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Abstract. Using permutation group techniques, a general expression is derived for the special
class of U(N) Racah coefficients for which the representations [/*] and [/3] in the recoupling matrix
f°r C/1] x [/2] x [/3]->[/] are either both totally antisymmetric or both totally symmetric. For
the totally antisymmetric case further specialization gives a simple expression for a U(N) Racah
coefficient which is needed in taking the average of the product of operators over the states of an
irreducible representation of U(N\ where this result can be useful in the study of identical fermion
systems by spectral distribution methods.

Introduction

In recent years the Wigner-Racah calculus for the unitary groups U(N),
with N > 2, has been brought to a state of development comparable to that for
the angular momentum calculus, especially through the work of Biedenharn,
Louck, and coworkers [1-7]. For multiplicity-free Wigner couplings, in particular,
algebraic formulae for U(N) Wigner coefficients can generally be read off directly
from their diagrammatic pattern calculus [1]. Biedenharn and Louck advocate
the view that there is a canonical structure for the U(N) Wigner-Racah calculus
which eliminates all free choices in the resolution of the multiplicity problem
for the most general Wigner coupling. Except for phase there is therefore no
arbitrariness in the definition of a U(N) Wigner or Racah coefficient. For N > 3,
however, explicit algebraic constructions for Wigner couplings involving the
most general multiplicity structure have so far been limited to matrix elements of
the simplest self-adjoint Wigner operators [2], which transform according to the
U(N) irreducible representation [211... 10]. Louck and Biedenharn [2] also
give the U(N) Racah coefficient for the recoupling matrix for [/] x [11... 10]
x [10...0]-»[/] in elegantly compact form. In the applications to physical
problems U(N) Racah coefficients are often more useful than the Wigner co-
efficients [8,9]. Being independent of subgroup labels, Racah coefficients also
have a simpler algebraic structure than the Wigner coefficients. Despite this fact
general expressions for U(N) Racah coefficients for arbitrary N have so far been
limited to a few special cases. Even the Racah coefficients for the recoupling
transformations for which all four Wigner couplings in the Racah recoupling
process are free of multiplicity can not yet be written down directly from a simple
pattern calculus, except for a limited number of special cases. When the U(N)
representations [/2] and [/3] are both totally symmetric (representations with

* Supported by the US National Science Foundation.



136 K. T. Hecht

one-rowed tableaux) and are themselves coupled to a totally symmetric represen-
tation, Biedenharn et al [3] show how the Racah coefficients for the recoupling
matrix for [/*] x [/2] x [/3]-»[/] can be written down from an extended
pattern calculus. This extended pattern calculus can also be used to evaluate certain
"stretched" Racah coefficients [3] for 2-rowed representations [/*] with additional
restrictions on [/2] and [/3]. Results for other special cases have also been
worked out. Jucys et al. [10] give a special class of Racah coefficient involving
three totally symmetric representations, Moshinsky and Chacon [11] have
evaluated Racah coefficients for the recoupling matrix for [/*] x [/2] x [/3] -> [/]
where the representations [/*] and [/3] are both totally symmetric; but explicit
results are limited to the case when the remaining representations in the recoupling
transformation are at most 2- or 3-rowed, and their algebraic expression for the
Racah coefficient is complicated by a summation over many indices. Moshinsky
and Chacon make use of the intimate relationship between the unitary group
U(N) and the symmetric group. In a recent investigation [8] of spectroscopic
problems involving the method of spectral distributions, this relationship has
also been exploited to evaluate a summation relation for U(N) Racah coefficients
[12] which is independent of the U(N) multiplicity structure and could therefore
be evaluated by permutation group techniques. Any U(N) Racah coefficient,
for which the four Wigner couplings in the Racah recoupling transformation are
all free of multiplicity, can be evaluated by similar techniques. Moshinsky and
Chacon [11] relate their special class of U(N) Racah coefficient to the matrix
element of a permutation operator exchanging a single pair of particles of an
rc-particle state. By using π-particle states for a harmonic oscillator in N dimensions
they gain totally symmetric representations of arbitrary length by associating
with each particle an arbitrary number of oscillator quanta. By relating the U(N)
Racah coefficient to the matrix element of a more complicated permutation
operator which exchanges one group of particles with a second group of particles,
it is possible to calculate U(N) Racah coefficients involving either totally symmetric
or totally antisymmetric representations by simple permutation group techniques.
The totally antisymmetric case will have useful applications to systems of
identical fermions.

It is the purpose of this work to derive a general expression for the special
class of U(N) Racah coefficients for which the representations [/*] and [/3]
in the recoupling matrix for [J1] x [/2] x [/3]-»[/] are either both totally
antisymmetric or both totally symmetric. In Section 1 it is shown how such U(N)
Racah coefficients can be related to the matrix element of a permutation operator
which exchanges one group of particles with a second group of particles. The
evaluation of this matrix element by straightforward permutation group techniques
is carried out in Section 2. Finally, in Section 3 additional specializations are
made for the totally antisymmetric case, giving very simple expressions for a
class of U(N) Racah coefficients which may have useful applications for systems
of identical fermions; particularly for problems in nuclear spectroscopy, using
the methods of spectral distributions developed recently by French and collabora-
tors [13]. These techniques involve the averaging of products of operators over
the states of an irreducible representation of SU(Λf), generally for large N. Since
this averaging eliminates the dependence of matrix elements on U(N) Wigner
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coefficients, results can be written down in terms of SU(Λf) Racah coefficients
provided the operators of physical interest can be decomposed into their appropri-
ate SU(ΛΓ) irreducible tensor components.

1. U(N) Racah Coefficients and the Matrix Elements of Permutation Operators

It will be convenient to use a notation for the U(N) Racah coefficient which
is a straightforward generalization of that for the angular momentum case.
The Racah coefficient in unitary form, or [/-coefficient, is given by the recoupling
matrix

u(\_n E/2] [/] C/3]; C/12] e'V 2 ' 3; [/"] e2V 23)
x c/2]) E/12] Q12 x c/3

2Ί v Γ f 3~h Γ f 23Ί n23ϊ Γ fl n1'23) .1 (E/1] x (C/2] x E/3]) E/23] ρ23) [/] 8

Here, the U(N) irreducible representation labels [/5] = [/ ]̂ are given by the
partition numbers ffN, i= 1, ...,N, which specify the number of squares in the
f t h row of the Young tableau describing the representation [/s]. Multiplicity
labels ρst are needed whenever the Wigner coupling of [/s] with [/'] can yield a
specific representation [/sί] with a d-fold multiplicity, with d> 1. In the special
case when both [/*] and [/3] are either totally symmetric, [/s] = [mO.. .0] = [m],
or totally antisymmetric, [/s] = [11 ...10...0] = [lm]; d=i for all couplings,
and all four multiplicity labels ρ12, ρ12'3, ρ23, ρ1'23 become unnecessary and
can be omitted. It may be useful to relate the above notation to that of Biedenharn
and Louck [2-7] who define the Racah invariant operator

(2)

where the [/-coefficient of Eq. (1) is the matrix element of this operator connecting
a state of irreducible representation [/*] (on the right) to a state [/] (on the left).
The labels Γst include both the multiplicity label ρst and the shift indices,
zlf = /$ — /)#, which indicate how many of the squares of the tableau for [/']
have been added to the / th row of the tableau for [/s] to make the tableau for
[/sί]. Since it will be convenient to keep representations [/*], [/2], [/3], on an
equal footing, the notation of Eq. (1) will be preferable for this investigation.
To save on notation it will also be convenient to illustrate all derivations with
the case where C/1] and [/3] are totally antisymmetric; [/:] = [1«], [/3] = [P].
(Results for the totally symmetric case will be given subsequently.)

The first step in the derivation involves the composition of recoupling
transformations illustrated by Fig. 1. Part (a) of the figure illustrates the straight-
forward Racah recoupling transformation

> (3)

= Σ f id*] E/2] [/] [ipl; C/12]; E/23]) Iff i*] x (C/2] x TO E/23]) [/] m> ,
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"O 7
[f] [f] [f],« » [f], [f] [f]

Fig. 1 a and b

where m is a shorthand notation for a complete set of C/(JV) subgroup labels.
(The Gelfand labels f t j with i ̂  = 1, 2, . . ., JV - 1 could be used, for example [7]).
The state vectors of Eq. (3) can also be related by the transformation of Part (b)
of Fig. 1. The transformations marked "phase" in Fig. 1 are of the type

KCΠ x L/2]) C/12] m1 2

involving an interchange in the order of the first and second representation in
the Wigner coupling of the state vector. [Note, however, that the state vectors
of the left and right hand sides of Eq. (4) differ only by a representation-dependent
phase factor because one of the representations is totally antisymmetric, leading
to a multiplicity-free Wigner coupling.] From

<(([!'] x C/2]) C/12] x El"]) [/] H([lβ] x ([/2] x [I"]) C/23]) [/] m>

= Σ <(([!"] x[/2])C/1 2]x

• <([/2] x ([I9] x [I"]) E/13]) [/] m, ρ|([l«] x ([/2] x [1*]) [/23]) [/] m> (5)

we obtain the relation

(_ nΦ2([

[/] [iβ]; C/23]- - C/13]- ρ)
The sum over [/13] and ρ in Eq. (6) can now be related to the matrix element of
a permutation operator which exchanges the particle indices of the two totally
antisymmetric parts of the rc-particle state vector |[/] m>. To evaluate this
matrix element it will be convenient to introduce π-particle state vectors

l[/]w;r n r n _ 1 . . . r 2 r 1 > (7)

which are simultaneously base vectors for an irreducible representation of U(N\
(labeled by [/] and m), and of the standard Young- Yamanouchi orthogonal
representation of Sn, (with n = ΣtfiN\ where rnrn_ t ...ri is a standard Yamanouchi
symbol14. It will further be useful to transform to non-standard representations
of Sn [15, 16] in which one group of p particles and a second group of q particles
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have the definite permutation symmetry [lp] and [I9]. Such states are simple
linear combinations of the states (7). E.g., the state vector in which the q particles
labeled n — p,n — p—l,...,n — p — q+i belong to the totally antisymmetric
representation of Sq is given by [15]

;r I I . . .r I I_ /,+ 1 {b 1 ί> 2 . . .&J [ l β ] r n _ / ,_ 9 . . .r 1 > (8)

where the sum is over the q I permutations & which permute the symbols blb2...bq

in both the state vector and the coefficient, and where χ is even (odd) for even
(odd) permutations &. The coefficients are given in terms of the "axial distances",

τik = fι-fk + k-l-σ(l) + σ(k), (9)

where fk designates the number of squares in the kth row of the π-particle Young
tableau [/] (fk = fkN\ and where σ(k) = number of times the label k occurs among
the Yamanouchi symbols rn, . . .,r l l_ p + 1 preceding the bj9 [similarly for σ(I)].
In terms of such state vectors the sum of Eq. (6) can now be related to the matrix
element of a permutation operator. The result is

[/] [!«]; E/23]-- E/13]- β) (io)
.bt

q}[ίq]{a(a'2..M^

where it is assumed (without loss of generality) that q ̂  p, and where fej . . . b'qa( ...a'p
is a specific permutation of the symbols a1...apbί...bq. The operator P is the
permutation operator which exchanges the particle indices of the p-particle
group with particle indices in the q-particle group

_ ύύ ύΰ ύύ Oύ p P p (\\t\\
— ^p^p-\ "'^2^lrn,n-qrn- 1 ,«- q- 1 • • ̂ n- p+ 1 ,«- q- p+ 1 V l l d j

Here, Pn_k^n_q^k is the transposition which interchanges the particle labeled
number n — k with particle n — q — k, and &k is the cyclic interchange of particles
numbered n — kj

ri,n — p,n — p—\...,n — q+i, with k= 1, ...,p; (q^p). Note
that any ̂  when acting to the left in the matrix element of Eq. (10) gives the
simple factor (- i)q'p, so that the operator P can in effect be replaced by

P - ( - i X ( β - p ) Π P B - k + l f B - q _ f c + 1 . ( l ib)
k= 1

The derivation of Eq. (10) follows. The state vector of the right hand side can
be expanded by successive U(N) Wigner couplings

= Σ <E/12] "i12[l*] m3 |E/] m> <[/2] m2[l^] m1! [/12] m1 2> (12)
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where the uncoupled state vectors are written out as functions of the particle
indices to make it easier to indicate explicitly their dependence on particle number.
The coefficients <[/s] ms[_f] nf\\_fst] msί> are full U(N) Wigner coefficients.
(Since one of the representations [/s], [/'] is totally antisymmetric no multi-
plicity labels occur in these Wigner coefficients.) The representation [/12] is
obtained from [/] by removing squares from the rows labeled aίa2...ap °f the
tableau for [/], while [/2] is obtained by a further removal of squares from the
rows labeled b1b2...bq from the resultant tableau for [/12]. The operator P
acting on the π-particle functions of Eq. (12) yields

Pψ^n,n-l,...n-p+l)ψ%ΐ](n-p9n-p-i9...n-p-q+ί)

= ψV?\n,n-i,...n-q+i)ψ[

n

1;](n-q,n-q-i,...n-p-q+i} (13)

= Σ Km x m) [/13] ml3> <[**] ̂ [ip] ™3i c/13] ™13> -
[/13]m13

After combining Eqs. (12) and (13), the sum over U(N) subgroup labels m1, m3, m1 2

can be carried out by expressing the sum over the product of three U(N) Wigner
coefficients in terms of U(N) Racah coefficients by

Σ <C/2] ™2[19] ml I E/12] m 1 2> <[/12] m12[l*] m3 1 [/] m>
',»"»3

•<[!«] m1 [lp] m3 1 [/13]m1 3 1 3 ;

Since the Wigner coupling [/2]x[/13] is in general not free of multiplicity,
both the U(N) Wigner and Racah coefficients of the right hand side of this relation
are functions of the multiplicity label ρ(= ρ2'13), and the result involves a sum over
this multiplicity label [2, 17]. The resultant action of the operator P on the
n-particle state vector can then be expressed as

= Σ
[/13]ρ (15)
• Σ

The state vector of the bra side of Eq. (10) can be expanded in similar fashion
to give

<inm;{b'lb'2...b'q}i^]{a'la'2...a'I,\lP}...\

= Σ W2] CIP][/] m; [/"]-/ ;[/13]-£?')
[/»]«• / (16)

• Σ <[/2W[/13]m13 1 [/]/«>,

m!3
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where, in order to apply the analogue of Eq. (14), it was necessary to make use
of a symmetry property of the (multiplicity-free) U(N) Wigner coefficient

mm3^/13]™13)

= (_ ̂ (U W],[/-]) ̂ P] W3[lg] ml i j-y-13-j ̂  ( >

[cf. Eq. (14) and Fig. 1). Taking the overlap of (15) and (16), and finally making
use of the orthonormality of the U(N) Wigner coefficients

Σ <[/2]«2[/13]'»13|[/]'«>β<[/2]'«2[/13]'«13l[/]'«>ρ = «5ρβ , (18)
m 2m 1 3

the matrix element of P is reduced to the sum over [/13] and ρ of Eq. (10).
Combining Eqs. (6) and (10) gives the final result

; C/12]; [/23]) = (-i)φι([

.(_!),(,-,) <[/]{6i...6;}[lβ]{fli...fl;}[1P]... I Π (19)
A = l

* ^ n - f c + l , « - g - f c + l IC/J l f ll '"ap}[\P] {b\ •••^q}[l «]•••)

The phase factors φί and </?2? as always, are somewhat dependent on phase
conventions. (It will be advantageous to postpone a specific choice of phase
conventions until specific applications are made.)

In the Racah coefficient the representation [/12] is obtained from the
representation [/] by the removal of squares from the rows labeled aίa2...ap

of the Young tableau for [/]; that is,/J = /)12 + Ai9 with At=i for i = aί9a2, ...,#p;
or, in the shorthand notation of Ref. [1],

[/] = C/1 21 + Δ (a,... ap); alternately [/12] = [/(α1...αp)] .

The representation [/2] is obtained from [/12] by the further removal of squares
from the rows labeled blb2...bq of the resultant tableau for [/12]; that is

. ) ; or [/2] = [/12(6,. ..&)].

On the other hand, the representation [/23] is obtained from [/] by the removal
of squares from the rows labeled b[b'2...b'q of the tableau for [/],

whereas, finally

2. Matrix Element of the Permutation Operator

2.1. Preliminaries

Although the permutation operator in the basic matrix element of Eq. (19)
appears rather complicated, it is possible to reduce its evaluation to the basic
matrix elements of the transpositions Pm ? w_ i in the standard Young-Yamanouchi
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representation [4]
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(21)

where τjk is the "axial distance" between the squares labeled j and k in the m-
particle tableau left after the particles labeled n, n — 1,..., m + 1 have been removed
from the original n-particle tableau of shape [/] [see Eq. (9)]. To evaluate the
matrix element of a transposition operator Pm>m', with w'=t= w± 1, between state
vectors belonging to the non-standard representations of Sn utilized in Eqs. (8)
through (19), it will be useful to partially expand such state vectors, e.g.

tf \ \ O'~)\

Straightforward repeated application of Eqs. (21) and (22) yields

= \rn ..rn_m+1{b1b2...bq}[lq]a...y Π
7 = 1

i M*

"•a hi
Π '

7 = 1

1-

(23)

This is the basic relation needed for the evaluation of the matrix element of Eq. (19).

2.2. The Totally Antisymmetric Case

The final result (to be established by induction) is: With

{b(...b'q} = {aλιaλ2..Mλs...bμι_1bμι + 1...bμ2^1bμ2 + 1..
and
{ a f

ί . . . a ' p } = {ailai2...aip_sbμιbμ2...bμs},

(24)

1-
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Here, the indices α and b are split into two classes denoted by Greek and Roman-
letter subscripts, respectively. The aλt(t— 1, . .., s) are those of the indices α which
have been shifted from the p-particle group on the right hand side of the matrix
element (24) to the g-particle group on the left hand side. Similarly, the bμt(t = 1 , . . . s)
are those of the indices b which have been shifted from the ^-particle group on the
right to the p-particle group on the left. The aik(k = 1, . . ., p — s) on the other hand
are those of the indices α which remain in the p-particle group on the left. Similarly,
the bjt(l = 1, ...,# — s) are those of the indices b which remain in the ^-particle
group on the left.

The result of Eq. (24) includes three factors :
(1) The square root factor. The products over I, μ, ij in this factor run over

all indices λt,μt(t= 1, ..., s\ ik(k= 1, ..., p — s),7/(/= 1, ...q — s). The square root
includes: (i) all factors of the type (1 — l/τf lλC) where aλ runs over all shifted aλt,
whereas c runs over all unshifted indices, c = aik or c = bjt (ii) all factors of the
type (1 — i/τcbμ) where bμ runs over all shifted indices bμt, whereas the first index c
runs over all unshifted indices c = aίk or c = bjt and (iii) all factors of the type
(1 — 1/τ^^), where the first index runs over all unshifted aik whereas the second
index runs over all unshifted bjr (Note that this is the only type of term which
survives for the special case 5 = 0.)

The antisymmetry of the state vectors requires a^a^ for jφz , similarly
bt φ bj for j Φ i. However, it may be important to note that a particular bt could
be equal to some ak. In that case

It might appear that the operator P acting on \{al...ap}[1P]{b1...bq}[lqr..y
could in this case make contributions to the matrix element (24) in two ways:
(i) by producing a state | > in which bt and ak are both shifted, and (ii^by producing
a I } in which bt and ak are both unshifted. Note, however, that tri§ second state
has a zero coefficient through the factor (1 — 1/τ^J.

(2) The phase factor. The phase factor Φ is given by

s

Φ = X A + Σ ft + sp + i4s-l) = χΛ + χμ + s(p + 9), (25)
ί= 1

where χλ = Qven (odd) for aλlaλ2...aλsail...aίp_s = QVQn (odd) permutation of
aί a2 . . . ap while χμ = even (odd) for bh... bjq _sbμιbμ2...bμs = even (odd) permutation

(3) The Functions Fs(aλί...aλs',bμί...bμs). These functions are symmetric
in the s indices aλl...aλs and in the s indices bμί...bμs and have the form

Fs(aλl..Mλβ'9bμι...bJ= t (-l)m^(m) (26)
m = 0

with

^(«)= Σ fMfM-fM Π Π (i-— — ), (26a)
i 1 <ί 2 < <im i = iι 7=1 \ τbμιbμ. I
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= Π i-

i \ / t _ _ ι

i \fl__ι_

i W,_^

(26b)

(26c)

With m = 0, ̂ (0) = 1. With m = 5, no indices of type bμj (with j Φ z x . . . is) exist, and

)= ίlf(μi). (26d)

2.3. Derivation

The derivation of Eq. (24) uses the method of induction. For p=i the result
follows from Eq. (23). For p = 1, s = 0

. . . > = Π i-
i

Lab,

(27)

with F0 = 1, (the only a index and all 6 indices are of the unshifted type); while
forp= l,s= 1

πi.-^-U, '
(28)

with F1(fl;feμ) = ̂ i(0)-#i(l)= 1 - (1 - i/τabμ) = i/τabμ.
Assuming the result for arbitrary p — 1 that is, assuming the result (24) for

the matrix element of the operator

P

Π pn-k+ι,n-q-k+ι acting on functions of the type \rn{...}[ίP-ι}{...}lίq}...y ,
k=2

and using Eq. (22), we obtain

P

11 Pn-k+l,n-q-k+l\lal --ap}[\P] \P I ^q}[^] ' /

1 M*^1^... , % (29)_p V r
n,n c[ / j \

M=l L=l
_L*M

s = 0 λ,μ
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where the sum over λ is over all possible combinations aλί...aλs with
λ1<λ2<-'<λs, (similarly for the sum over μ); but where (α's with Greek or
lower case Roman subscripts) Φ aM. The factor [...]* has the form of the square
root factor of (24) but the products over α/s and αf's exclude the specific value au.

Now, using Eq. (23) for Pn>n-q and the inverse of (22) applied to states of
symmetry [I9], we obtain

+ 1 + ι ^

(30)

where [...]^ is now the full square root factor of Eq. (24), including the indices

Λ-s + 1 •> fls + 1'

The final phase is that appropriate for indices p and 5+1. The factor (— 1)M+1

in Eq. (29) assures that the χλ-part of the phase factor remains unchanged. The
operator Pn,n-q, acting on the state vector of Eq. (29), introduces a phase which
depends on the ordering of the bt [see Eq. (23)]. If it is assumed for the moment
that μσ<μs+1<μσ+1,bμs + lm the state vector of Eq. (29) is preceded by s symbols
aλ; but σ of the symbols bμ preceding bμs + ί are missing. The action of Pn!n-q

thus produces a state

\{aλί..Mλs...bμa + ί-1bμ8 + ί + ί...}[ίq]bμa+ί{aiί..Mip_s_ίbμ^

with a phase (— l)φ, with

Φ = Φ(s9 p-i;μ1...
s+ 1

= !;.+ Σ μt

The extra phase factor (5 — p + 1 — σ) is precisely the factor needed to bring I
to its proper position in the state of symmetry [lp], [cf. Eq. (22)].

To carry out the sum over ί in Eq. (30), it will be convenient to rewrite

4 S+ί / 4

•τ-^—n 1-—- i - l i -
v

1

where we have also introduced the shorthand notation

τ«b = ταb ~ 1 > similarly τf lF = τ f l f t + 1 .

(31)
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(Note that τba = — τab, and that τπb = τab; a bar over a subscript of τ can be used
to denote the previous removal of one square from the corresponding row of the
Young tableau.) In the expansion of Fs(...aλt_ίaλt + l...;bμι...bμ) in terms of
/s(μf), it will also be convenient to rewrite

1
2- | l —11 (32)

«A rOM, /

where the product Πr in fs+1 now includes the index r — t. Finally, we need the
identity

(33)
i = l j = l

(which follows from simple contour integration, see Eq. (22) of Ref. [12]), and
leads to the further identities

s+i s+i / 1 \ / I \ 1
V Π 11 11 \ -(<; ) ?} Π4ΪL l_ι I l - M j - i -(s-r^)- -7 T^V w

and r*
s+ 1 s+ 1

ί= 1 r= J

(35)

Σ Π l ' - r 1 - ' '
ί= 1 jί= 1 \ T V & M

With these identities the sum over t in Eq. (30) can now be carried out. It is
import ant to note that the functions /s+ι(μ;) are symmetric in the λr,r= 1, ...,s+ 1,
and can be taken outside the summation. In the expansion of Fs in terms of the
fs(μt) and subsequent summation over t in Eq. (30) two types of terms must
be considered:

(1) Terms independent oίfs+ί (μs+ί). Such terms arise only through the second,
[i.e. the (1 — l/τ^)-factor of Eq. (31)] and the second terms of the right hand sides
of Eqs. (34), (35), with ί = s+ i. The general term of this type in έFs+ 1(m) becomes

s im s

il <ί2< ••• <ίm i = iί j= 1

Π

(36)

[Here, the feth term in {...} arises from ^s(m) in the expansion, via Eq. (26), of the
Fs of Eq. (30); the factors 2m~k and the remaining k factors coming from m — k
factors of 2 and k factors of -(1 - 1/τ) in the expansion of the m factors fs(μt)
in terms of/ s + 1(μ f) by means of Eq. (32).] The terms in {...} can be summed by
expanding all products in powers of i/τb b , (where it was convenient to use
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τjk= — τkj). The coefficient of

ίrn jk i

Σ Π — — * (-0*

(using the binomial expansion), so that

1

m — k

(...)-ΓI(.-
and Eq. (36) becomes

(-i)m. <.i <. π/ s +ι(Λ ) rj (ί-^-} (37)

the required form for ϊFs+1 (w).
(2) The second type of term is that which includes the factor fs+ι(μs+1).

The general term of this type in ^s+1(m) becomes

Γ l <I 2 < ••• <ϊ 'm-l i = ίl j = l

j Φ i l . . . ί m - l

v—\ v-^ r ( \ f / \ r / \ 1—Γ 1—Γ / A

+ Σ Σ /^iKί /.+ i^-J/.-nίA'.+ i) Π Π !-T—
/= 1 i i <i2 < ••• <i m -1 i = iι 7 = 1 \ b^bt

ίφ i ι . . . i m - ι j Φ i ι . . . i m - ι
alsoj 'Φ ί

1-T-1—)(-irfl-fl-—ί—)] (38)

j l <J2< m'jk=il j = j\

J * /

where the first term arises from 3?s(m— 1) in the expansion [via Eq. (26)], of Fs

of Eq. (30); the two terms (s + fc + 1) and (5 + k + 2) in each square bracket arising
from the factors fs +1 and —fs+l(i — i /τub) of Eq. (31) through the first terms of the
right hand sides of Eqs. (34) and (35). The bracket {...} of this first term of (38)
sums to — 1 via the binomial expansion. The second term of Eq. (38) arises from
J^(m) in the expansion of Fs, where this expansion contributes an extra factor
/ s+ι(jUί) which is subsequently cancelled by one of the second terms of the right
hand sides of Eqs. (34) and (35). The factors 1 and — (1 — i/τbμ b^ ) arise through
the factors fs+1 and —/ s + 1(l — l/τ5b) in Eq. (31), respectively. The bracket {...}
in the second term of (38) sums to

Π i
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[cf. Eq. (37)]. After taking the symmetric functions in the s — m+i indices
7=1,...^JφϊΊ,.. .,/m-ι

im- l S

Π

outside the summation over /, this summation over s — m+i terms can be carried
out via (32) to give

S S / 1 \ / 1

Σ Π i1-^-) {-({-~
l Φ i ι . . . i m - ι J Φ i ι . . . i m - ι Ml ^

)-(s-m + 2)}+ Π

The first term (in curly brackets), {= — !}, cancels the first term of Eq. (38) so
that the combination of all terms of Eq. (38) finally yields

(-if Σ Π /S +I(Λ )/S+I(Λ + I ) Π (1 —)(ι
i ι < Ϊ 2 < im-ι i=i ι j = l \ τbμιbμj / \ τ b μ s + l b j

jφ i ι . . . i m - ι

(40)

which has the required form for J^ + 1(m), and together with (37) gives the full
expression for J^+1(m). The inductive proof is therefore completed.

2.4. The Totally Symmetric Case

The derivation for the recoupling matrix for [/*] x [/2] x [/3]-»[/] for
which [/*] and [/3] are both totally symmetric representations proceeds in
almost identical fashion. If [I77] and [I9] are replaced by totally symmetric
representations [p] and [g] the analogues of Eqs. (8), (22), and (23) can be obtained
by replacing all factors (1 — l/τ)-»(l + 1/τ). Also, all terms in the summations of
these eqs. now become positive. [Note, however, that (1 — l/τ2)->(l — 1/τ2).]

The final result is

(41)

where

[/] = C/12] + Δ(aί...ap); (alternately [/12] = [/(α,...a,)])

..*f)
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where the indices λt, μt, ah bj are to be interpreted as for Eqs. (19) and (24); but
where now

s

with

and

/;M= π(ι + —M (41d)

t = l \ τ βλ t &μ,/

The extra factor (- l)s in (41b) comes about because the analogue of Eq. (31), viz.

^Π('̂ H ..<->['-(I+Ϊ±;)] <42)
rφί

now contains an extra factor of — 1.
For the totally symmetry case, it is now possible to have some a — a^ or

bj = bi9 as well as some a{ — bk\ so that it may be useful to give a few examples.
We shall use the case [p] = \_q] = [2] for purposes of illustration:

(i) With {a1a2}{b1b2} = { i j } { k l } ; {b(b'2} {a(a'2} = {kl} {i/}; Ϊ Φ j Φ f c Φ / , all
indices are of the unshifted type and

U([2] [/(ϋ/c/)] [/] [2] [/((/)] [/(/c/)]
j \ / j \ / v \ / j \ i V /

tft

where [/(//)], e.g., indicates the representation with a tableau obtained by
removing one square each from rows i and; of the tableau for [/].

(ii) With {aίa2} {bιb2} = {(/} { k l } ; {b[bf

2} {a(a'2} = {ίj} {kl} i φ j φ / c Φ /, on
the other hand, all indices are of the shifted type. The square root factor of Eq. (41)
is +1 (there are no unshifted indices); and, except for phase, the (7-coefficient
is given by the factor F2(ij; kl):

u([2] [/(«/*/)] [/I C2] Um C/(ϋ)l)

(iii) In the special case when j = i:τjm = τ-im = τίm-i, τmj = τm = τmi+ 1; and
(case (ii) reduces to

U([Z] [/(ii/c/)] [/] [2] [/(»)] [/(»')])

— f _ 1 V P ι + 0 2
1 ^ (τ i t -l)(τ i ; -l) '

where representation [/(π')] is obtained from [/] by the removal of 2 squares
from row i.
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(iv) Finally, with {aίa2} {b^} = {*/} {il}l{b(b2} {a[a'2} = {il} {ij}, I and j are

,-/, + -!-•unshifted indices, while τ f l l ί,1 = τ ί f = + 1 F((i; i) = - 1 - ( 1 + —) = + 1 and

U([2] [f(iijl)] [/] [2]; [/((/)] [/(//)])

!+Φ 2 i^irL1^ ~ 21..(?« + 9 (τ'< ~ 2)

(Note that in this case the two indices i are considered to be shifted indices. It
might appear that there should also have been a contribution from a term where
the operator P acting on |{z/}[2] {^[2] > leaves the z"s in the imshifted positions;
but such a term is multiplied by the factor [(1 — 1/τ?.)]^ which is now identically
zero.)

3. Applications

The totally antisymmetric case will have useful applications to systems of
identical fermions; particularly for problems in nuclear spectroscopy employing
the methods of spectral distributions developed recently by French and collabo-
rators [13]. In a configuration of identical nucleons (neutrons or protons)
involving a large part of the nuclear shell model space, (several shell model orbits
with angular momenta JιJ29 )> the relevant unitary group SU(JV), with
N = (2jί + l) + (2j2 + i)-i — , may involve large values of N. However, the ir-
reducible representations for π-particle states are restricted to be of the simple
totally antisymmetric type [!"]. The single particle creation (and annihilation)
operators α+ (and αt ), with i = 1, ..., N transform according to the representations
[1] and [1N~ x] of SU(Λ/) Operators (α^ . . . α+) and (ajί . . . ajh) transform according
to the representations [lp] and [l^"71]; whereas a fc-body operator

« x < x <) (ah xaj2x-' ajh) (47)

with k = ^(h + p) in general contains all two-columned representations [JO]

= [2xiN~h+p-2x], with (p-/ι,0)>^x^(p,ΛΓ-/ι)<. (Here the concept of a
fc-body operator has been generalized [13] to the case with pφ/i.) It will be
useful to expand any /c-body operator in terms of U(N) irreducible unit tensor
operators, defined by

0>(fl+...α+)f ι;;J(α...α&N-hl (48)
mpmh

where the coefficients are U(N) Wigner coefficients, and the U(N) subgroup labels
mp are again given in a shorthand notation which now includes the angular
momentum quantum numbers and all additional labels necessary to specify the
p-particles states.
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The basic operation of the spectral distribution technique involves the
averaging of dynamical operators, or products of operators, over the complete
set of states of an irreducible representation of SU(ΛΓ), e.g.

J (49)

Σ

where the dimension of the π-particle representation is

dim[Γ]=ΛΠ/(JV-n)!n! .

If the operators can be expanded in terms of irreducible unit tensors of the
type (48), the problem is reduced to the evaluation of the matrix element of such
an operator

mpmh m"

!"] m\(a+ ...α

where n" is restricted to n" = n — p by the nature of the operators; (ri = n" + h).
The matrix element of (a+ ...a+)[^\ (essentially an n->(n — p)-particle coefficient
of fractional parentage) is, except for an n, p-dependent factor, given by a simple
U(N) Wigner coefficient [18]

n!
<[!""] (51)

The matrix element of
Wigner coefficient

(n-p)! j

l] can also be expressed in terms of a U(N)

[I"']

where we have first used hermitean conjugation and subsequently complex
conjugation in the repeated Wigner couplings of representations [1] with U(N)
subgroup labels il9 i2, . . ., ih. The phase factor, ηh, is associated with this conjugation
process. It is the phase factor associated with the conjugation of the final /z-particle
state

|[lΛ]m,>* = (-lΓ|[lN"Λ]m,>. (53)

In order to bring the U(N) Wigner coefficient of Eq. (52) into a form which makes
it possible to carry out the m-sums of Eq. (50), it is necessary to use a symmetry
property of the U(N) Wigner coefficient

(54)
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n

N-n' + n-p-y

N-n'+n-p-y+l

N-n'+n-x
N-rV+n-x+1

N-1
N

Fig. 2

where the phase factor must include the conjugation phase factor, ηh, and an
additional representation-dependent phase factor χ which, as always, is dependent
on phase conventions. [Note that the Wigner coefficients of Eq. (54) involve
multiplicity-free U(N) Wigner couplings.] To make the final result as independent
of phase conventions as possible, it will be useful to eliminate the phase factor χ,
by expressing the above dimensional and phase factors in terms of an SU(N) Racah
coefficient with the scalar representation in the 23 position, ([/23] = [0]^[1N]
for SU(ΛO).

[I-'] [i» <55>

which follows from Eqs. (14) and (54). With the use of Eqs. (51)-(55) it is now
possible to carry out the m-sums of Eq. (50) and express the final matrix element
in terms of a product of a single U(N) Wigner and Racah coefficient by means
ofEq.(14)

<[ίn] , p)\ [!"' m> (56)

(n-p)l(n'-h)lNl ; [0])

where the dependence on U(N) subgroup labels sits entirely in the single U(N)
Wigner coefficient. Since the SU(ΛT) Racah coefficients can be calculated explicitly,
the dependence on p and h is effectively factored out of the above matrix element.
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Equation (56) therefore serves as a reduction formula which reduces the evaluation
of an irreducible tensor T[/o] of arbitrary p and h to the evaluation of the simplest
such operator: the operator with p = x, assuming p ̂  N — h, (otherwise x = N — h\
where [/0] = [2xiN~h + p~2*]. (This reduction process has already been exploited
by French et al [13].)

The SU(AΓ) Racah coefficients needed for Eq. (56) follow from the present
investigation. In general, the SU(JV) Racah coefficients needed for identical
fermion spectroscopy are those involving the action of an operator (transforming
according to a 2-columned representation of SU(ΛΓ)) on an π'-particle state
[1 -columned representation of SU(ΛΓ)] to make an rc-particle state via an (n — p)-
particle parent. The final π-particle state, a result of the coupling [Γ'] x [/0],
thus corresponds to the 2-columned U(N) representation \_2niN~n~]9 (with a
completed first column of length N, equivalent to [Γ] in SU(ΛΓ)). Identical
particle spectroscopy thus leads to SU(JV) Racah coefficients of the general type

[/([!»'] [2yiN-n> + n-p-2y] [Γ] [P]; [lπ"p]; [2xlA r"w / + I I~2 x]) (57)

with x^y, pϋ^x — y, yH^n — p, required by the nature of the couplings. The
evaluation of this coefficient via Eqs. (19) and (24) is slightly different for the two
cases (n — p)^. x, (n — p) < x. Fig. 2 illustrates the row labels aλ9 aί9 bμ9 bj for the
2-columned U (N) tableau [2"1*~"] for the case (n-p)^x. The evaluation of the
[/-coefficient (57) involves the following identification of the row indices

{aί...ap} = {n9n-i9...9n-p+i}

{b1...bq = n,} = {n-p,n-p-l,...,y+l,N9N-i9...9N-n' + n-p-y+i}

{b'1...b'q=n.} = {n9n-i,...x+l,N9N-l,...,N-n' + n-x+l} (58)

where the only axial distances needed are of the type

τn-i,n-j = (i-J) > %-*,*-/ = ( fc-0; τn-itN_k = (N-n + ί-k+l). (59)

Note that aλt= (n-t+ 1), with ί = 1, . . ., p, so that

and the evaluation of Fs=p of Eq. (24) proceeds most economically via Eq. (30),
since the sum over ί collapses to the single term with ί = 1.

To evaluate the [/-coefficient it is now also necessary to make a specific
choice of phase conventions for the U(N) Wigner coupling of the type [/] x [I9]
-»[/']. With the Biedenharn-Louck [1] phase conventions (which amount to
generalized Condon and Shortley phase conventions, see Eq. (38) of Ref. [1]),
the phase factors φ([/] [lg], [/']) of Eqs. (4) and (19) become

+ Σ bt
( _ 1 ) Φ , = ( _ 1 ) I = ! = (_ 1 } t = 1

where
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The final result for the 51] (N) Racah coefficient of type (57) is

(n'-n + p + y)l(n-x)\(N+l-y)l(N-n)l

y-x)\(n-p-y)\(N+i-x)l(N-n

[The derivation for the case (n — p) < x via Eqs. (19) and (24) proceeds somewhat
differently, involving symmetric functions Fs with s = (n — x) rather than s — p
but the final result (61) is independent of the condition (n — p) ̂  x.~] It may also be
useful to note that a [/-coefficient for a recoupling transformation for which
all four Wigner couplings are multiplicity-free is invariant under conjugation
of all SU(JV) irreducible representations, so that

N-*-bf])
(62)

lp];[Γ-p];[2Jcl6])

which may be particularly useful for the case n' < p.
The special case y = 0, (with n' = n — p + h\ furnishes the [/-coefficients needed

for Eq. (56), and leads to the explicit Result

<[Γ]m|Γj£ol(Λ,p^

- <[!»'] m'[/0]m0 1 [l"]m> (63)

p\h\(N+\}\(N-h-x)\n\(n-x)\(N-ri)\[N + p-h-2x+i~]

, AT, h, p, x) .

With this result the average of the product of two operators over the states
of an irreducible representation of SU(iV) can be carried out. Since only the scalar
[SU(N)-invariant piece] of a product of operators O^O^ can make a contribution
to the average, <0102>

n, this average can be different from zero only if 0: and
O2 have pieces of the same SU(N) irreducible tensor character. If Oί and 02

in Eq.(48) are operators of type T^(h9p) and T$\h',p'\ with [/0

7] = [/0]

Σ
m,m'

, Λ, p, x) IC(n, N, Λ', p', x) ,

where the sums over SU(ΛΓ) subgroup labels can be carried out [using symmetry
properties such as (17) and (54)], to give

<<?! 02Y = A. \ f - K(n, N, h, p, x) K(n, N, h', P\ x) . (64)
dιm[/0]
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With

(65)
(Aί+1)!

(N+l-h + p-x)\(h-p
this leads to

ι '"1 ) (66)

n\(n-x)\(N-n)\ \ p i p'\ hi h'\ (N - h-x)l (N-hf-x)l

(n-p)\(n-p')\(N-n-h + p-x)\ [ ( p - x ) \ ( p f -x)\ N\ N\

This is a result which (in somewhat different form) has already been derived
by Chang, French, and Thio [13] without the detailed use of U(N) Racah algebra.
(Cf. Eq. (3.11) of Ref. [13]. To establish the connection between the notation of
Ref. [13] and the more conventional U(N) notation of this investigation, note
that the symbols v, μ, and k of Ref. [13] are related to x,h, and p by x = v + μ;
h = k + μ;p = k — μ.)

Although results such as (66) can be derived by the simpler methods of Chang,
French, and Thio [13], the detailed use of U(N) Racah algebra will make it
possible to generalize such results to matrix elements of more complicated
operators or to more complicated operator averages.

Consider, for example, the average

<0 102OJOJ>" = * Σ <[!"] m|0 10 2 | [!"'] m'> <[!»] m|0304 |[l"'] m'>
dim LI j mmt ί/-n\

(67)

over the complete set of states of [Γ]. If 01? 02, ... are /c-body operators of the
type (47), with k1 =^(h1 + Pι), k2 = ̂ (h2 + P2\ ••••> it wiU be convenient to couple
the operators in the order ([1P1] x([l N ~ Λ l ] x([P2] x [1N~Λ2]))), from right to
left, and define the basic tensor operators

= Σ <[/2]«2[lN"/"]^1l[/']^XC/']m'[l'"]mpll[/o]«o> (68)

where T^2

2l(h2,p2) is an irreducible unit tensor operator of the type defined by
Eq. (48). Also, [/2], [/'], and [/0] must be restricted to 2-columned representations
in order to have non-zero matrix elements between rc-particle states which belong
to SU(JV) representations of type [Γ]; that is

Γ f 1 _ Γ2λ2|N-/ι2+ P2-2X2~\ . Γ /"/-I _ Γ2x'^N-h2 + p2-h1-2x'-ι

Γ f "I _ Γ2χo^-h2 + p2~hl+pι -2^coΊ

with x' ^-X 25 ^o = x/ Using the techniques outlined above, the matrix elements
of such an operator can be expressed in terms of SU(7V) Racah coefficients and a
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single U(N) Wigner coefficient [which carries the dependence on the U(N)
subgroup labels]

x {[I"-*'] x (Γ"*'(λ2, p2))} [/']}^]| [I-'] m'

o] »ι0|[Γ] m> (- i)*M*i

(69)

; [1"'-*"]; C/2]) t/([l"'] [/2] [!"-"] D^"1]; [I""];
[i»-fc] [!«'] [i*2]; [l»'-*']; [0]) t/([Γ"] [!"-*>] [!""] [I"']; [1""-*']; [0])

.[/([!"'][/'][!"] [!"']; [I"-"'] ;C/0])

with ft" = n — p^ + h1 , w' = w" — p2 + /ι2 ? where the [/-coefficients can all be expressed
as simple functions of n, N, h, p, x by means of Eqs. (61) and (62). Operator averages
of the type (OjC^OίOjX can therefore be carried out, provided operator
products OtOj can be expanded in terms of appropriately coupled SU(JV) irreducible
tensor operators.
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