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Abstract. We consider the infinite volume Dirichlet (or half-Dirichlet) P(φ)2 quantum field theory
with P{X) = aX4 + bX4 + bX2 - μX(a > 0). If μ Φ 0 there is a positive mass gap in the energy spectrum.
If the gap vanishes as μ -> 0, it goes to zero no faster than linearly yielding a bound on a critical exponent.

§ 1. Introduction

In this paper, we discuss various aspects of the P(φ)2 Euclidean field theory
[28, 23]. In the statistical mechanical approach to these theories which we have
advocated elsewhere [10] (see also our contributions to [28]), one of the sub-
programs concerns the use of Ising model techniques. These techniques are
especially useful in the study of the laφ4'-hbφ2 -μφ:2 theory where both the
lattice approximation [10] and classical Ising approximation [24] are available.
In fact, in II of this series [21], we used these techniques to complete the proof of
the Wightman axioms for these theories when μ Φ 0. In essence, the result of that
note was that 0 was a simple eigenvalue of the Hamiltonian in the infinite volume
Dirichlet theory. Using very different techniques, based in part on the cluster
expansion of [7, 8], Spencer [25] proved that the theories with |μ| large (and
periodic B.C.) have a mass gap, i.e. that 0 is a simple, isolated, eigenvalue of the
Hamiltonian. Our goal in this note is to extend this result to any μ φ 0.

As before, our proof is modelled on a result in the theory of Ising models,
namely the recent work of Lebowitz and Penrose [14,15] on clustering. They,
in turn, rely on subharmonicity ideas first introduced by Penrose and Elvey [16].
In the present context, this basic idea of "superharmonic continuation" is very
simple and beautiful: Let m,(μ) be the mass gap for the (periodic) Hamiltonian on
1-1/2,1/2] with interaction polynomial P(X) = aX4 = bX2 - μX. We show that
m,(μ) has a continuation to a nonnegative superharmonίc function Mt(μ) in the
region Reμ > 0 where the Lee-Yang theorem of the classical Ising approximation
applies [24]. Now for large real μ, Spencer [25] assures us that Mt(μ) is bounded
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away from zero independently of /. It follows from the theory of superharmonic
functions that Mt(μ) is strictly positive for all R e μ > 0 (independently of I). (For
the reader's convenience, we summarize the facts about superharmonic functions
that we shall use in an appendix.)

Were it not for the technicalities of boundary conditions, our proof would be
quite brief; for, as we shall see, with the proper incantations about compact
operators, the Lebowitz-Penrose argument easily extends from the Ising case
where the cutoff transfer matrix is a discrete semigroup of finite matrices to the
field theory case where the cutoff (periodic) transfer matrix is a continuous semi-
group of compact operators (see § 2). The difficulty with boundary conditions is
the following: Spencer's results are proven with periodic B.C. while it is only for
Dirichlet and Half-Dirichlet B.C., that we know the Schwinger functions are
convergent for all μ. By a somewhat elaborate sequence of arguments (§ 4), we
are able to circumvent this difficulty with a minimum of new proofs but only by
appealing to our theorem [11] on the independence of pressure on B.C. and by
using φ-bounds [5] and Frohlich bounds [3] for periodic states (§ 3).

While we succeed in proving the existence of a mass gap without too many
technical estimates, it is at a high cost since we leave open two questions which
we expect could be settled if we systematically extended the cluster expansion of
Glimm-Jaffe-Spencer [8]. First, we do not establish the infinite volume con-
vergence of the periodic states if μ φ 0, even though in principle this should be a
consequence of the uniform mass gap (see [8]). Secondly, while we prove the
existence of a mass gap in the infinite volume Dirichlet theories, we do not prove
that an ί-independent mass gap exists in the finite I theories. In applications, this
would be a considerable technical advantage. While Spencer's proof is much
simplified by using B.C. invariant under translation of the fields it might be possible
to carry it through with Dirichlet B.C. in which case our methods in § 2 would
give the result of an /-independent gap. We remark that by an argument in [11],
if one solves both of the above questions affirmatively, then the Dirichlet and
periodic states agree.

§ 2. Superharmonicity of the Mass Gap

We first note the following theorem generalizing a result of Lebowitz-Penrose
in the finite matrix case:

Theorem 2.11. Let Xbe a Banach space and let Λ(μ)be an operator-valued analytic
function on Ω C C. Let spr(v4(μ)) denote the spectral radius of A(μ). Then lnspr(/L(μ))
is subharmonic on Ω.

Proof. Consider first the function N(μ) = \n ||,4(μ)||. As a function with values
in lRu{— oo}, N is clearly continuous and so upper semicontinuous. For each
χe X, leX* let Nχ j(μ) = \n\l(A(μ)χ)\. Then NχJ is subharmonic by Theorem A.3.
Since N(μ) = sup{Nχj(μ)\\\χ\\ = \\l\\ = ί}, N is subharmonic by Theorem A.4.

Similarly Nn(μ)=ί/2n\n\\A(μ)2n\\ is subharmonic. Clearly Nn(μ) is monotone
non-increasing so lim Nπ(μ) = ln spr(A(μ)) is subharmonic by Theorem A.5. •

Now we want to discuss spatially cutoff (φ4r)2 Hamiltonians with periodic
B.C. We use freely results from [11].

1 Added in proof: A similar result appear in [30].
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Lemma 2.2. Let P(X) = aX4 + bX2;a>0. Fix J>0. Let H(0) denote the
periodic Hamiltonian (transfer matrix) in interval (—1/2,1/2) with interaction P
and let

H(μ) = H(0)-μ f φ(x)dx.

Then:
(a) H(μ) is an entire analytic family of generators of holomorphic semigroups

and in particular B(μ) = e~H{μ) is a bounded operator-valued analytic function.
(b) B(μ) is compact for all μ e C .
(c) For all μ with Reμ > 0, all n and all positive test functions f,g on( —1/2,1/2)

Z(μ) = (e*™ Ωo, B(μ)n eφ^ Ωo) * 0 .

Proof, (a) and (b) follow easily from the facts that H(0) is bounded below with
1/2

compact resolvent [11] and that j φ(x) dx is an //(O)-form bounded perturba-
-1/2

tion with relative bound 0 (see e.g. [13; p. 498] or [18; II; § X.2]).
In terms of Euclidean fields φE,

Z(μ) = J exp
n/2 1/2

- J at J dx(:P(φE(x,ή):
-n/2 -1/2

- (μ+f(x) δ(t + ̂ ) + g(x) δ(t - \ή)) φE(x, t) dμf

where dμf is the Gaussian measure with covariance ( — A 4-m2)"1 with periodic
B.C. on the sides of the strip [ —1/2, //2] x JR. By passing to the lattice approxima-
tion [10] and then further to the classical Ising approximation [24] we can
approximate Z(μ) by (analytic) functions Zj(μ) to which the Lee-Yang Theorem
applies, i.e. Zj(μ) =f= 0 provided Reμ Φ 0. It is easy to check that this approximation
is uniform for μ in compact subsets of C It follows from Hurwitz' Theorem that
Z(μ) is identically zero or nowhere zero in Reμ > 0. But for real μ, B(μ) is positivity
improving so that the inner product is positive [22]. •

Now, for any / , ^ 0 o n (-1/2,1/2), let

Fn(μ;f, g) = n-" l n ( ^ Ωo, B(μ)" e+™ Ωo)

where we use (c) above to define a continuous logarithm in Reμ > 0 choosing the
unique value of the logarithm which assures us that Fn is real if μ > 0.

Lemma 2.3. (a) For all μwiί/zReμ>0, lim Fn(μ;f,g) exists, is analytic in μ
n—• o o

and independent off and g. Let a(μ) denote the limit.

(c) e(μ) = ea(μ) is the unique eigenvalue of B(μ) whose magnitude is spr(£(μ))
and it is a simple isolated eigenvalue of B(μ).

(d) The spectral projection P(μ) corresponding to e(μ) is analytic in Reμ > 0.

Proof, (a) Let Σ(μ) = sprJ5(μ), ψ(f) = eφ(f)Ω0 and Ωμ the (unique positive)
vacuum vector for H(μ). For any f,g^O, the standard Lee-Yang argument
([19]; see also [24]) together with the convergence of Fn(μ;f,g) when μ is real
implies that Fn(μ;f,g)-^F(μ;f,g) as π->oo and that the limit is analytic (see
[24, Theorem 10]). But for μ real, F(μ;f,g)= -miσ(H(μ)) since <</>(/), Ωμ> > 0
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(both are strictly positive vectors). Since F(μ;f, g) is independent of/, g for μ real,
it is independent of/, g for all μ with Reμ > 0 by analytic continuation,

(b) Clearly

\e^\S\\ψ(f)\\ί/n\\ψ(g)\\1/n\\B(μT\\1/n

so that, by the spectral radius formula

= \im\\B(μ)n\\1/\
n

we have |eα ( μ ) | ^ Σ(μ) (so that, in particular Σ(μ) > 0).
We now prove the reverse inequality. Fix ε > 0. Then for n sufficiently large

(in a way that may depend on / and g)

| < ψ ( Λ Bnψ(g)}\ = enReF" ^ en ( R e α + ε )

so that

Since the {ψ(f)} are total, there is a dense set of vectors ηt with

Km, Bnηj}\ ^ Cu exp(rc(Reα + ε)). (1)

Now since B(μ) is compact there are finitely many eigenvalues λ1,..., λk with
\λt\ = Σ(μ) (see e.g. [18, I, § VI.5]), associated finite dimensional eigenprojections
Pt and eigenilpotents Nt with (see e.g. [13]) PiPj = 0 if i + ; and NiPi = PiNi = Ni

such that fc

= B(μ)- Σ (λiPi + Ki)

satisfies sprC(μ)<Σ(μ). Define mt by iV^ΦO, ^ m ί + 1 = 0 and by renumbering, if
necessary, suppose mί^m2^'- ^mk. Since the rfs are dense, we can choose
ηl9η2 with

< W >

η l r η
Then:

<ηl9B(μTη2>= Σ ί l V W
j = 0 \J

Since sprC(/i)<Σ(μ) = |A1|, the dominant term in this sum is /I 1 "~ m i

\m1j
x<*1uN?iη2y so that lim Kη1,B{μ)nη2y\1ln = \λx\. Thus, by (1), Σ(μ) = \λx\

n -»oo

^̂ (Reα-t-ε) s j n c e fi j s arbitrary, we have completed the proof that Σ(μ) = \ea(μ)\.
(c) Our proof will use the fact that since \e(μ)\ = sprB(μ) by part (b), \λ(μ)/e(μ)\ ^ 1

if λ(μ) is any eigenvalue of B(μ). Let W = {μ|e(μ) obeys part (c)}. Since (0, oo) C W,
W is clearly non-empty. Next suppose μ0 e VF. By standard eigenvalue perturbation
theory [2,13,18], there is a neighborhood Λf of μ0 so that for μ e iV, there is a
unique eigenvalue f(μ) with |/(μ)| = spr rad^(μ) and it is simple. By (b),
|/(μ)/e(μ)| ^ 1 so since f(μ)/e(μ) is analytic near μ0 and equal to 1 at μ0, /(μ) = β(μ)
near μ0 by the maximum modulus principle. W is open. Next let μneW and
suppose μ^-^μ^. Since B(μn)-^B(μO0), the permanency of spectrum implies that
^(μoo)espec(5(μoo)) and so is an eigenvalue. Let oc1=e(μ00\ ...,am be all the
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eigenvalues of £ ( / O with |α£| = Σ(μao) counting multiplicity. Then for μ near μ^,
there are n ̂  m functions, fb analytic near μ^ with at worst algebraic singularities
at μ^ so that all the branches of/f are eigenvalues of B(μ) and these eigenvalues
coalesce to α l 5 . . . , α m . As above, l / ^ μ V φ ^ l near μ^ and \fί(μo0)/e(μQ0)\ = ί
so that fi(μ)/e(μ) = const, by the maximum modulus principle on the Reimann
surface for (μ —μ^) 1 ^. Thus ocie(μn)/oc1 is an eigenvalue of B(μn) for n large. Since
μneW,m=\ so that μ^ e W. Thus W is closed and so W is the whole right half
plane.

(d) follows easily from the standard formula

P{μ) = (-2πιT1 j {B{μ)-λγ1dλ
\λ-e(μ)\=ε

where ε > 0 is sufficiently small that no other points of spec (B(μ)) lie in or on the
circle. •

Theorem 2.4. Fix I. For μ real, let mt(μ) denote the mass gap for the Hamίltonian
H(μ) of Lemma 2.2. Then there exists a function Mt(μ) in {μ|Reμ>0} so that:

(1) Mj(μ) is superharmonic,
(2) M,(μ)^0,
(3) Mj(μ) = mz(μ) for μ real and positive.

Proof. Let A(μ) = B(μ) — e(μ) P(μ) where B(μ), e(μ\ P(μ) are given by Lemmas
2.2 and 2.3. Then A(μ) is analytic and e(μ) is non-vanishing and analytic by Lemma
2.3. Thus, by Theorem 2.1,

is superharmonic. Since, clearly spr(4(μ))^spr(J3(μ)) = |e(μ)|5 Aί^μy^O. Finally
for μ real and positive, it is clear that e(μ) = exp(-inf<τ(#)) and spr(A(μ))
= exp( - inϊσ(H) - m^μ)), so Mt(μ) = m^μ). Q

From Theorem 2.4, Spencer's result [25] and Theorem A.6, we obtain:

Theorem 2.5. Let mt{μ) be as in Theorem 2.4. Then there exists a strictly positive
function M^(μ) on (0, oo) obeying M00(μ) ̂  cμ for μ e (0,1) (c > 0) so that

for all μ e (0, oo), and all I > 1.

Proo/. By Spencer's result [25], W/OΌ^d, some positive constant, for all
/> 1, μ ^ μ 0 sufficiently large. The bound now follows by Theorem A.6. •

§ 3. φ -Bounds for Periodic States

For technical purposes, we require the φ bounds of Glimm-Jaffe [5] in the
case of periodic Hamiltonians. The original method [5] covers this case (see
Theorem l.l v of [5]) but we provide here a proof along the lines of [9]. We first
consider the half-periodic Hamiltonian Hh i.e. the sum of the periodic free Hamil-
tonian, Ho b in box (-1/2,1/2) and the free B.C. Wick ordered interaction

1/2

j :aφ4 + bφ2 — μφ:dx; let ̂  be the vacuum energy for Ht. Since we will only
-If 2

consider half-periodic and periodic B.C. in this section, we denote the objects
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HX

H?, E?p, etc.; Hf, Ef, etc. of [11] by Hh Eb etc.; Hh Eh etc. We also note that Ht

differs from the Hv of Glimm-Jaffe [4, 5] with V = I but in such a simple manner
that it is easy to obtain one set of φ bounds from the other (see [11] for a discussion
of this distinction); basically Hv = Ht (x) 1 + 1 <g) B with B a dΓ operator.

Theorem 3.1. For each compact subset C of (0, oo) x R x R there is a norm

HI Ill on <f so that

±φ(f)£\\\f\\\(Hι-Eι+i)

for all 1^2 with s u p p / C ( - Z/2,1/2) and all (a, b,μ)e C.

Proof. We will prove that for all / with | | / L ^ 1 and supp /in (-1/2,1/2)
and for / ^ 2

±φ(f)S(Hι-Eι) + d (2)

where d is a constant only depending on the subset C. Using the translation
covariance of Ht it is then easy to establish the result with | | | / | | | = ||(1 + x2)/|loo
We will also suppose that/is the characteristic function of the interval (— 1/2, 1/2).
The general / is handled similarly as in [9]. We will also deal with a fixed (a, b, μ)
noting now that all constants obtained below are uniformly bounded on com-
pacts C.

Let / be the characteristic function of (—1/2, 1/2) and define

Tr[exp(-tH,)]

The proof of (2) reduces to showing that

At = O{edt) (3)

where the constant d depends only on the set C. For, by the monotone convergence
theorem

lim r x \nAt = E, - E{Ht ± φ(f)),
ί->oo

where E(H) denotes the inf of the spectrum of the semibounded operator H.
Hence by (3)

Et-E(H, ±φ(f)) ύd

and the desired estimate (2) follows by the following argument of Glimm and
Jaffe[5]:

Now for periodic states Nelson's symmetry takes the somewhat subtle form

[11]:
Tr(e-'H |) _ Tr(e"'H t)

Tr(e- t H o i ) ~ Ύr(e'ίHo ') '

Applying a slight generalization of this to At we obtain

Tr[exp(-Z/a;)]
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ί/2

where H^ =Ht± j φ(x)dx. Since for positive operators A, B, Ύr(AB)
-ί/2

^ | |£ | | Tτ(A) (see e.g. [18,1; § Vi.6]),

by the linear lower bound for H^ [11].
To control the ratio of traces we note that by Holder's inequality

is a convex function of I.
By the Lemma below we deduce that

Tr(e-{l~i)Ht) < Ύτ(e~Ht)

Ύr{e~lHt) ~ Tr(e~2Ht) '

Thus by Nelson's symmetry

AtSectΎτ(e-Ht)/Tr(e~2Ht)

= ect-

By explicit computation [11], for x > 0

l i m r x I n T r ^ - ^ 0 4 ) = - y

where μ(/c) = (/c2 + m2) 1 / 2. The desired inequality (3) thus follows from (4). Π

Lemma 3.2. ///(/) is convex, then / ( / + 1)—/(/) z's monotone non-decreasing
in I

Proof. Let ί0 =
 f i Then one can find θ with

It follows that

so by convexity

which is the result we wanted. •

Theorem 3.3. Theorem 3.1 continues to hold if the Half-Periodic Hamiltonian,
Hb is replaced by Hh the periodic Hamiltonian.

Proof. By the standard formula for a change of Wick ordering [10, Lemma
V.27], :φ2(x):Pιl=:φ2{x):-Cιand
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where the constant cx can be explicitly computed [11] and shown to vanish ex-
ponentially as /->oo. Therefore Ht and Ht differ only by quadratic and constant
terms:

H^a, b, μ) = ίf,(α, b - 6ach μ) + {3acf -bct)l,
or

(Ht - Ed (α, ft, μ) = (H, - Et) (a, b - 6acb μ).

Clearly, as (α, b, μ) runs through a compact set C, (α, b — 6ach μ) also runs through
a compact set of (0, oo) x IR x IR for / ̂  2, so that the φ-bounds for iή follow from
those for Ht. Π

In our application of the φ-bounds below, we need them in Frohlich's form [3]:

Theorem 3.4. Fix a, b, μ. Let vι be the measure for the periodic B.C. Euclidean
theory for P(X) = aX* + bX2 - μX in the strip (-//2,//2)x(-oo, oo). Then for
any feC™(R2), these are constants d and α, so that for all I with supp/C( —1/2,
1/2) x R:

^d (5)

and in particular
ΪΦziffdv^ld/a2. (6)

Proof. Let Ωt be the vacuum vector for Ht. Then by a standard argument
using the FKN formula (see, for example, [10, Lemma 11.13]),

|_ J
where ft(x) =f(x91). But by Theorem 3.3, if a\\\ft\\\ < 1,

where C is independent of /. Choosing α suffiently small that sup| | |/ f | | | < α ~ x we
deduce (5). The bound (6) follows from (5) and the estimate x2i^ex + e~x. •

Remark. It is fairly easy as in [3, 23] to strengthen Theorem 3.1 and 3.3 so that
one can take α = 1 in Theorem 3.4.

§ 4. Mass Gap for the Infinite Volume Dirichlet States

In this section we will prove our main result:

Theorem 4.1. The infinite volume Dirichlet (aφ4 + bφ2 - μφ)2 theory [10,23]
has a mass gap for any μ φ 0 (and a>0).

Remarks. 1. By mass gap, we mean that the Hamiltonian has 0 as an isolated
point of its spectrum and that 0 is a simple eigenvalue.

2. This result generalizes that of II of this series [21] where it was proven
that 0 is a simple eigenvalue.

3. On account of the FKG inequalities [10], it is sufficient to prove [20]
that (the fields φ in this section are Euclidean fields):

<Φ(ft) 0(/)>D. co - <Φ(f)>2D,oo ύ C(f)
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for all non-negative / e C£(R)2, where ft(x, s)=f(x, s + ί), c(f) is an / dependent
constant, m is a strictly positive /-independent constant and < > D o o is the infinite
volume Dirichlet state.

4. By a similar method, one can prove the same result for the infinite volume
Half-Dirichlet states.

Proof. We let < >P>ί and < ) D l represent the periodic and Dirichlet states for
the strip (-1/2,1/2) x ( - oo, oo) and < ) P J t the periodic states in (-1/2,1/2) x ( - ί/2,
ί/2). We first note that by definition (φ(f)}D «, = lim (φ(f)}D /. Moreover:

Lemma 4.2. lim (φ(f))PJ = <φ(f )>„,„.

Proof. By a simple argument [24,21] employing the Lee-Yang theorem and
Nelson's monotonity theorem,

An argument similar to a piece of the above employing the Lee-Yang theorem [24]
then shows that

lim lim _ < 0 ( χ )> ^
ί^oo ί̂ Go It aμ

where χlt is the characteristic function of ( —1/2,1/2) x ( — ί/2, ί/2). Thus, although
we have not proven convergence of the periodic states, we can prove convergence
of the one point function. But < >P Λ t is translation invariant so

<Φ(f)>P,ι - lim <φ(/)> P , M = j/(x) d2x lim \-
ί-> oo ί->oo It

Hence
j P

aμ

The lemma now follows from the equality of αζ and α^ [11]. •
Secondly, by comparing periodic and Dirichlet B.C. in the lattice approxima-

tion, we have the following Griffith's inequalities:

Lemma 4.3 [11]. For any f,g^O

<Φ(f)Φ(g)>D,a<Φ(f)Φ(g)>P,ι

Returning to the proof of Theorem 4.1, we note that in any field theory with
time translation invariance, if F is measurable w.r.t. the fields in 1R x (— oo, 0] and
G w.r.t. the fields in IR x [ί0, oo) with ί0 > 0 and if the transfer matrix H has a
gap M then

r M ί 0 < F 2 ) 1 / 2 <G 2 > 1 / 2 . (7)

For, letting Ω be the vacuum for H and Pt the conditional expectation onto the
fields at time t translated to time 0 fields (Jt* in the language of [10] for the free
field).

<FG>-<F><G> = < P 0 F , e - ί o i ϊ P ί G > - < P o F , Ω > < β , P f G >

^e-toM(PoF,PoF}1/2 (PtG,PtG}1/2 .
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(7) follows by noting that the conditional expectation is a contraction on each If
so that \\PtF\\2 S IIFII2. Thus by Theorem 2.5 (m= M^μ)):

<</>(/) Φ(ft)>p.ι - <Φ(f)>h ύc{f)e'mt.
By Lemma 4.3:

/t)>Blί - <Φ(f)>h £ c(f) e'"".
If we take Z-> oo and use Lemma 4.2:

W ) 0(/,)>B.« -
which implies there is a mass gap of size at least m. •

§ 5. A Bound on a Critical Exponent

Glimm and Jaffe [6] have raised the question of obtaining bounds on critical
exponents. There is a natural critical exponent associated with the divergence
of the correlation length m(μ)" 1 as μ->0 at the critical value of b (or a or m0).
We define vH by:

at critical point. Interestingly enough the analogous critical exponent in magnetic
systems does not seem to have even been given a name in the standard sources
[1,26]! From the bound Mcc(μ)^cμ, we have:

Theorem 5.1. vHgΞ 1.

For comparison, we compute the classical (i.e. Goldstone) value. For P(X)
= X 4 - μX, the minimum for μ > 0 occurs at X = (μ/4)1/3 where the curvature is

Thus, our bounds, unlike those obtained by Glimm-Jaffe [6] for the critical
exponents they consider, are not by classical values.

Remark. If scaling holds, then vH = v/A in terms of the usual indices [1] so one
has [1]: vH = 8/15 in two dimensional Ising, vH = 0.401 in three dimensional
Ising and vH = 0.408 in three dimensional spin 1/2 Heisenberg.

It is, of course, no coincidence that vH ^ 1 also holds in the above cases since
the subharmonicity arguments also work for spin systems [15].

Acknowledgements. It is a pleasure to thank R. Griffiths, J. Lebowitz and T. Spencer for useful
conversations and J. Lebowitz and O. Penrose for making their work available before publication.

Appendix

Subharmonic Functions

In this appendix, we provide for the reader's convenience a review of those
aspects of the theory of subharmonic functions that we use. For the general
theory, see Heins [12] or Radό [17].
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Definition. A function / from an open set Ω C C to IRu {00} is called subharmonic
if and only if:

(i) / is upper semicontinuous on Ω.
(ii) For any aeΩ and r >0 with {z|\z — a\ ^ r } CΏ, we have

Definition. A function is called super harmonic if it is the negative of a sub-
harmonic function and harmonic if it is both sub- and superharmonic.

Remarks. 1. We recall that / upper semicontinuous means that /(x) ^ lim/(xn)
whenever xn-+x or equivalently {x\f(x)<a} is open for any a. In particular, by
this last, / is measurable and its restriction to any circle a = reιθ is measurable.
Moreover upper semicontinuous functions are bounded from above on compacts
so the integral in (ii) is always convergent or divergent to —00.

2. Upper semicontinuous functions are functions which take their maximum
value on compacts; so by using (ii) there will be a maximum principle for sub-
harmonic functions. This is the point of requiring upper semicontinuity.

3. Harmonic functions are thus finite valued, continuous functions obeying
a mean value equality.

4. Among the basic properties of subharmonic functions which we do not
develop (or require) are the facts that subharmonicity is a local property (i.e. (ii)
need only hold for small r) the equivalence of (i), (ii) to a definition by comparison
with harmonic functions, and the connection with the distributional inequality

First we construct critical examples of subharmonic functions (Theorem A.3):

Lemma A.I. // g is an analytic function in Ω, then Reg and Img are harmonic
inΩ.

Proof. Continuity is obvious. The Cauchy integral theorem g(a) = (2πi)~1

j g(a + z) and the fact that d(reιθ) = irdθ immediately imply g(a) = (2π)~x

\z\=r Z

2π

j g(a + reiθ) dθ completing the proof. •
0

Lemma A.2. In \z\ is subharmonic on <C.

Proof. Since ln|z| is rotation invariant and the inequality is obvious at a = 0
we need only prove that for any a > 0:

1

^ — J ln\a + reiθ\dθ
2π
2π 0

Now ln(α + z) is analytic if \z\<a so ln|α + z| = Re(ln(α + z)) is harmonic in
\z\ < a by Lemma A. 1. Thus for r < a
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Since \n\a + reiθ\ = \n\ae~iθ + r\ we see that for a<r

\nr = -^- [ln\a + reiθ\dθ.
2

Letting r[a and appealing to the monotone convergence theorem, this last
1 2 π

equality holds when r = a. Thus —— J In \a + reiθ\ dθ = In (max (r, a)) ̂  lnα.
2π o D

Theorem A.3. / / / is analytic on Ώ c C , then l n | / | is subharmonic.

Proof. We need only prove for any a and r with D = {z\ \z — a\ ^ r) C Ω, l n | / |
is subharmonic on D i n t. If / is identically 0, then In \f\ = — oo is clearly sub-

k

harmonic. Otherwise, we can find zu...9zk so that 0(z) = / ( z ) / Π (z — zf) is
i 1

analytic and non-vanishing in D i n t. Thus Ing is analytic in D i n t so that, by Lemma
A.I, \n\g\ = Re(lng) is harmonic and so subharmonic in D i n t. Since l n | / | = ln|gr|

k

+ ^ ln|z — zt\, In I/I is a sum of subharmonic functions in Dιnt and so sub-
i = l

harmonic. Π
We will also require two results on families of subharmonic functions.

Theorem A.4. // {ua}(χeI is a family of subharmonic functions on some fixed
ΩCC and u = s\xpua is upper semicontinuous on Ω, then u is subharmonic on Ω.

Proof. The mean value inequality follows by taking the sup over a of

-^ f u(a + r eίθ) ̂  -^ J ua(a + r eiθ) ̂  ua(a). D

Theorem A.5. // un is a sequence of functions subharmonic in Ω and pointwise
monotone nonincreasing, then u = limun is subharmonic in Ω.

n

Proof. u(x) < a if and only if uk(x) < a for some n so {x | u(x) < a] = [j {x \ un(x) <a]
n

is open so u is upper semicontinuous. The mean value property follows by ap-
pealing to the monotone convergence theorem. Π

As a final result concerning subharmonic functions we will prove the following:

Theorem A.6. IfG(z) is superharmonic and non-negative in the region {z|Rez>0}
and if G(x) ^ b for a ̂  x ^ a + 2, then

forO<X<a.

Remark. The constant in the above bound is not optimal but one cannot do
better that linearly in x as x ^ O as the example G(z) = fcRe(z/α) shows.

To prove Theorem A.6, we first note a general minimum principle for super-
harmonic functions.

Theorem A.7. // / is a function superharmonic in a bounded open region, Ω,
and lower semicontinuous in Ω, then

inf/(x)= inf /(*) .
XGΩ xedΩ
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Proof. Since Ω is compact and / is lower semicontinuous, there exists x0 with
f(xo) = a=inlf(x) and {x\f(x) = a} is closed. Suppose xoeΩ. Then since

xeΩ

/(*o) = ί/( χo + reiθ)dθ,f(x0 + reiθ) = a, a.e. in 0 and so by lower semi-

continuity for all θ. Thus {xeΩ\f(x) = a} is open so if x oeΩ, f(χ) = a on a

component of Ω and so by lower semicontinuity at points ofx)Ω. Π

Corollary A.8. // Ω is a bounded open region so that
(1) g is subharmonic in Ω, upper semicontinuous in Ω,
(2) / is superharmonic in Ω, lower semicontinuous in Ω,
(3) f^gon dΩ, then f^gin all of Ω.

Proof. Apply Theorem A. 7 to / — g. •

Proof of Theorem A.6. Let Ω1 be the open ellipse with center α + 1, foci at a
and a + 2 and semi major axis a + 1. Let Ω be Ώx with {x|α ̂  x ̂  α + 2} removed.
Let / be the function on Ω which is equal to G(z)/b on ί2\{0} and 0 at 0. The
theorem now immediately follows from Corollary A.8 and the lemma below:

Lemma A.9. Let Ω be the ellipse with center at 0, semi major axis α > 1 and
foci at +ί with [—1,1] removed. Then there exists a function g on Ω with the
following properties:

(1) g = 0ondΩ\l-i,il,
(2) 0 = 1 on j ; - 1 , 1 ] , _
(3) g is continuous on Ω, harmonic on Ω,

(4)

Proof. Consider first the function h(z) = z + \/z2 — 1 on <C\ [— 1, 1] where ]/"
is the branch positive for z > 1. Then h(z) is non-vanishing, analytic in (C\[— 1, 1]
and |l//ι(z)| -»0 as z-> oo, -> 1 as z-> [— 1,1]. By the maximum modulus principle,
\h(z)\>ί on all of C \ [ - 1 , 1 1

Now since h(z)~1 =z—yz2— ί, if h(z) = eιw then z = cosw. It follows that

if w = u + iv, z — x + iy then x = cos v coshiλ v = sinu sinht; so that
x2

(cosht;)2

y2

+ ~Γ^~Λ—vr = U i e ϋ = const., equivalently \h(z)\ = const, on ellipses with center 0
(sinn v)

and foci ± 1.
Let F(z) = ln|/ι(z)|, for z e C \ [ τ 1,1], F(z) = 0 if z e [ - 1,1]. Then F is continu-

ous and by Lemma A.I it is harmonic on (C\[— 1,1] since h is a non-vanishing
analytic function inside any closed disc in C\[— 1, 1] and F = Re(ln/z). Moreover,

by an elementary computation F'(x) > — for x φ (1, oo) so that for α > 1
x

F(α)-F(x) = — ( α - x ) = l - —
α α

for x e (1, oo). In addition F(α) ̂  ln(2α) for α > 1. Taking g(z) = F(α)" 1 [F(α) - F(z)],
the lemma is proven.
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Remark. The function In \z -f ]/z2 — 11 = In (Arc cos z) and the related ellipses
enter naturally in the theory of Legendre series, see e.g. [29], and this theory was
our motivation for the choice above.

References

1. Fisher, M.E.: Rep. Progr. Phys. 30, 615—730 (1967)
2. Friedrichs,K.: Perturbation of spectra in Hubert space. A. M.S. 1965
3. Frohlich,J.: Schwinger functions and their generating functionals. I. Helv. Phys. Acta (to appear)
4. Glimm,J.,Jaffe,A.
5. GlimmJ., Jaffe,A.
6. GlimmJ., Jaffe,A.

Ann. Math. 91, 362—401 (1970)
J. Math. Phys. 13, 1568—1584 (1972)
Phys. Rev. D 10, 536(1974)

7. Glimm,J., Jaffe,A., Spencer, T.: The Wightman axioms and the particle structure in the P(φ)2

quantum field model. Ann. model. Ann. Math, (to appear)
8. Glimm,J., Jaffe,A., Spencer,T.: The particle structure of the weakly coupled P(φ)2 model and

other applications of high temperature expansions. II. The cluster expansion in [28]
9. Guerra,F., Rosen,L., Simon,B.: Commun. math. Physics 27, 10—22 (1972)

10. Guerra, F., Rosen, L., Simon, B.: The P(φ)2 Euclidean quantum field theory as classical statistical
mechanics. Ann. Math, (to appear)

11. Guerra, F., Rosen, L., Simon, B.: Boundary conditions in the P(φ)2 Euclidean quantum field
theory (in preparation)

12. Heins,M.: Selected topics in the classical Theory of functions of a complex variable. New York:
Holt 1962

13. Kato,T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
14. Lebowitz, J.L., Penrose,O.: Phys. Rev. Letters 31, 749—752 (1973)
15. Penrose, O., Lebowitz, J. L.: On the exponential decay of correlation functions. Yeshiva University

(preprint)
16. Penrose,O., McElveyJ.S.N.: J. Phys. Al, 661—664 (1968)
17. Rado,T.: Subharmonic functions. Berlin: Springer 1937
18. Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York:

Academic Press 1972; II. Fourier analysis; Self-adjointness. New York: Academic Press 1975;
III. Analysis of operators (in preparation)

19. Ruelle,D.: Statistical mechanics. New York: Benjamin 1969
20. Simon,B.: Commun. math. Phys. 31, 127—136 (1973)

21. Simon, B.: Correlation inequalities and the mass Gap in P{φ)2 Π. Uniqueness of the vacuum for a
class of strongly coupled theories. Ann. Math, (to appear)

22. Simon, B.: J. Funct. Anal. 12, 335—339 (1973)
23. Simon,B.: The P(φ)2Euclidean (quantum) field theory. Princeton: University Press 1974
24. Simon,B., Griffiths,R.: Commun. math. Phys. 33, 145—164 (1973)
25. Spencer, T.: Commun. math. Phys. 39, 63—76 (1974)
26. Stanley, E.: Introduction to phase transitions and critical phenomena. Oxford: Oxford University

Press 1971
27. Titchmarsh,E.C: The theory of functions. First Edition Oxford: Oxford University Press 1932
28. Velo,G., Wightman, A. S.: Constructive quantum field theory. Lecture Notes in Physics No. 25.

Berlin-Heidelberg-New York: Springer 1973
29. Whittaker, E. T., Watson, G. N.: A course of modern analysis. Cambridge: Cambridge University

Press 1902
30. Vesentini: Boll. Un. Mat. Ital. (4) 1, 427 (1968)

Communicated by A. S. Wightman

Francesco Guerra Lon Rosen Barry Simon
Institute of Physics Department of Mathematics Department of Mathematics and Physics
University of Salerno University of Toronto Princeton University
I-Salerno, Italy Toronto, Canada Princeton, New Jersey 08540, USA




