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Abstract. A basic tool in the derivation of multiparticle discontinuity formulae in S-matπx theory
is a "structure theorem" which proves analyticity properties for integrals of products of scattering
functions [1, 5, 7].

We present here some recent mathematical results and show how they provide directly a general
form of this theorem. This new proof, which removes an unnecessary technical assumption of the
previous ones, is a development of a method proposed by Pham [8].

I. Introduction

The basic quantities of interest in the relativistic quantum physics of systems
of massive particles with short-range interactions are the scattering functionals
SJJ between sets / and J of initial and final particles. From general quantum
principles, each Su, or its "connected part" Sc

u, is known [1, 2] to be a tempered
distribution, which is defined on the space of all real on-mass-shell initial and
final energy-momentum 4-vectors pk{p\ = p\0 — p\ = ml, (pk)0 > 0) and contains
an energy-momentum conservation ^-function:

iel jeJ

The distribution TIT is defined on the physical-region M13 of the process
/-* J (i.e. the set of all real 4-momenta pk satisfying the above mentioned mass-
shell constraints and the further condition Σpt = Σpj).

Decisive advances have been made at the end of the sixties in the general
derivation and understanding of the physical-region analytic structure of the
distributions Tu. On the one hand, a macroscopic causality property has been
stated and proved to be equivalent to some basic analytic properties of Tu [3, 4].
These properties ensure in particular that for each process /-• J, there is a unique
analytic function Fu (defined in a domain of the complexified mass-shell Mc

u) to
which TJJ is equal at all points which do not lie on + α-Landau surfaces of con-
nected graphs, and from which it is a "plus ιε" boundary value at almost all
+ α-Landau points.

On the other hand, a general form has been derived from unitarity for the
discontinuities of the scattering functions around the + α-Landau singularities
[5, 6]. The usefulness of this result in various contexts is described elsewhere
(see for instance [1,2] and the original references quoted therein). Its derivation
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makes use of various relations derived from unitarity among integrals (over
internal on mass shell 4-momenta) of products of scattering functions Sc

n or

(SίJΓ(=sc

J?).
The present paper is concerned with a basic preliminary result in this study,

which provides analyticity properties of these integrals, called "bubble diagram
functions", from the analyticity properties of the "bubbles" TIS or 7}} involved.
This type of result has first been proved in Ref. [1] (see also [5]) and is called
structure theorem. It has also been used more recently for the derivation of
generalized optical theorems [7]. The proof of [1] is obtained by considering
appropriate distortions of the integration domain into complex regions where
all functions F o r F " , associated with the scattering functions T or T~ involved,
are analytic. Complications arise because Γ(or T~) is not everywhere equal to,
or a boundary value of, F (or F~). The points where this is no longer true are:

i) Among those that lie in the intersection of several + α-Landau surfaces
with no common "parent". In the neighborhood of a point p = {pk} of this type,
T is in general a sum of appropriate boundary values of analytic functions.

ii) The points p = {pk} such that two initial, or two final, 4-momenta are
colinear. This set of points is called M§.

Although these points are exceptional, i.e. lie in lower-dimensional submani-
folds, they can indeed occur in the integration domains. A regularity property
is assumed at Points (ii) in [1, 7]. We shall not discuss it here. For Points (i) an
important technical assumption, called "patching property" was used in the
references quoted above. More recent mathematical results allow one to show
that this property can, as a matter of fact, be proved (see [4]). However, although
this fact has its own interest, our main purpose is not to study it in more detail,
but rather to present an alternative derivation, which uses general and simple
results on products and integrals of distributions, and directly provides a general
form of the structure theorem, from the very statement of the macrocausality
property. This method is a development of an idea presented in [8].

The basic mathematical tools [9-11] (whose usefulness goes beyond the
problem of the structure theorem in S-matrix theory) are described in Part I.
The notion of essential support of a distribution is presented in Subsection a),
at the end of which the "decomposition theorems" (which express a distribution
/ with given essential support, as a corresponding boundary value, or sum of
boundary values, of analytic functions) are recalled. We then present in Sub-
section b) two theorems on products and integrals of distributions. These theo-
rems were first proved in [10], in a very different mathematical framework. New,
simple and direct proofs which are well adapted to the physical context of Part II
are presented here in Subsection b), and with more details in [11].

For physical reasons presented in [2-4], macrocausality is in fact an expo-
nential fall-off property of transition amplitudes in appropriate situations, which
in view of the very definitions of Part la), is a condition on the essential support
of SCJJ (or TJJ). The methods and results of Part Ib) are then used in Part II to
obtain directly corresponding fall-off or essential support properties for the
"bubble diagram functions". This is the general form of the structure theorem
and the analyticity properties of these functions then follow (as those of the scat-
tering functions) from the decomposition theorems recalled in Part I a).
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II. Mathematical Results [9-11]

a) Essential Support of a Distribution

Let R"p) be the ^-dimensional real vector space of a variable p = (px... pn)
and let R"v) be its dual space (v = vί... vn).

The generalized Fourier transform at a point P of a distribution / (defined
in R"p)\ is defined on the n + 1 real dimensional space of the variables v and of
a supplementary real variable t by the formula:

S p - p ) 2 d p (2)
where

n n

v p= Σ f̂Pί a n d
 P 2 = Σ Pi2-

i = l i = l

We assume for simplicity that / has a compact support; F is therefore a well
defined function for all values of v and ί, whose value at ί = 0 is the usual Fourier
transform of/.

A direction v0 in R"v) is said to be outside the essential support SP(f) of f at P
if there exist an open cone V in R"v) (with apex at the origin) containing the
direction ΰ0, a polynomial SP and constants α > 0 , y0 > 0 such that:

-ay^ (3)

for all v in "V and all positive y less than yo(0 < γ < y0).
In other words, SP(f) is the set of directions in i -space along which the gener-

alized Fourier transform of / at P does not decrease exponentially in the sense
ofEq. (3).

Sp(f) is a closed subset of the unit sphere Sj^ 1 (with center at the origin) in
R"v) if each direction ΰ is represented by a point of this sphere.

The essential support S@(f) of / over a domain <2) of R"p) is the subset of
9 x S ^ 1 defined as \J (P9 SP(f)).

We shall denote by SP(f\ resp. SΘ(f\ the cone in Rn

{v) with apex at the origin
whose basis on Sj^ 1 is SP(f), resp. the union (J (P,SP(f)). For convenience,

PeS>

we shall also refer to SP(f), resp. S2{f\ as the essential support of/ at P, resp.
over 3).

Remark 1. SP(f) = SP(χf) whenever χ is a C00 function, locally analytic and
different from zero at P.

Remark 2. If ϋ0 is outside SP(f), there moreover always exist a neighborhood
Jί of P in K"p), together with an open cone V containing v0, a! > 0, y'Q > 0 and
^ ' such that the following bounds of Type (3) be satisfied uniformly for all Points
F in Jί.

υ\)e-«'^ (3')

in the region v e i^', 0 < γ < y'o.
As a consequence, S@(f) is a c/osed subset of 3 x S^j1.
Remark 3. Being given any closed set Σ of SJ^1 whose intersection with SP(f)

is empty, there always exists a neighborhood Jί of P (in jR"p)) such that the gener-
alized Fourier transform Fχ of χf at P satisfies bounds of the Form (3) for all
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v in Σ, with & replaced by a rapid decrease factor whenever χ has its support in
Jf. Namely, there exist i^, α > 0, y0 > 0 and CN < oo for all positive integers N
such that:

\Fχ(υ,y\v\;P)<--ττ^e-«^ (4)

for all υ'm'V and 0 ̂  y < y0.

Distributions Defined on Manifolds

Consider now a distribution / defined on a real analytic manifold M. Being
given a Point P of ./#, one may consider a system of real analytic local coordinates
of .M at P, and define SP(f) as above in this system. [One may for instance con-
sider C00 functions χ, locally analytic and different from zero at P, with a suffi-
ciently small support with respect to the coordinate system considered; SP{χf)
is independent of χ in view of Remark 1, and defines SP(/).]

It is then possible to show that SP(f) is a well defined subset of directions
of the cotangent vector space 7p* M at P to ./#, independent of the local coordinate
system.

The essential support S2(f) of/ over a domain 2) of /# is as above defined
as [j (P, SP(f)) and is now a well defined closed subset of the sphere cotangent

bundle (J (P, S£ /#) (where Sf /M is the unit sphere in TP*/#).

We shall only consider in Part II submanifolds M of R"p) of dimension n — l,
defined by a set of / equations Lj(p) = 0 (/ = 1,..., /), where each L7 is a real analytic
function of p. t

We below denote by b{.M) the product ]~J δ(Lj(p)\ which is a well defined
J = I

distribution on #" p ). Being given a distribution / defined on M, the product
/ x δ(./M) is also clearly a well defined distribution on R"p).

Let N(P) be the /-dimensional real subspace of R"v) conormal at P to .M
ι

I \
i.e. JV(P) is the set of vectors of the form £ λj VLj(P)\.

\ J = I /

The cotangent vector space TP* ./M at P to /# can be identified with the quotient
subspace R"v)/N(P), and the following result holds:

Lemma 1. i) SP{δ{./M)) is the set N(P).
ii) SP(f x £>(/#)) is invariant by addition of vectors in N(P).

iii) SP(f) = SP(fxδ(*))/N(P).

Decomposition Theorems

We recall the following results.

Lemma 2. / is analytic at P if and only if SP(f) is empty (i.e. the generalized
Fourier transform of f decreases exponentially in all directions in the sense of (3)).

It is well known that the local analyticity of / at P cannot be expressed in
terms of an exponential decrease of the usual Fourier transform. Lemma 2 tells
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us that it can be characterized in terms of the above exponential decrease of the
generalized Fourier transform.

We next state:

Theorem 1 (decomposition theorem at P). The following properties of a
distribution f defined on Rn

{p) are equivalent:
i) Sp(f) is contained in a (finite) union of closed convex salient cones C}

(with apex at the origin).
ii) Being given any family {C'j} of (closed convex salient) cones C'j with apex

at the origin, such that for each j , C'j contains Cj in its interior1, there always exist
a (real) neighborhood Jί of P and distributions fj, each of which is the boundary
value in Jί of an analytic function Fj from the directions q = Imp of the open dual
cone Γ'j of C'j, such that:

f=Σfj ™ ^
j

This theorem also holds for distributions / defined on a real analytic manifold
.M\ Fj is then an analytic function defined in a (non specified) domain of the
complexified manifold J4C, and Property ii) still makes sense for instance in any
local coordinate system.

The following theorems, which generalize Theorem 1 when P varies in a
domain 2 of Rn

ip), or of M, are also proved:

Theorem 2. The two following properties are equivalent:
i) Sg(f) is contained in a closed subset Σ= (J (P,ΣP) of T*Q), whose each

fiber ΣP is a closed convex salient cone.
ii) / is, in 29 the boundary value of a unique analytic function F at each Point

P of 2, this boundary value is obtained from the directions of the open dual cone
ΣP of ΣP

2.

Theorem 3. Let S@(f) be contained in a (finite) union of closed subsets Σj of
T* 2 such that, for each j , the fibers (Σ'j)P of Σj be as above closed convex salient
cones for all values of P in 2.

Then there exist distributions fj, such that S@ (fj) is contained in Σj for each
j,andf= Σf inΘ.

j

According to Theorem 2, each fj is the corresponding boundary value of
an analytic function Fj.

b) Products and Integrals of Distributions

In this subsection we only consider, for simplicity, distributions / defined
on R"p). (This is sufficient for the needs of Part II.)

1 Cj denotes the basis of Ci on S"^1.
2 When 3} is a domain of R"p), this means that for any given (closed convex salient) ΣP whose

basis on S"^ 1 contains the basis of ΣP in its interior, there always exists a neighborhood Jί of P such
that / is, in Jί, the boundary value of F from the directions q = Imp of the open dual cone Σ'P of Σ'P.

In the case of a manifold M, this also makes sense, for instance in any local coordinate system
at P.
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Products of Distributions

Theorem 4. A sufficient condition for the product of two distributions / 1 ? f2 to
be well defined over a domain 3 is:

wherever vι and v2 are non zero vectors belonging respectively to SP(f1) and SP(f2),
where P is any common point in 3.

SP(fιf2) is then contained in the set SP(/1) + SP(f2) of vectors of the form
υx + υ2 with υί in SP(f1) and v2 in SP(f2)

3.

Proof. We below define fγ x f2 in the neighborhood of any given Point P
in 3. To that purpose, we consider closed cones Σ{

P

] and ΣP

2) with apex at the
origin in R"v), whose bases on the unit sphere contain respectively SP(/i) and
SP(f2) in their interiors, and such that v1 + v2 is still non zero wherever vλ and v2

are non zero vectors in these sets.
We then consider C00 functions χ1? χ2 locally analytic and different from

zero at P, and with a (sufficiently small) support around P chosen such that the
Bounds (4) be satisfied outside Σ^ and ΣP

2) respectively, by the generalized
Fourier transforms F^\] and F{2

2

] at P of χx f1 and χ2f2.
The product χx fγ x χ2 f2 is defined in a standard way as the inverse Fourier

transform of:
S(Xifi)(v')x(x2f2){v-v')dv' (5)

where χt fi is the Fourier transform

In fact, in view of the rapid decrease of χ^TΓ a n d Z2/2 outside Σψ and ΣP

2)

respectively [Bounds (4) at γ = 0], and of their slow increase elsewhere (tempered
distributions), this integral is convergent for all values of v, and defines a slowly
increasing function, whose Fourier transform is therefore a well defined distri-
bution.

By using the bounds (4) for F^ and F™ respectively, it is then not difficult
to show that the generalized Fourier transform F12 at P of the product χγ fγ x χ2 f2

does satisfy analogous bounds in all directions v which do not belong to the
set ΣP

1] -h ΣP

2). Write for instance Fί2 in the form

F12(υ, t) = Sdv' i£> (v\ (1 - η) t) F™(υ - v', ηt), (6)

where 0 < ^ < 1. The result is ensured, as easily seen, by the fact that the inter-
section of the cone Σ(

P\ and of the cone v — ΣP

2) (with apex at v), is empty, and that
their distance is propertional to \υ\.

The announced property of SP(fίf2) follows from the fact that χ1 and χ2

can be chosen with arbitrarily small supports. One checks that the definition

°f/i fi = ~^-^ 2-^- " a t P" does not depend on the choice oϊχl9χ2.)

vγ and v2 are allowed to be zero in this last statement.
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Remark. An alternative proof of Theorem 4 can be obtained by making use
of the decomposition Theorem 1 of Subsection a), together with the natural
definition of the product of two distributions which are boundary values of
analytic functions from common directions. The definition of fλ x f2 obtained by
that procedure also coincides with that given above.

For details, see [11].
The following corollary readily follows from Theorem 4:

Theorem 41. A sufficient condition for the product of r distributions / l 5 . . . , / ίo
be well defined over a domain @) is:

ί = l

wherever
(i) each υt lies in SP(fy, i = i . . . r , P e S , and

(ii) at least one vt is different from zero.

Sp(fix '" x fr) & t n e n contained in the set SP(fί)+ ••• +SP(fr) of vectors
of the form ]Γ vt with vt in SP(fi) (i= 1,..., r)4.

Integrals of Distributions

Let p = (Pi... pn) and p' = (p[... p'n) be two sets of independent variables
whose dual variables will be denoted by v = v1... vn and v' = v[... v'n>.

We consider a distribution / defined on Rn

{p)xR^ whose support with
respect to the variables p' is contained in a compact set K of R"pΊ when p lies
in some neighborhood Jί of a Point P.

Let g be the distribution on R"p) which is well defined (in Jί) as the integral
of/over Λ&,,:

= lf(P,p')dp'. (7)

The following result holds:

Theorem 5. // a direction (v0,0) is outside SPtP>{f) for all Points P in K, then
v0 is outside SP(g).

Proof. In view of Remark 1 of Subsection a), it is clearly sufficient to prove
the theorem for distributions / whose support is contained in Jf x K (if not,
replace/by χf with a suitable χ). We assume below that this condition is satisfied.
Let F(v, ι/, ί; P, P) be the generalized Fourier transform of/ at P? P:

F{v,v\t;P,Ef) = Sf{p,p')e-ipv-ip'v'-t{p-p)2-tip'-p')2 dpdp'. (8)

From the assumption of the theorem ((vo,0)φSPtP>(f)) and Remark 2 of
Subsection a), it is easily seen that there exist a neighboring cone f^ of ΰ0, a
polynomial &, α > 0, y0 > 0 such that the following bounds hold uniformly with
respect to P in any given compact set 5 (when vei^, and 0 ^ y < y0):

\F(υ, 0, y \v\ P, P)\ < 0>(\v\) e'**™ . (9)
4 Vι is allowed to be zero in this last statement.
5 To see this, consider an appropriate finite covering of this set, in each part of which bounds

of this form hold [see (3')] (The essential support of/at P, F is empty if F φ K [see for instance Eq. (10)].)
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For later purposes, we also note the following bounds, which are derived
(in the region t > 0) from the fact that / has its support in K:

\F(v, 0, ί; P, P') | < Q(\v\91) e-
t{d{P'>K))2, (10)

where d(P, K) is the distance of P to K and Q is a polynomial which depends
on the order of/.

The generalized Fourier transform of g at P can be written (in the region
t > 0) in the form: ^ ,. p ) = Jg{p) e-ipυ-t{p-w dp

where L = Ue P'2 dP']'1. [This is seen by using the Expression (8) of F in the
right-hand side of (11): one may interchange the order of integration and first
integrate over P, since / has a compact support with respect to the variables
p, p' and e~tip'~p')2 is a function of the Schwarz space ®.]

To derive bounds of the Form (3) on G when v e i^, 0 < γ < y0), it is then suf-
ficient to divide the integration domain in the right-hand side of (11), i.e. P'-space,
into two parts:

i) the set Kx of Points P whose distance to K is at most |/α and
ii) its complement. The Bounds (9) and (10) then readily provide the needed

bounds for the first and second contributions respectively. (Note that Kx is a
compact set and that t < yΌ\v\.)

Remark. An alternative proof using the decomposition Theorem 3 of Sub-
section a) is also presented in [11].

III. Macrocausality and the Structure Theorem

Macrocausality [2—4] is an appropriate mathematical expression of a certain
classical limit, in terms of particles, of quantum theory; namely of the principle
that any energy-momentum transfer over large distances which cannot be at-
tributed to (stable) physical particles according to classical ideas, gives effects
that are damped exponentially with distance. (Shortrange of the interactions.)

Let us fix some notations.
The space R^ of Part I is here the space R*N of all initial and final 4-momenta

pk (N is the total number of initial and final particles). Its dual space is physically
the space of the variables u = {uk} where each uk is a space-time displacement of
particle k. It is convenient to define now the scalar product u p through the

f o r m u l a : « P = - Σ f t " i + ΣPJ*J> (1 2)
where 3

 ieI j e J

Pk'Uk = {pk)0 («fc)o - Σ (Pfc)v (Wfc)v (Pk = (Pfc)l , iPk)l, (Pkh)
v = l

The submanifold .Ml3 oϊRfp*j is defined (see the Introduction) by the conditions

pi = ml, (pk)0 > 0 and Σ Pi = Σ Pp a n c ^ t n e s P a c e N(P) of vectors u = {uk} conormal
iel jeJ

at a Point P = {Pk} to .Ml3 is the set of vectors of the form uk = λkPk + a, where
λk is an arbitrary real scalar and a is independent of k.

A classical trajectory in space-time, which is the line parallel to pk and passing
through uk, is associated with each given set (pk9 uk).
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A connected classical multiple scattering Diagram 3) in space-time is a con-
nected net in space-time with external and internal oriented lines. Each external
line k arrives at, or is issued from one vertex. Each internal line / is issued from one
vertex and ends at another vertex. There are at least two incoming and two
outgoing (external or internal) lines at each vertex. Finally, each line possesses a
4-momenta pk, resp. p{ and the following properties are satisfied:

i) mass-shell constraints:

Pl=m2k, (Pk)o > 0

pf = mf , (p,)0 > 0 ,

where mk, mι belong to a (finite) set of physical (strictly positive) masses.
ii) Energy-momentum conservation at each vertex (the sum of the incoming

4-momenta at any given vertex equals that of the outgoing 4-momenta at this
vertex).

iii) Propagation law: each line is parallel to its 4-momentum (with a positive
sign). In particular, if we denote by \υ^in and (υj)f the space-time vertices from
which Line / is issued, resp. to which it ends, there must exist α, ̂  0 such that:

For later purposes, we note that (13) clearly implies the loop equations:

for each closed loop z of Q) where z(l) = 0 if z does not contain Line /, z(ϊ) = + 1,
resp. — 1 if it contains it with the correct, resp. opposite orientation.

Being given a set of initial and final trajectories (pk, uk), u = {uk} is said to be
causal at p = {pk} (in a connected way) if it is possible to construct at least one
3) whose external incoming and outgoing lines "match" the given initial and final
trajectories (for details, see [2, 3]).

One checks easily that the set of causal u at a given Point p is invariant under
dilation by λ > 0 (λu is causal if u is), and under addition of vectors in N(p). We
shall denote by ^(p) the cone (with apex at the origin) of causal u at p, and by
C(p) the quotient subspace <^(p)/N(p).

Macrocausality. For physical reasons explained in [2, 3], macrocausality can
be stated (if p does not belong to Mo

 6) in the form:
"The essential support of Tu at a Point p of Ml3 is contained in C(p)."
Alternatively (see Lemma 1 in Part I), the essential support of Tu x δ(.Jfu)

at p is (contained in) #(p).
For simplicity, it will also be convenient later to consider Sc

u as defined on
the space of all initial and final 3-momenta pk. Then, macrocausality can also
be stated in the form:

"The essential support of Sc

u at p is (contained in) the set of u = {uk} for which
(K> Mo = 0)} is causal at pΓ

Finally, it is not difficult to check that the essential support of Tu = Tf} is
opposite to that of Tu itself [and similarly for (SJj)"].

6 We recall that ./#0 is the set of Points p = pk such that two initial or two final, 4-momenta are
colinear.



48 D. Iagolnitzer

Analytic Properties of Tu

For the convenience of the reader, we briefly recall the following facts (for
details see [2, 3]).

A Point p = {pk} is said to belong to the Landau surface L(G\ resp. to its
+ α-landau part L+(G\ of a connected graph G of the process / - > J 7 , if it is
possible to find at least one set of internal 4-momenta p{ and of real scalars oth

resp. of positive och one of which at least is non zero, such that the above Conditions
i), ii) of a diagram Sf be satisfied, together with the loop Eq. (14). (Each external
line has the corresponding 4-momentum pk)

It is clear that C(p) is empty (apart from the origin) if p is not a + α-Landau
point of a surface L + (G). There is in general one causal direction in C(p) if p
lies on one + α-Landau surface. This direction is replaced by those of a convex
salient cone at the points which lie on several + α-landau surfaces L+{G'\
L+(G"\ ... with a common "parent" (i.e. G', G",... are various contractions of
a common graph G). Finally, if p lies in the intersection of several + α-landau
surfaces with no common parent, C(p) is the union of the cones associated with
each parent.

The + α-landau surfaces are at most of Codimension 1 in Ml3 (and are not
dense in Ml3). Lemma 1 and Theorems 1 and 2 of Part I therefore provide the
analytic properties of TIS announced in the introduction, and Theorem 3 provides
the "patching property".

Bubble Diagram Functions

We consider a (topological) connected graph with external and internal
oriented lines; I, J, will here denote the sets of incoming, resp. outgoing external
lines. Each line is again associated with a physical particle.

A "bubble diagram" B is obtained by associating a bubble + or — with each
vertex. Each + bubble, resp. — bubble, is the functional Sc

IbJb, resp. (Sc

IbJb)~ of the
process whose initial and final particles Ib, Jb are the incoming and outgoing lines
at the vertex considered.

The "bubble diagram function" G^j associated with B is then the distribution
(when it is well defined: see below) obtained by integrating the product of all
4- and — bubbles, over all internal on-mass-shell 4-momenta. What is meant
here will become clear on the following example.

Example. Consider the bubble diagram:

whose external lines are numbered from 1 to 8 and internal lines from 9 to 11.
7 G has, as above, external and internal oriented lines, the external ones being associated with

the initial and final Particles / and J. But all mention of space-time is now removed.



S-Matrix Theory 49

It defines the bubble diagram function:

l> Vl\ P9? P l θ ) X ^3,10-^8,11 (P35 PlO? Pβ? Pll) ,.-,

) " ( )

If Gβ and all 5C or (Scy involved are expressed in terms of the 3-momenta
variables pk, ph(ί5) can also be written in the form:

GB(Pu « J Pβ) = ί^l,2-^9,10 (P l»P2 5 />9> P l θ ) X ^ 3 , l O - > 8 , l l ( P 3 ? ~ > Pll)

•(^4,9,11-5,6,7)"(P4> »P7) Π o / \ >

ί = 9, io,n 2ω(p,)

where ω^) - (pf + mf )1/2.
Since each Sc or (5C)~ contains an energy-momentum conservation (5-func-

tion, it is clear that a global <S-function can be factored out from the integral,
namely:

G?j = F?jxδ*(Σpt-ΣPj)> ( 1 7 )
Kiel jeJ J

where Ffj is defined on .Ml3.
A connected multiple scattering diagram associated with B is a connected

Diagram ^ β in space-time which includes external and internal lines associated
with the external and internal lines of B and may also include supplementary
internal lines arising from the replacement of each bubble b by a Subdiagram
Q)hτ whose external lines match the incoming and outgoing lines of b: see example
below. The Diagram Q)B must satisfy Properties i) and ii) of a Diagram Q) stated
above, but Property iii) is replaced by:

iii)' "The coefficients 0̂  in (13) associated with the original internal lines of B
may have arbitrary positive or negative values.

The coefficients αz associated with the internal lines of a Subdiagram S)h

must be positive, resp. negative, if b is a + , resp. —, bubble."
Example. An example of a @B associated with the bubble Diagram B quoted

above is:

Here the Subdiagrams Θb are shown inside circles. The 4-momenta of all
lines and the space-time positions of the vertices have to be specified and the
Conditions i) —iii)' must be satisfied. The + or — signs above a line mean that
the corresponding α, is to be positive or negative.
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Being given a set p = {pk} of external (initial and final) 4-momenta, we denote
by ^B{p) the cone of vectors u = {uk} which ensure the existence of at least one
connected multiple scattering diagram associated with B, and by CB(p) the quo-
tient subspace ^B(p)/N(p).

The structure theorem will be proved below under the following constraints:
we shall not treat the points of the set Jί0 (which may occur in the integration

domain for some of the bubbles) and the situations (referred to, below, as "u = 0
points") for which a non trivial Q)B exists when u= {uk} = 0 (i.e. when the dis-
placements uk of all external particles are fixed at zero). We shall assume that they
do not modify the results (we do not know so far how to remove this technical
assumption in general).

We then show below how Theorems 3 and 4 of Part I directly provide the
following general form of the structure theorem from the very statement of
macrocausality given above:

Structure Theorem

"F/j is a well defined distribution whose essential support at a Point p of .Mu

is contained in the set CB{p)"
Before giving the proof, we first outline the main analyticity properties of

Ffj associated with this general form of the structure theorem. (The structure
theorem was first proved in the form of these properties in [1, 5, 7].)

Analytic Properties of Bubble Diagram Functions

Property ί.
"FBj is analytic at all points which lie on no Landau surface Lσ(GB)." Here

GB is any topological graph associated with a Diagram S)B as before, and Lσ(GB)
is the part of the Landau surface L(GB) subject to the constraint that each line
I of GB that is an internal line of some subgraph Gb has a coefficient α, which is
positive, resp. negative, if b a + , resp. —, bubble.

Property 1) directly follows from Lemma 2 of Part I and from the fact that
CB(p) is clearly empty (apart from the origin) if p lies on no Lσ(GB).

Theorem 1 of Part I also provides the following property:
Property 2.
"If p lies on one surface Lσ(GB), and if there is only one direction in CB(p\

or several directions all contained in a unique closed convex salient cone, then
Ffj is at p the boundary value of an analytic function from the directions of the
dual cone."

More general properties, which we shall not state here in detail, are also derived
from Theorems 2 and 3 of Part I. For a detailed study of the Landau surfaces
and of the sets CB(p) at Landau points, see [1, 5, 7].

Proof of the Structure Theorem

For simplicity, we consider all distributions Sc

IbJb [or (Sc

IbJb)~^ involved in
the integrand, as well as GBj, as defined on the space of the 3-momentum variables.
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The integral over the internal momenta is therefore an integral with respect to

the measure f|——-Λ- where ω(pι) = (pf + mf)1/2 [see the example of Eq. (16)].
2ω(P)

We shall show that the essential support of GBj at p is contained in the set of
directions u = {uk} for which u = {uk, (uk)0 = 0} is in ^B{p). The announced result
on Ffj then follows from Lemma 1 of Part I.

The dual variables of the variables pk, pt where fc labels as before the external
lines of B and I its internal lines, will be denoted uk, ut and it is here convenient
to define the scalar product through the formula:

<{«*}>{«/};{pk}>{pι}>= ΣuiPi~ Σ u j P j - Σ u ι P ι ( 1 8 )
ίe/ jeJ

Consider one of the scattering functions Sc

JbJb involved in the integrand of
a bubble diagram function. It defines a corresponding distribution in the space
of all external and internal 3-momenta pk, pt whose essential support at a Point
P= {Pk}, {Pt} is known, from macrocausality, to be contained in the set of vectors
{uk}, {iij} of the form:

ur = 0 if r is not involved in b,

us = εs vs if s is involved in b ,

where {(vs,0)}seIb>Jb is in %({Pk}, {PJ, k, lelb9 Jb) and εs= + 1 , resp. ε s = - 1 , if
s is an external line of B, or an outgoing internal line of B, resp. if s is an incoming
internal line of B. [This sign arises because of the definition (18) of the scalar
product which introduces a-sign for the incoming internal lines of B.~\

The essential support of a term (Sc

IbJb)~ is contained in the set of vectors
of the form ur = 0, us = — εs vs.

Let Sf(P) denote the set of vectors {uk}, {iij obtained by summation of one
vector of this type for each bubble b involved in the integrand, one of them at
least being non zero.

If a vector in Sf(P) is zero, then necessarily vk = 0 for all external Lines k of
B (since each external line appears in one bubble at most) and:

vlM-vltf = 0 (19)

for each internal Line I of B, where vlJn and vltf denote the displacements of
particle / associated with the respective bubbles for which / is an incoming, resp.
outgoing particle.

This last condition ensures that the various causal (or anticausal) space-time
diagrams @b associated with the sets {vs} (or — {vs}) for each bubble fc, fit together
to form a non trivial S)B.

If, as mentioned above the statement of the structure theorem, we exclude
here "w = 0 points", there is no zero vector in £P(P\ According to Theorem 4',
the product of the Sc

IbJb [and (Sc

IbJb)"] in the integrand is then a well defined
distribution, whose essential support8 at P is contained in ^(P). [The presence
of the factors ω(p^'1 does not alter this result since these factors are analytic
for all real values.]
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Finally, consider a given Point {Pk}. If a vector {uk}, {ut = 0} is in £f({Pk}, {PJ)
for some value of {PJ, then the conditions ut = 0 ensure, for the same reasons
as above, the existence of a non trivial $)B. According to Theorem 59 , {uk} is
outside S{{Pk))(G$j) if {uk}9 {ut = 0} is outside &{{Pk}, {P,}) for all values of {PJ,
and the theorem is therefore proved.
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Note Added in Proof. After receiving our present work, Professors T. Kawaϊ and H. P. Stapp have
also carried out some further work on the structure theorem. Although it is presented in a very different
mathematical language, their proof for "w Φ 0 points" does not really differ from ours. On the other
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