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Abstract. A generalized form of the classical Bogoliubov inequality obtained by Mermin is
derived for all lattice systems whose configuration manifold is a compact connected real Lie group
G; the new inequality relates elements of C°°(G; <C), the algebra of indefinitely differentiable complex-
valued functions on G. We use it to prove the absence of ordering in a class of one- and two-dimensional
systems defined by G-invariant Hamiltonians. This class contains in particular the Stanley model
for ferromagnets and a lattice version of the Maier-Saupe model for nematic liquid crystals.

1. Introduction

It has been shown by Mermin and Wagner [1] that the isotropic Heisenberg
model cannot exhibit a spontaneous magnetization at any finite temperature in
one and two dimensions, provided the interactions have not too long a range.
Their proof exploits an inequality due originally to Bogoliubov [2], which relates
any linear self-adjoint operator, acting on some finite-dimensional Hubert space,
to two other linear operators on the same space by means of a thermal average [3].

More recently, Mermin [4] has derived an inequality of the same kind by
purely classical arguments, in order to show the absence of spontaneous magnet-
ization in various one-and two-dimensional classical spin systems; in all these
cases, the inequality relates functions on a suitably chosen phase space, but is
in fact only valid if certain contributions in the thermal averages vanish.

It is the object of this note to show that a generalized form of the classical
Bogoliubov inequality obtained by Mermin can be derived for all lattice systems
whose configuration manifold is a compact connected real Lie group G; the
new inequality relates elements of CGO(G; <C), the algebra of indefinitely differen-
tiable, complex-valued functions on G. We use it to rule out the existence of a
non-zero "order parameter" at any finite temperature in a class of one- and two-
dimensional systems defined by G-invariant Hamiltonians.

The proof of the generalized Bogoliubov inequality is given in Section 2;
the main theorem concerning the absence of long-range order is proved in Sec-
tion 3; Section 4 is concerned with an example which shows that the class of
lattice systems considered contains most of the classical vector models generally
used in the field of critical phenomena. This class includes in particular the
Stanley model for ferromagnets [5] and a lattice version of the Maier-Saupe
model for nematic liquid crystals [6, 7].
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2. A Generalized Form for the Bogoliubov Inequality

The v-dimensional lattice will be identified with Έv. We associate with every
R e Έv a copy GR of a compact connected real Lie group G of dimension n, de-
scribing the configurations of the corresponding subsystem. Let AcΈv be a
finite subset of lattice points and \Λ\ its cardinality; the configuration manifold
associated with A is then defined by the direct product

G(Λ)= Π GR
ReΛ

of dimension n\Λ\, which is in turn compact and connected in the product topo-
logy. Let dg be the bi-invariant Haar measure on G(A\ of total mass unity;
for each function h e CCO(G(A); IR), we introduce the "partition function"

Z(A)= J ^exp [-/?%)]
G(Λ)

with β = (KB T)"1 > 0; then we have for all functions Φ e C°°(G(yl); <C) the "ther-
mal average"

G(Λ)

provided Z(Λ) φ 0.
The generalized form for the Bogoliubov inequality we will need in the next

section is proved in the following

Lemma. With N eN, let (Da)1^a^N be a family of differential operators on
G(A\ and (Φα)ι^α^ a family of functions in C°°(G(/1); (C); then for every family
(XΛ)ι<Λ<N °f left-invariant complex vector fields on G(A\ we have

N N

7 <IAcΦαl2V y
Z—I X l α αl /Λ Z—/

α = l

Σ (2.1)

[The bar in (2.1) denotes complex conjugation.]

Proof. From the Schwarz inequality in CCO(G(A); (C) we get

for the thermal averages relating two arbitrary functions Φ and Ψ; in particular,
we have

a)(XΛh»A\
2 (2.2)

for each α. Furthermore, since Xx is a derivation on C°°(G(Λ); (C), we can write

- exp[-

But for every Φ e C°°(G(/1); C) we have

ςΦ) (<?) = () (2.4)
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as a consequence of the left-in variance of XΛ; then, integrating the left- and right-
hand sides of (2.3) over G(Λ\ we obtain

Φ J (Xa h}\ = β~ι <XΛ(DΛ Φjχ, . (2.5)

A similar modification can be made on the second factor in (2.2), which yields

<\xah\2yΛ = β-1<xa(xjl)yΛ. (2.6)

Substitution of (2.5) and (2.6) in (2.2) leads to

Then
TV TV

« = ι « = ι " (2?)

/V N 2 ^ '

α = l

which is the desired result.
Remarks. The relation (2.4) is clearly not satisfied in general if we replace

XΛ by an arbitrary vector field; in such a case, correction terms are obtained
in the basic inequality (2.1); they are due, for example, to the contribution of
the first term in (2.3), when integrated over G(Λ\ Such contributions are there-
fore closely related to the "surface corrections" discussed by Mermin [4].

For all examples we have in mind, it will be sufficient to choose left-invariant
vector fields in order to put upper bounds on the various "order parameters"
we have defined.

The connection between the inequality we have just proved and the one
derived by Mermin is easily established if we observe that estimates like (2.7)
can also be obtained on sympletic manifolds; the usual Bogoliubov inequality
then emerges in a natural way by letting ΛΓ= 1 in (2.1) and taking for the unique
XΛ a vector field related to the Poisson bracket structure on these manifolds.

Now, for ReΈv, let ©Λ be the Lie algebra of GR; since GR is compact, there
exists a strictly positive definite bilinear form B on ©^ x ©^, invariant under

JR\ the adjoint representation of GR; if (X^R))ι<a<n is a basis of ©^, let
')ι^α^n be tne dual basis witn respect to B, i.e. B(X^R\ Ύ^R}) = δ^ for each

α and α' then we can form the element

n

(.R) V"1 v( R) y( R) /o Q\

α = 1

and it is easily verified that this operator lies in the centre of the universal enve-
loping algebra of ©κ [8]. This implies in particular the fact that all the zonal
spherical functions of GR, defined with respect to a closed subgroup KRcGR,
are eigenfunctions of y(R} [9]. This result will be of crucial importance in the
proof of the theorem we shall give in the next section.

In what follows, we shall never distinguish between an element X in the Lie
algebra of the group and the corresponding left-invariant vector field X on the
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group itself, both being related by

for each g e G and Φ e C°°(G; <C) [9].

3. A Class of Lattice Systems without Ordering in One and Two Dimensions

We now precisely define the class of lattice systems we want to consider. A
potential in the theory is defined as an application χ which assigns to every finite
subset ΛCΈva function χ(Λ) in the Banach algebra C°(G(/l);IR),of real continuous
functions on G(Λ\ equipped with the norm

||Φ||= max \Φ(g)\.
geG(Λ)

(See [10] and [11] for similar considerations concerning other types of lattice
systems.)

Then the set ̂  of all potentials such that

ΛaO \Λ\

and satisfying the translation invariance

for each R0eΈv and each (0Λl; ...;0Λμι |)e G(Λ) (where g'Rl = gRl+Ro, ...,0* l<4 |
= 9R]Λ]+R0)> together with χ(0) = 0, inherits in a natural way the structure of a
real Banach space with respect to the norm (3.1).

With χ(0) and χ(1) in &, we shall restrict our attention to Hamiltonians
/ιeC°°(G(Λ);IR)oftheform

(3 2)
x(1)(W)

R,R'eΛ ReΛ

for which the norms \\χ(0\{R, R'})\\ are independent of {R, R'}, J(-R) = J(R),

X R2\J(R)\<+σo. (3.3)
ReΈv

In the first term of (3.2), each χ(0)({Λ,R'}) is then identified with a function in
C°°(G(yl); IR); furthermore, we assume that /z(0) is G-invariant, i.e.

hm(gRίg;...;gRίΛ>g) = h^(gRl...gR]Λ) (3.4)

for every (gRί; ...;gRlΛl)eG(Λ) and every geG; at an infinitesimal level, this
implies the relation

£ JSf ( J l )Λ ( 0 ) = 0 (3.5)
Λeyl

for each copy X(R) of any X in the Lie algebra of G.
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The second term in (3.2) contains a real parameter λ, which is the "symmetry
breaking field" of /z(0) in the sense that the invariance property (3.4) is no longer
valid for /ι(1); however we suppose that h(ί} is invariant under a closed subgroup
KcG; finally, we assume that χ(1)({#}), also identified in a trivial way with a
function in C°°(G(/1); IR), is a zonal spherical function of G with respect to K.

As we shall see in Section 4, this last assumption is motivated by the fact
that the thermal average of such functions is closely related to order parameters
of immediate physical interest.

Now, the Condition (3.3) is sufficient to prove the existence of the Van Hove
limit f(λ) for the free energy per site

fA(λ)=-(\Λ\βΓl\og f dgexpί-β(h^ + λh^)(g)-] (3.6)
G(Λ)

for each λ e IR; furthermore, for

with 0 < R(0) E 2£v, let {fΛ(R«»)} be the sequence of the derivatives of the free energy
with respect to λ\ since / is concave, there exists a subsequence {Λ(R°)j}J€^ such
that fΛ(R(θ))j(λ) converges for all / leIR; indeed, on one hand, fΛ(R(θ))(λ) converges
to f ' ( λ ) in all points where the derivative /' o f/ exists [12]; this is always the
case except for a denumerable set {λj}je^ of field-values; on the other hand, for
these exceptional values, observing that \fΛ(R«»)(λj)\ ^ |||%(1)||| by (3.6) and (3.2),
we can apply the diagonal process [13] to fΛ(Rv»)(λj) for obtaining the desired
subsequence; let η(λ) be the limit of fΛ(R(θ)}.(λ) [with η(λ) = f ' ( λ ) almost every-
where] we then have the following

Theorem. // we have

with μ Φ 0, then lim η(λ) = 0 if v g 2 .

Proof. We assume at first that the interactions are of strictly finite range and
we enclose the system in the box Λ(R(0)) [where we omit the index; defining the
subsequence Λ(R(0))j] for R(0) sufficiently large. Let

..{jC.B Jti.^^.X -^L^S^L}

be the corresponding first Brillouin zone; the "order parameter" related to this
finite system is defined by

ηΛ(RW}(λ) = \Λ(R^)\-1 </*(1 %*«»)= df«*™>(X> (3.7)

and we write K - R = Σi=ι ^^ΐ f°r everY KG A and every R e A(R(0}). In order
to put an upper bound on η(λ\ we now apply the inequality (2.1) with the following
choice: we put N = n and, for a given KeA,we introduce

XΛ=
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where (X^R\^Λ^n and (^α

(Λ))ι^α^n are the two dual bases of (§R which enter the
expression of the Casimir element y(R} in (2.8), and

$«= Σ
ReΛ(RM)

for each α we then have successively

Σ <IA, *.!%*«>» (3.8)
α = l

= Σ exp[iX (R - Λ')]

and
n

since the functions χ(1\{R}) are eigenfunctions of γ(R\ or

/ "

\ Σ
\α = l

by (3.7). Finally,

n n

ΊK (R-R')-] Σ

(3.10)

,(A) (3.9)

By (2.6), this last expression is non-negative for every KeΔ\ so, by adding to
(3.10) the same expression where K is replaced by — K, we have

Σ α. CTXi^o,, ̂ 2 Σ cosx (R - K') Σ <*<* w
α = l Λ,Λ'e>l(Λt 0 >) α = l

+ 2A Σ Σ <^Λ)(^KV1)({Λ}))>Λ(Λ<«»)
Λeyl(Λ( 0 ) ) α = l

= - 2 Σ (1 - cos K - (Λ - R')) Σ (̂ (̂ '
R,Λ'eyl(R(0)) α = l

+ 2A Σ Σ <^R)(^Jt)X

where the last equality follows from the G-invariance (3.5). We then introduce
the explicit form (3.2) of h(0} in (3.11) and insert (3.8), (3.9) and (3.11) in (2.1);
since the thermal averages which appear in these expressions involve continuous
functions on the compact group G(Λ(R(0))), their absolute values are bounded
from above by positive constants; the rest follows from standard manipulations
[3], with the result
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where A and B are real and positive. In the thermodynamic limit R(0}-^ + co
(i.e. #[0)-> + oo for every i e {1, ... , v}), we obtain in particular

B \*

w
for v = 1 , and

if v = 2; this implies limη(λ) = 0'9 since the two inequalities (3.12) and (3.13)

remain valid for interactions satisfying (3.3), the theorem is proved.

4. An Example

We now present a simple example which shows that the class of lattice systems
considered in the preceding section contains most of the classical vector models
generally used in the field of critical phenomena suppose we have at every ReTLv

a copy IRfl of the D-dimensional Euclidean space IRD(D ̂  3) in which we consider
the faithful representation of G = SO(D) by orthogonal matrices. We choose in
this case K = SO(D — 1) as closed subgroup of G, realized as the isotropy subgroup
of a unit-vector n given in ]RD; the zonal spherical functions of G defined with
respect to K are, in this case, when considered on the unit-sphere SD~^

D-2

^SO(D)/SO(D-l) the Gegenbauer polynomials Q 2 , with / = 0, 1,2, ... [13].
The chosen Hamiltonian is

h(gRl - - - gRJ = Σ J(R- *') c(gR

 1 « gj ») + λ £ c(« gR n) (4. i)
R,R'eΛ ReΛ

with / = t = 0 and a "symmetry breaking field" in the direction of n; this model can
be interpreted as a classical spin model; we have in this case μ = /(/ + D — 2) φ 0
[13], and the "order parameter" which vanishes in the thermodynamic limit for
v ^ 2 and λ-+Q is

n - gR n) . (4.2)

D-2
2In particular for / = 1, we have Cl

 2 (X) = (D — 2)X and we obtain the Stanley
model for ferromagnets which is therefore never ferromagnetic in one and two
dimensions.

For D = 3, the Gegenbauer polynomials reduce to the Legendre polynomials
Pt and (4.1), (4.2) give respectively

%* - 9κJ = Σ W- #') Pι(βκ l n gj n) + λΣPι(" 9κ ») (4.3)
R,R'eΛ ReΛ



288

and

P.-A. Vuillermot and M. V. Romerio

£ Pf(n •#*«)} .
ReΛ I A

In particular if /= 1, we obtain the classical Heisenberg model which has been
discussed by Mermin in [4]; if / = 2, we have with (4.3) a lattice version of the
Maier-Saupe model for nematic liquid crystals ([6, 7, 15]), in which the vectors
gRn are interpreted as the "directors" of long thin rods whose centre-of-mass
are fixed at the lattice sites; this model then cannot exhibit "nematic ordering"

5. Concluding Remark

We have shown in a rigorous way how the symmetry properties of some
classical Hamiltonian systems can be used to rule out the existence of "conven-
tional" long-range order. The main ingredients are the relations (2.4) and (3.5);
the first one allows the elimination of Mermin's surface corrections whereas the
second one is necessary for the validity of (3.11). Another application of the
inequality (2.1) concerning the study of long-range order in some anisotropic
vector models of finite thickness will be published separately [15].
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