x=y. Thus U~ ! exists and Dy-,= A4y, Ay-1=Dy.
Moreover, Vx, ye Dy -,

x,yy=UU'x, UU y)=CU " 'x, Uy
ie. U™! is a n-unitary operator. Finally Vx, ye Dy, z€ 4y

CUGx+By),zy=<{ax+ By, 2> =0{x,2) + {y, 2
=alUx,z)+ p{Uy, z)

Uex+py)—aUx—pUy,z>=0

ie.

which implies
Ulx+py)=aUx+pUy.

To prove that U is closable one first notices that Vxe Dy, yenDy-1, y=nz

(Ux,y)=<Ux,z) =<{x, U ' z) =(x,n U 'ny).

Thus U* exists, U~ 'nC U* and nDy-: C Dys. Hence Dy = H, U** exists and
U Cc U** is closable.

Remark. The occurrence of an indefinite metric operator in Eq. (1) does not
allow to conclude, as in the positive metric case, that U is bounded. This is a
fundamental difference which makes #-unitary operators much more difficult to
treat than unitary operators. For these reasons, in the mathematical literature on
indefinite metric spaces [21-24], the boundedness property is required in the
definition of y-unitary operators. However, since this property is in general not
shared by operators occurring in the physical applications we prefer to omit it in
the Definition 2.

Definition 3. An operator V with D, = H= A, and such that

<an Vy>:<yax>’ VX,_VEDV (2)
is called a n-antiunitary operator.

Proposition 3. A n-antiunitary operator V can be written as a product V =KU,
where K is the complex conjugation operator (in a suitable basis such that nK = K#),
K% =1, and U is a n unitary operator.

A n-antiunitary operator is antilinear, it has an inverse which is a n-antiunitary
operator and it is closable.

Proof. To prove the first part of Proposition 3 it suffices to note that U=KV
is a y-unitary operator and therefore KU = K? V = V. The second part of Proposi-
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tion 3 follows easily from Proposition 2 since K is a bounded antilinear operator
with K~ ' =K.

Just as antiunitary operators arise when one goes from real to complex Hilbert
spaces, a new class of operators, closely related to unitary operators, naturally
occurs when the “scalar” product is allowed to be indefinite.

Definition 4. An operator U with Dy = H = 4 and such that

<UX, UJ’>:—<X,)’>, szyeDU (3)

is called a #-pseudounitary operator. In a similar way one defines y#-pseudo anti-
unitary operators.

The occurrence of #-pseudounitary operators is tightly bound to the indefinite
metric, since (U x, Ux) = — {x, x) would otherwise be untenable. It is important
to stress that n-pseudounitary or y-pseudoantiunitary operators may exist only
in indefinite metric spaces in which the eigenvalues +1 and —1 of the metric
operator # have the same multiplicity. They cannot exist if one multiplicity is
finite and the other infinite or if they are both finite but unequal.

A special subclass of #-pseudounitary operators are those operators C which
are bounded, self adjoint and satisfy C> = 1. They satisfy

CnC=—y )

and they will be called n-reflecting operators. It is not difficult to see that a #-
pseudounitary operator V can be written as a product ¥V =CU where C is a
n-reflecting operator and U is a n-unitary operator. Similar statements hold for
n-pseudoantiunitary operators.

Proposition 4. A y-pseudounitary (n-pseudoantiunitary) operator is a linear
(antilinear) operator, it has an inverse which is a n-pseudounitary (n-pseudoanti-
unitary) operator and it is closable.

3. Ray Transformations in Indefinite Metric Spaces

Definition 5. Given a vector x € H, the set of vectors of the form Ax, with
[Al=1, A€ C, is called the ray associated to x and it will be denoted by x. The
vector x is said to belong to x:x € x.

Clearly if y=pux, |u/=1, one has y=x. For the rays of an indefinite metric
space, one defines an ordinary scalar product

x y=lx,y)l xex,yey ®)
also denoted by |(x, y)l, and a semidefinite product
x;y=x-ny=Kx,y)| xex,yey (6)

also denoted by [<x, y>| = I(x, ny)l.

In contrast with the Wigner case, some technical difficulty arises because one
cannot normalize the rays with respect to the indefinite scalar product. It may be
relevant to note that by the non degeneracy of the metric operator if a ray x
satisfies x; y =0, Yy, then x is the ray 0 associated to the zero vector.

Definition 6. A ray transformation T is a mapping T:x—x'=Tx of rays
into rays.
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A ray transformation T is induced by a linear operator 4 in H if T:x—>Tx
=7 x; in this case we will denote the ray transformation and the linear operator
by the same letter, for simplicity.

A special kind of ray transformations are those which preserve the semidefinite
scalar product between rays

Tx - nTy=KTx, Ty)|=Kx, y)l 7

and they are candidates to describe symmetry operations in indefinite metric spaces.

In general a symmetry operation is not defined for all the rays of H. It is
reasonable however to require that a symmetry operation 7 is invertible, defined
on a set of rays associated to a dense linear manifold D of H, and that it maps
the rays associated to D onto a set of rays associated to a dense linear manifold D’
of H. The necessity of working with dense manifold is forced by physical interesting
examples in which symmetry operators in indefinite metric spaces are described
by unbounded operators. A very important example is provided by Gupta
formulation of quantum electrodynamics in which Lorentz transformations are
described by unbounded operators. The operators described in the previous
sections clearly induce symmetry operators. That any symmetry can be regarded
as induced by an operator of that kind is the result of the following theorem,
which is the analogue of Wigner’s theorem, in indefinite metric spaces.

Theorem. Let T be a symmetry operation, i.e. an application defined on a set D
of rays of an indefinite metric space H onto a set D' of rays of H such that
i) the set of vectors belonging to the rays of D is a linear manifold D, which is
dense in H;
ii) the set of vectors belonging to the rays of D' is a linear manifold D', which is
dense in H;
iii) T is one to one from D to D’;

iv) Yx,yeD
KTx, Tyy| =[x, y)l ®)
then

a) there exists an operator U, such that ¥V x € D, the vector Ux belongs to Tx.

b) U is either n-unitary or n-antiunitary or w-pseudounitary or y-pseudoanti-
unitary. Clearly the last two possibilities can occur only if the eigenvalues +1 and
—1 of the metric operator n have the same multiplicity.

Remarks 1. The assumption that D is linear and dense may be justified by
physical considerations on symmetry operations. The condition that D’ is a dense
linear manifold requires some comment since one might hope to prove the
linearity of D’ as a consequence of the linearity of D and as a byproduct of the
existence of U. This is however not possible: see at the end of the sketch of the
proof and Ref. [26].

2. It has already been mentioned that an indefinite metric space (according
to Definition 1), can be reduced to a space with a metric # satisfying n*> =1, by a
suitable transformation. It is important to note that this can be done without
spoiling the assumptions of the theorem. Namely, if T is a symmetry operation
in an indefinite metric space H with # bounded hermitian and ™! bounded, it is
possible to introduce a new Hilbert scalar product [-, -] and a new metric operator
ii such that 2 =1, {-,-> =[-, #-] and all the assumptions of the theorem still hold.
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Before closing this section we will sketch the main lines of the proof of the
theorem. A complete proof will be given in the following section. An exposition
with all the technical details can be found in Ref. [26].

One of the basic tools we will use is a set of vectors {e;}, e;e D i=1, —1, 2,
—2, ..., which have the following properties

A) (e ne)={e;e;» =sign(i)d;;. 9
B) (z,e)=0,Ve;=z=0. (10)

They are the analogue in D of the orthonormal complete set which plays a funda-
mental réle in the usual version of Wigner’s theorem (3 =1 D = H). The existence
of the vectors {e;} is far from obvious in the present case since in general the vectors
of the subspaces H* =1(1 +n)H do not belong to D.

Moreover the vectors e; will be found in such a way that also the set {e},e;e Te;}
is a “complete orthonormal set with respect to #”, i.e. they satisfy

A) L& ep) =0y, (11)
B) <(ze,=0, Ve, =z=0. (12)

Another basic step of the proof is that every ray associated to a finite linear
combination of the ¢;s is transformed into a ray associated to a finite linear
combination of the corresponding vectors e.. The construction of the operator U
is first given for special finite linear combinations of the ¢;’s and then extended to
the generic vector of D, as in the proof of Wigner’s theorem, in Ref. [3]. Finally U
is shown to be either #-unitary or #-antiunitary or #-pseudounitary or #-pseudo-
antiunitary. A crucial and difficult point in the proof of the theorem is the extension
of U from Dy = {generated by finite linear combinations of the ¢;s} to D since U
is unbounded. In general if Dy 3 x,—x e D, as n— o0, Ux, will not converge to a
limit in H. To define U on any vector of D we shall first define U on a suitable
sequence x,€ Dy, n=1, —2,2, —2,... and show that at each step the definition
of U on x,, is consistent with the definition of U on x,, |I| <|m/.

One might think that the linearity of D' is an unnecessary assumption if one
restricts the theorem to the proof of the existence of U on D,,. A counterexample
shows that this is not possible [26].

4. Proof of the Theorem

In the proof we will assume that both H* and H~ have infinite dimensions.
If this is not the case the required modifications are straightforward.

Lemma 1.0e D and TO=0.

Proof. 0e D since D is a linear manifold. Furthermore since T~ ! is assumed
to exist, Vx € D’ one has
KTO,x>| =<0, T 'x)|=0.

Since D' is dense in H, |[{T0,x)>|=0, Vxe H, and
T0=0.
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Lemma 2. There exist a set of vectors {e;}, i=1— {0}, such that

A) e e;» =sign(i) ;.
B) (z,¢,>=0,Vi,=z=0.
C) eeD,Vi.

Proof. The vectors ¢; are found by induction starting from an orthonormal
basis of eigenvectors of 7:{x, nx;=sign(i)x; i=1, —1,2, —2...}. Let {¢;} be a
sequence of positive numbers such that % &2 <% and let {f;} be a set of vectors
of D such that |x; — f;| <eg; then one defines

31E(f17’7f1)'%f1a (13)

where (f1,nf,) is positive since &; <. The induction is performed by ordering
I— {0} in the following way: 1, — 1,2, —2... and by putting

en - (Xn <fn - Z (ei’ nfn) ei + Z (ei’ r’fn) ei)

1<i<n—-1 -n+1<5i<-1
=a,fy, ®=(funf)*, n>0 (14)
=0y (f_ Z (ei,"fn)ei'f' Z (ei7’7fn)ei>’

15i<~- n+1<i<-1
Ean no> a E fmnfn b néo (15)

The coefficients o, are well defined since the scalar products in Eq. (14) and (15)
can be shown to be strictly positive. The e,’s so defined clearly satisfy C). Property
A) and B) can be proved by induction on ¢,, k less than n in the sense of the above
ordering [26].

Lemma3.ze D', |z, Te,»|=0,Vn,=z=0.

Proof. 0=Kz, Te|=KT 'z,e, Vn=>T 'z=0=2z=0.

Lemma 4. Let {e,} be a chosen sequence of vectors e, € Te,, then for any
z=2X, g a,e, with K a finite set, there exists a finite sequence a,, |a,| = |a,|, such
that 2 =Z, a, e, belongs to Tz.

Proof. Let z' be a vector belonging to Tz and a, = e, z')/{e,, e,). Because
of Eq. (8), a, %0 only if ne K. Since D' is a linear manifold X, a; e, and z' — X, a, e,
belong to D' and {z' — Z,ae,, e;> =0,Vkie. 2z’ =X, _ga,e, and |a,| =|a,| by Eq. (8).

Lemma 5. For any set of vectors e, € Te,, one has
ey, €, =0e, e s (16)
with a® =1, o independent of n and m.
Proof. For a generic vector x=2X, ga;e;, K a finite set, x' e T'x, one has by
Lemma 4 5 .,
[Zlail® <ei, €] =[x, XD = KX, x|
=|Z|ail* {e;, €] -
Since this equation must hold for any choice of the a;s, it follows (e}, ;> = a{e;,e;>,

with «? = 1, by the hermiticity of #. For n+m Eq. (16) is trivially satisfied since
both sides vanish.
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After these preliminary Lemmas we may now pass to the construction of the
operator U. As a first step we have to fix the sequence of vectors ¢, € Te,. The
prescription is given in the following Lemma, in terms of a suitable sequence of
vectors.

Lemma 6. Let {z,} be a chosen sequence of vectors such that

Zn= Z bkek, n>0, (17)
2"“1§k§2"

Z,= Y bye,, n<O0, (18)
—2"§k§—2"'1

zo=bie; +b_,e_,, n=0, (19)

with b, signk> 0. Then one may choose e, € Te, such that
zy=2b,e,eT z,Vn. (20)

Such a choice of the e, will be denoted by Ue,, and z, by Uz,

Proof. e} € Te, is chosen arbitrarily and the phase of z; and ¢, € Te_, are
chosen in such a way that z; =b, €] + b_, ¢_,. By induction, when passing from
zy to zy, , the phase of zy . ; is chosen so that by~ = b,x, the phase of ¢,~ being
already fixed, and e}, k> 2", is chosen in such a way that b, =b,.

The next step in the construction of U is the extension of the vector mapping
from the z,’s to arbitrary vectors. This is done through the following Lemmas.

Lemma 7. Let {z,} be a sequence of vectors defined by

Z,= ) b;sign(ie;, (21)

lils2n
where b; are the coefficients entering in the definition of the z,’s. Then Z,=Z; <
-b;sign(i)e;=Uz,e Tz, and for any two vectors x, y of the set {e;}u{z,}U{Z,}

Cayy=alx,y)=alUx, Uy). (22)

Proof. By Lemma 4, z,, = X c;e;, with |c;| =1b,].

By choosing the phase of z, such that ¢; =b; and by using Eq. (8) one gets
¢; = b, sign(i). :

Lemma 8. Let x € D, with {e;, x) 20, Vi, and let x'= Ux be chosen in the ray
Tx in such a way that a<ej, x') >0, where j is the index nearest to 1 (in the ordering
of Lemma 2), for which {e;, x> # 0. Then, one has

e, x'y=uale,x),Vi. (23)

Proof. It suffices to exploit Eq. (8) for the vectors x and z,.

Lemma 9. Let y € D such that {e,, y) >0 for at least one k. Then3y'=UyeTy,
such that either
Ue, Uy)=0ale, y), Vi (24)
or

KUe;, Uyy=0{e; y), Vi. (25)
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Proof. Putting {e, y> =c;exp(i¢,), ¢;=20, —n<¢ <=, and denoting by k,
the index nearest to 1 such that ¢, #0, ¢, =0, one chooses y'=Uye Ty in such
a way that (e, ') =ac,, and defines ¢; so that

(e, ¥y =oc;exp(igy).

Then, for any vector x=2X,.x d;e;, K a finite set, d,sign(i)>0, (x'= Ux being
already defined in Lemma 8), Eq. (8) for x and y gives

Zdd;[expil¢;— ¢))] c;c;=Zdd;c;c;expi(; — @)]
i.e. either ¢;=¢,, Vi, or ¢p;= — ¢, Vi.
Lemma 10. Vze D, 3z = Uz e Tz such that either
) e, z)=ule;,z),Vi (26)
or
) <e,z)=alz,e,Vi. (27)
Furthermore the same equation holds for all the vectors of D.

Proof. Given z, one considers the vector Z=exp(—i¢, )z, where k, is the
index nearest to one such that {e,,z) =c,, exp(i¢,,), ¢;,,>0. Z=UZ is then
defined as in Lemma 9 and one chooses

Z=Uz=exp(i¢y,) 2, if {e,z)=ule,Z)
Z=Uz=exp(—i¢)Z, if {e,Z)=alZe).
The proof that in the first case Eq. (26) holds for all the vectors of D and in the

second case Eq. (27) is valid for all the vectors of D essentially follows the argument
given in Ref. [3] for the standard Wigner’s theorem (see Appendix).

Lemma 11. The mapping z— Uz, Vz € D, defined in Lemma 10 is linear in the
Case I and antilinear in the Case II. Moreover, in Case I, for any two vectors

X,y €D, one has
Xy =alUx, Uy (28)
X, y)=alUy, Ux) . (29)
Proof. Case 1. Vx, ye D one has, Vi
(e}, Ulax+by)) =ale,ax+by)=ale, Ux)+ble,Uy)

and in Case 11

and linearity follows from Lemma 3. To prove Eq. (28), Vx, yeD,<{x, y> 0, one
puts (Ux, Uy>=exp[if (x,y)] {x,y>. Then for every vector ze D such that
{x,z)*0

{x,y+bzyexp[if (x,y+bz)]=exp[if (x,y)] <{x, y>

+bexplif (x,2)]{x,2).

For b={x, y)/{x, z), the above equation implies f(x, y) = f(x, z). Putting z=e,,
one obtains exp [ if (x, y)]=o.
This concludes the proof of the theorem.
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Appendix

Completion of the proof of Lemma 10. Suppose that x, y € D such that <{ej, x>
=ale, xy=oace?, {e,y>=aly, ey =ade¥ and that not all the phases ¢;
(and ;) differ by multiples of = [otherwise Eq. (26) and (27) may be reduced one
to the other by an overall change of phase in the definition of x" or y"].

Then one can find a continuous curve x(t), t € [0, 1], x(t) e D, with x(0)=x,
x(1)=y, such that Vt € [0, 1], the phases of x(¢) are not all differing by multiples
of m, e.g.

xO=ty—(1—=0)x+ ) ald)e,
ieK
K afinite set, g;(t) continuous functions on [0, 1], a;(0) = a,(1) = 0. By the properties
of the extremes of the curve, there must exist a ¢ € [0, 1] such that there is a sequence
x(t,)— x(t) with the property that either

ey X' (8,)) = o ey, x(1,), e, X' (1)) = o ey, x(1)) (A1)

or - —

e, X'(t,)) = o {x(t,), e, {e;, x'(t)) = alx(t), &;) . (A2)
Suppose that case (A1) occurs. Then one shows that this leads to a contradiction.
[The proof for the case (A2) is analogous.] To this purpose, let i, j be two indices
such that the phases of <e;, x(¢)> and {ej, x(t)> do not differ by multiples of n.
Putting z;;(s)=e; + se; one obtains z;;(s) = e; + s'e; with s'=5, Vs C [s'=s, Vs
if case (A2) occurs]. In fact, Vs e C, using (A1)
[<ei x(1)) +5<ej, x(D))] = [Kz;(s), x|
= [<ej, X' (6)) +5 <€}, X' ()
= ey, x(1)) +5' e, x(1))] -
This is possible only if s'=5, Vse C.
To find the contradiction one computes lim,_, , [{z;;(s), x(¢,)>| in two different
ways. First

Jim [<z;5(s), x(£,))] = [<z(s), x(0))
=[<e;, x(1)) +5<e;, X(1))|
Jim [Cz(s), x(2,))] = lim [<z;(s), X' (2,))
= lim [<e;, x(1,)) + s <e;, x(t,))]

= [<ey, x(1)) +5<e, x(t))] -
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