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Abstract. We consider the general spin quantum mechanical anisotropic Heisenberg model
on a v-dimensional lattice with potential γvρ(γ\r\) of Kac type. In the limit y->0+ (after the thermo-
dynamic limit) it is shown that the free energy is equivalent to the corresponding Curie-Weiss or
mean-field expression.

Introduction

In 1966 Lebowitz and Penrose [1] rigorously established the van der Waals-
Maxwell theory for a classical system of particles in v-dimensions interacting
with pair potential v(r) of Kac type

v(r) = q(r) + fρ(γr) (1.1)

in the limit y->0+ (after the thermodynamic limit), for short range repulsive
(hard core) potentials q(v] and long-range attractive potentials yvQ(yr] satisfying
conditions stated in [1] (and in the following section). In the same year Lieb [2]
obtained the same result for quantum systems of particles.

Ising spin systems (or equivalently lattice gases) can be treated in the same
way [3], with spin — \ Curie-Weiss theory of magnetism resulting in the limit
y->0 + .

Different methods were used recently [4] to investigate the y->0+ limit of
^-vector classical spin systems interacting with a Kac potential. The resulting
thermodynamics in this case was shown to be identical to that of an equivalent
neighbor or Curie-Weiss model in which all spins interact equally with one another
[5], with coupling constant inversely proportional to the number of spins. As a
special case, with n = 1 (corresponding to Ising systems) one recovers the spin — \
Curie-Weiss theory.

Our purpose here is to extend the methods of ref. [4] to investigate the y->0 +
limit of the general spin anisotropic Heisenberg model.

The main results are stated and discussed in the following section. Sections
Three and Four are devoted to the proof of the theorem stated in Section Two.

2. Statement and Discussion of Results

Consider a system of N spins occupying the vertices of a v-dimensional lattice
with Hamiltonian

^ = -s~2 Σ QijSrJ Sj-s^H ΣSt (2.1)
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where
S-ίSf^S?) (2.2)

is the usual angular momentum operator for the ιth spin, with total angular
momentum s, i.e.

SrSt = (S?)2 + (SO2 + (Szt)2 = Φ + 1) (2.3)

and H is the external magnetic field. The factors s~2 and s~1 multiplying the first
and second terms in (2.1) are chosen so that the classical Heisenberg model
results in the limit s-» oo [6, 7]. For simplicity we have introduced dyadic notation
in (2.1) so that

St J Sj= ΣΣ S*iJ"S'j. (2.4)
*,β = x,y,z

(In the sequel J - x denotes a vector with components

(j xγ= Σ Jaβχβ (2 5)

while H St in (2.1) denotes ordinary scalar product.)
Since i=j terms in (2.1) are excluded, the anisotropy tensor Jaβ can be taken

to be symmetric so that a representation for the spin operators can always be
chosen so that only diagonal terms α = β appear in (2.4). Although this is the
conventional way of expressing (2.1) we will adopt the form (2.4) in the following
section and revert to a diagonal representation in section four.

Henceforth we will assume that the tensor J is symmetric and positive definite
and that the interaction potentional ρ0 is ferromagnetic and of Kac type,

Qij = 7vQ(y\rt-rj\)^0 (2.6)

where rt is the position vector of the ίth lattice site. In addition we will assume that
the sum

i

over the infinite lattice exists for all γ > 0 and that

0(0)= lim g(09γ) = ΪQ(\r\)dr (2.8)
γ^0 +

exists (as a Riemann integral).
The partition function is defined by

(2.9)

where β = (kT)~1, and the limiting free energy per spin ψ(y) by

-βψ(y}= lim ΛΓMogZjvft) . (2.10)
JV-» oo

Conditions on ρ(x) for the limit (2.10) to exist [8] will be assumed throughout.
We will be particularly concerned with the free energy φ0 in the long-range

limit defined by
ιp0= lim ψ(γ). (2.11)

y-»0 +

Our main result is the following.



Long-Range Heisenberg Model 193

Theorem. For a system of spins with Hamiltonian (2.1) and potential Qtj satisfying
conditions (2.6)-(2.8),

ιp0 = min (iflf(0)x J - x -β~l log Cs(β\\g(V)J x + H\\)} (2.12)
X

where
Cs(sα) = sinh(s + |)α/sinhα/2 . (2.13)

The minimum in (2.12) is attained for jc a solution of

where Bs is the Brillouin function of order 5 defined by

. (2.15)

In the limit y->0+ (after the thermodynamic limit) sjc is in fact the total magnetic
dipole moment (or magnetization) per spin.

Expressions (2.12) and (2.14) agree precisely with the spin-s Curie- Weiss
theory [9,10] and may be obtained from the corresponding equivalent neighbor
model (or Curie- Weiss model) with Q^ in (2.1) replaced by g(0)/N. Kittel and Shore
[11] and Niemeyer [12] in particular, examined the isotropic (Jaβ = Jf5α>/3) spin — ̂
equivalent neighbor model, observing that in the thermodynamic limit, the free
energy is identical with that of the corresponding Ising-model. For general spin,
jc from (2.14) is parallel to H when the interaction is isotropic. In this case (2.12)
becomes

(2.16)

where | | jc| | is the non-negative solution of

\\x\\ =Bs\β(g(0)J\\x\\ + \\H\\}]. (2.17)

Expression (2.16) can also be obtained from an equivalent neighbor spin-s Ising
system.

In the anisotropic case the magnetization from (2.14) is not necessarily parallel
to H. We will not examine the minimizing solutions of (2. 14) (i.e. the magnetization)
here. The interested reader is referred to Vertogen and De Vries [13] where special
anisotropic spin — \ cases of (2.14) are examined in detail.

To prove the theorem we adopt the format of [4] and obtain upper and lower
bounds on the free energy ψ(γ) eq. (2.10) that coalesce to give the stated result
(2.12) in the limit y->0 + . Our upper bound in the following section is obtained
by an application of Bogoliubov's variational principle. The lower bound in
Section Four is obtained via the Trotter formula [14] and a functional integral
representation of the Trotter approximation to the partition function.

After this work was completed we obtained preprints of closely similar work
by Tindemans and Capel [15, 16] on quantum mechanical systems with separable
interactions. Although their techniques are similar to ours the precise form of
the Heisenberg model Hamiltonian allows us to obtain precise bounds without
resorting to saddle point methods used by Tindemans and Capel.
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3. Upper Bound on the Free Energy

For simplicity we impose periodic boundary conditions on the potential Qtj

so that
N

Σ Qij = 9NΦ>y) (3-1)

for all ί = 1, 2,..., N, and from (2.6) and (2.7)

We write the Hamiltonian (2.1) as (ρίf = 0)

N N

τ0? I V ( \ 1 ( \ — V ϊ ( 4- "ί
2 l^i *zιj\ i ' V j / 2 {__i H i j v i 3)

~f~ T X ' J ' X / 0 ί ί — " * / CF iZ, ^_j »•» IJ £^ I

where σί = 5~1S ί and for the moment x is arbitrary. Next we decompose ffl as

2 ?̂ 2 ?̂ i siJJ? /"3 Λ \

where from (3.1)

ffl0 =±NgN(Qy y)jc •/ JC — (##(0, y)J X + //)• Σ σί (3-5)
i= 1

and
N

-yU? 1 V r> (~ v\ T (** v\ C\ £\
Jϊ 1 — ~~ 2" Zu ^ijV^i ~ ̂ / ' ̂  ' vσj ~~ ^/ V* °J

We now appeal to the convexity inequality [17, 18]:

Bogoliubov's Variational Principle. // $?§ and ̂  γ are linear Hermίtίan
operators acting on a separable Hilbert space then

(3.7)
where

<...>0 = Tr[...exp(-/?Jf0)]/Trexp(-pf0). (3.8)

N

Since J^0 and ̂  are linear and Hermitian and act on the space (X) C2s+1,
i = l

application of (3.7) to (2.9) gives

logZN(7)^logZ^7)+/^- Σ QiJ(σi-x) J (σj-x)\ (3.9)
\ z U=ι / o

where

(3.10)

and S is a (single) spin-s vector operator.
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Using the facts that

<*i <Γ;>o = <<Γi>o <*/>o for i Φ J

and ρ ί l = 0, (3.9) gives

£ Qίj«σίyo-x) J.«σjyo-x). (3.11)

To obtain the desired bound we choose, since (σ^o — <(o')o is a function of
jc independent of i, x a solution of

* = <σ>o (3.12)

so that from (3.11)
\ogZ°N(y). (3.13)

To evaluate Z%(y) and <<τ>0 we need the results

Trexp(α S) = £ exp(Hα)lm)

(3.14)
= Cs(5||α||)

where Cs(sα) is defined by (2.13), and

.S)] = sq(s||α||)ά (3.15)

which follows from (3.14) on differentiating with respect to α.
From the definitions of Z£(y), (3.10) and <σ>0, (3.12) we obtain from (3.14)

and (3.15) respectively,

Z^(γ) = exp( —^j8Ng[N(0,γ)x J x) {Cs(β\\gN(Q,y}J - x + H\\)}N (3.16)
and

C,(β\\gN(0,y)J x + H\\) gN(0,γ)J x+H
X = —

\\gN(0,y)J x+H\\

where Bs(sa) is defined by (2.15).
It then follows from (3.13), (3.16) and (3.17) that

= lim lίm [-

(3.18)

where 0(0) is defined by (2.8), and x is a solution of the stationary condition (2.14).
In particular we conclude that

(3.19)
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4. Lower Bound for the Free Energy

We begin by observing that the partition function (2.9) satisfies

ZN(γ) ^ Tr exp [£- Σ Qij«ι ' J ' °j + βH ' Σ "
L Z i , j=l ί = l

- Tr exp l^(σx) + Jf (σy) + ̂ (σz)] (4.2)

where in (4.1) a diagonal term (i=j) has been added in the exponent, with ρ(0)
chosen (sufficiently large) to make the matrix Qtj positive definite. The inequality
results form Peierls' theorem since the operators <rt J σt are positive definite.
The separation (4.2) of the dependence of the Hamiltonian on spin components
is then possible in principle co-ordinates where J = diag ( J*, Jy, J2) and for
α = x, y, z

jr(a )=$βj Σ eιtf°*j + βir Σ «?• (4-3)
i , J = l i = l

Trotter's formula [14] asserts that the right hand side of (4.2) equals

lim Zκ.n(i) (4.4)
w-> oo

where
ZN>n(y) = re Tr [^(^)/«^(-y)/«^(-2)/«]« . (4.5)

We are now in a position to use the identity

ft N \ / ft \- GO N

Σ
ί , j=l \ -00 f = l

β "
•exp - Σ

which is valid for an arbitrary set {σjf= j of commuting operators and any positive
definite symmetric matrix ρ. Representing each of the 3n ordered exponentials in
(4.5) as multiple integrals according to (4.6) yields

3κ oo N n

~ 2 Uίltΐ
N n

Σ Σ(e~%*<. ' M (4 7)
U=l ί = l

Π exp
= x,y,z

where the trace has been taken inside the integrals.
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To proceed any further we need a suitable upper bound on the trace appearing
in (4.7). This is supplied by the following:

Lemma. In the notation we have developed

Tr
ί = l

ί Σ \ \ χ t \ \ 2 + - Σ l o g C s ( n s \ \ X t \ \ ) \ (4 8)
ί=l n ί=l

The proof of the lemma is given in the Appendix.
Factoring out the direct product over i in (4.7) and resorting to the lemma

we have

U-
Nn 3n oo N n

ί ί Π Π
-oo i= 1 ί= 1

• exp <; -

N

i = l

— y y
/? n
K X""1

O M 2 _ Zj

(4.9)

n *=ί=l

ye_ -
«25 ,f,

where in anticipation of the next step a term has been added and subtracted in
the exponent.

To obtain an upper bound for ZNtn(γ) our strategy now is to replace each term
in the product over i in (4.9) by the common maximum. This maximum occurs
for Xit = Xt satisfying the stationary conditions

nz ,r
(4-10)

=l

Taking the norm of the relationship (4.10) and inverting it produces ||J Xt + H\\
1

as a function of -
nz ί=l

which is independent of t. Hence we can conclude

from (4.10) that the required maximum occurs for X f ί = X a solution of

J X + H , 6 / ϊ , ,

ns

To perform the remaining integral in (4.9) we notice [19] that the eigenvalues of

(ρ"1)^^ -̂ are given by the Nn combinations IgΓ 1 " " ~L) where ρt are

the eigenvalues of ρ and ̂  = n, Λ,2 = A3 = λn = 0 are the eigenvalues of an n x n
matrix with entries all unity. The integrations can now be carried out immediately
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after the appropriate orthogonal transformations of variables to give

2
(4.12)

The manipulation leading to (4.12) obviously requires the matrix / -- to be

positive definite. As is shown in [4], for spins located on the vertices of a regular
cubic lattice, this is true provided

) (4.13)

that is, z is greater than the maximum eigenvalue of ρ.
Taking the limit n-^oo in (4.12) we have from (4.4) that

/ - - j exp{Nί-±βzx J X + loBCs(β\\zJ X + H\m} (4.14)

where x = z~lX is the maximizing solution of

χ-B^zJ χ+H^w^w (4 15)

It now follows from (4.14), (4.13) and (3.2) that

φ(y) =- lira (jSNΓ1 log Ztffr)
N-* oo

(4.16)

/--I

for all z > 0(0, γ}. Hence taking the limit z-»g(0, y) + in (4.15) and (4.16), followed
by the limit y-+0 + , x becomes a solution of (2.14) which minimizes the first two
terms in (4.16) and consequently

J x-β-llogCs(β\\g(0)J x + H\[)}

(4.17)
/ n \

+ lim lim f (

In view of the upper bound (3.19), the theorem will be proved once we have
shown that the last term in (4.17) is zero. For the proof of this fact we refer the
reader to [4].
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Appendix

Our aim here is to prove the result (4.8)

Tr Π (e*<sxe*sye«s') £ expJ3s f ||jc ί | |
2+ - £ logCa(™||* f | |) 1 (A.I)

ί= i I f= i n t= i J

To obtain the upper bound (A.I) we use the Holder inequality [20]

n n I —1 —
Tr Π At ^ Π iTrμμ,)2]" (A.2)

with
At = eXtSxeytSyez*sz. (A.3)

We now specialize to the spin — \ case for which we have the formulae

ex's = cosh(^-||jc||) + x Ssinh(|||jt||), (A.4)

(x 5) (y S) = x y + ίS (x x y ) . (A. 5)

The general spin case follows straightforwardly from the spin — | case. Using (A. 4)
and (A. 5) and abbreviating the hyperbolic functions

ca = cosh α t , ία = tanh αt (α = x, y, z) (A. 6)

we reach the quaternionic form for (A. 3)

(A. 7)
where

fl^c^c^l + ϊVΛ) (A 8)
and

a = (tx + itytz9 ty + itztx, tz + iί,g . (A.9)

We can now calculate

| f lol 2 [l + l l β | l 2 + (β + α* + i(«*xα)) S] (A

^|α0 |
2(l + | | α | | 2 ) ( l + f t . 5 )

where
Z> = 2(1 + ||α ||2)" A (reα - reα x imα) . (A. 1 1)

Since b is real the eigenvalues of b - S are ^ \\b\\ and -i||6||, hence from (A. 10)
we deduce that

+ N (A. 12)

Furthermore the inequality

l+x^e* (A. 13)
implies

(l+il|6||) f+(l-iP||) f^2cosh^i (A. 14)

and in conjunction with the inequalities

^*2, tanh 2x^x 2 (A. 15)



200 P. A. Pearce and C. J. Thompson

leads to

|α0|
2(l + ||α||2) = c2

C

2c2(l + ί2ί2ί2) (1 + ί2 + ί2 + 1 .

+ t2)(l + t2)(l+ί2)}2 (A. 16)

i + ί| + H ) : 3 | | * t | l 2

Finally using (A. 11) we have

(l + ||α||2Γ2(||re«||2

||imα||2H|re«||2

2 ( ' '

Applying the inequalities (A. 14), (A. 16) and (A. 17) collectively to (A. 12) yields

(A. 18)

which when substituted in (A. 2) gives the required result (A.I) for s — \.
The extension to general spin is achieved through the

Proposition. For any real vectors x and y there is a polar decomposition

where the real vectors α, β(mod4πy) are unique and independent of the spin.

We postpone the proof of the proposition but notice that by the closure of
the rotation group (i.e. operators of the form eiβ's) under composition it has as a
consequence the fact that we can write uniquely

(A}At^ = eΛt's (A. 20)

where the real vectors α, are appropriate for all values of the spin. The spin — \
inequality (A. 18) now reads, for any integer n

• e2 * 2cosh(—HxJ 1 . (A.21)

Hence for general spin we have

1+ ]Γ 2cosh(mn||α ί | |) 5 integral
m=1 (A.22)

2cosh(mn||α ί | |) s half integral
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In view of (A.2) this establishes the result (A.I). We now return to the
Proof of the Proposition. The coefficient vectors α, β can in principle be deter-

mined from the relations

e2*'s = (e*'sey'sy(e*'se>mS) (A.23)

eiβ s = e-« seX sey s (A24)

using the Baker-Campbell-Hausdorff formula [21]

ex Sey S = ex S + y S + i[x S,y S]+^ [[x S,y S],y S] + - (A.25)

which involves only manipulations within the Lie algebra. Since the Lie algebras
for different spins are isomorphic (over the complex field) the desired result
follows from the existence and 'uniqueness' of the representation (A. 19) for
spin — \.
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