Commun. math. Phys. 39, 273–288 (1975) © by Springer-Verlag 1975

Existence of Ground States and KMS States for Approximately Inner Dynamics*

Robert T. Powers** and Shôichirô Sakai

University of Pennsylvania, Philadelphia, Pennsylvania, USA

Received July 1, 1974; in revised form August 5, 1974

Abstract. A strongly continuous one parameter group of *-automorphisms of a C^* -algebra with unit is said to be approximately inner if it can be approximated strongly by inner one parameter groups of *-automorphisms. It is shown that an approximately inner one parameter group of *-automorphisms has a ground state and, if there exists a trace state, a KMS state for all inverse temperatures. It follows that quantum lattice systems have ground states and KMS states. Conditions that a strongly continuous one parameter group of *-automorphisms of a UHF algebra be approximately inner are given in terms of the unbounded derivation which generates the automorphism group.

Introduction

Suppose $\{\alpha_t; -\infty < t < \infty\}$ is a strongly continuous one parameter group of *-automorphisms of a C*-algebra \mathfrak{A} with unit, where by strongly continuous we mean $\|\alpha_t(A) - A\| \to 0$ as $t \to 0$ for each $A \in \mathfrak{A}$. We say the group $\{\alpha_t\}$ is approximately inner if there exists a sequence $\{H_n\}$ of hermitian elements of \mathfrak{A} such that

$$\|e^{itH_n}Ae^{-itH_n}-\alpha_t(A)\|\to 0$$

as $n \to \infty$ for each $A \in \mathfrak{A}$ where for fixed A the convergence is uniform for t in a compact set. In this paper we will show that if $\{\alpha_t\}$ is approximately inner then there exists at least one ground state (Section 2) and there exist KMS states for all inverse temperatures β (Section 3) provided \mathfrak{A} has a trace state. Since for quantum lattice systems the dynamics is given by approximately inner one parameter groups of *-automorphisms (see e.g. ([14], p. 193), [13] or [1]) it follows that quantum lattice systems have ground states and KMS states for all inverse temperatures β . Ruelle has shown the existence of ground states for quantum lattice systems in [15, Theorems 2(c) and 4].

In working with a strongly continuous one parameter group of *-automorphisms $\{\alpha_t\}$ it is often useful to introduce the unbounded derivation δ which generates the group. Suppose $\{\alpha_t\}$ is a strongly

^{*} This research is supported in part by a National Science Foundation Grant.

^{**} Alfred P. Sloan Fellow.

continuous group of *-automorphisms of a C*-algebra \mathfrak{A} . The generator of the group $\{\alpha_t\}$ is a derivation δ given by

$$\delta(A) = \lim_{t \to \infty} (\alpha_t(A) - A)/t$$

where the domain $\mathfrak{D}(\delta)$ of δ is the linear manifold of all $A \in \mathfrak{A}$ such that the above limit exists in the sense of norm convergence. It follows from semigroup theory (see [3] or [8]) and the fact the α_t are *-automorphisms that δ has the properties,

(i) $\mathfrak{D}(\delta)$ is a norm dense linear subset of \mathfrak{A} and δ is a linear mapping of $\mathfrak{D}(\delta)$ into \mathfrak{A} .

(ii) $\mathfrak{D}(\delta)$ is an algebra and if $A, B \in \mathfrak{D}(\delta)$ then $AB \in \mathfrak{D}(\delta)$ and $\delta(AB) = \delta(A) B + A\delta(B)$.

(iii) $\mathfrak{D}(\delta)$ is a *-algebra and if $A \in \mathfrak{D}(\delta)$ then $A^* \in \mathfrak{D}(\delta)$ and $\delta(A^*) = \delta(A)^*$.

(iv) δ is closed, i.e., if $A_n \in \mathfrak{D}(\delta)$, $||A_n - A|| \to 0$ and $||\delta(A_n) - B|| \to 0$ as $n \to \infty$ then $A \in \mathfrak{D}(\delta)$ and $\delta(A) = B$.

Recently it was shown in [17] that if $\{\alpha_t\}$ is a strongly continuous one parameter group of *-automorphism of a UHF-algebra \mathfrak{A} then there is an increasing sequence $M_1 \subset M_2 \subset \cdots$ of $(n_i \times n_i)$ -matrix algebras so that $\mathfrak{A}_0 = \bigcup_{i=1}^{\infty} M_i$ is a norm dense *-subalgebra of \mathfrak{A} and each element $A \in \mathfrak{A}_0$ is an analytic element for δ the generator of $\{\alpha_t\}$ [i.e., if $A \in \mathfrak{A}_0$ then $\alpha_t(A)$ can be extended to an analytic function which is holomorphic for $|\operatorname{Im}(t)| < r_0$ with $r_0 > 0$]. Furthermore, it was shown that there exists a sequence of hermitian elements $H_n \in \mathfrak{A}$ so that $i[H_n, A] = \delta(A)$ for all $A \in M_n$. It follows that if $A \in \mathfrak{A}_0$ we have $\delta(A) = \lim_{n \to \infty} i[H_n, A]$. We will show in Section 4 that if \mathfrak{A}_0 is a core for δ then $\{\alpha_t\}$ is approximately inner.

We end the paper with the conjecture that all strongly continuous one parameter groups of *-automorphisms of UHF-algebras are approximately inner. It would follow from the truth of this conjecture that all strongly continuous one parameter groups of *-automorphisms of UHF-algebras have ground states and KMS states for all inverse temperatures β .

Existence of Ground States

We begin this section with the definition of a ground state on a C^* -algebra with respect to a one parameter group of *-automorphisms. This definition is essentially the spectral condition of quantum field theory (see ([20], Chapter 3) and [2]).

Definition 2.1. Suppose $\{\alpha_t\}$ is a one parameter group of *-automorphisms of a C*-algebra \mathfrak{A} with unit. We say ω is a ground state of

274

 \mathfrak{A} for the group $\{\alpha_t\}$ if ω is a state of \mathfrak{A} with the property, if $A, B \in \mathfrak{A}$ then $\omega(A\alpha_t(B))$ is a continuous function of t and

$$\int h(t)\,\omega(A\alpha_t(B))\,dt = 0$$

for all continuous L^1 -functions h whose Fourier transform

$$\tilde{h}(\lambda) = \frac{1}{\sqrt{2\pi}} \int e^{-it\,\lambda} h(t) \, dt$$

vanishes on the negative real axis $(-\infty, 0]$.

We remark that a ground state ω for $\{\alpha_t\}$ is necessarily α_t invariant. To see this note that if $A = A^* \in \mathfrak{A}$ then the function $h(t) = \omega(\alpha_t(A))$ defines a tempered distribution (see [4] or [18]) by the relation

$$T(f) = \int f(t) h(t) dt$$

for all f in Schwartz's space. Since ω is a ground state the Fourier transform \tilde{T} of T has support on the positive real axis $[0, \infty)$. Since h is a real valued function T is real, i.e., $\overline{T(t)} = T(t)$ for all t, and, therefore we have $\tilde{T}(k) = \tilde{T}(-k)$ for the Fourier transform. Hence, \tilde{T} has support on the negative real axis $(-\infty, 0]$. Thus, \tilde{T} has its support at the single point 0. From the theory of distributions (see [4] or [18]) it follows that \tilde{T} is a finite sum of derivatives of δ -functions at zero, i.e., $\tilde{T}(k) = \sum_{n=0}^{m} a_n \delta^{(n)}(k)$ and hence $T(t) = (2\pi)^{-1/2} \sum_{n=0}^{m} a_n (-it)^n$. Since h is a bounded function we have $T(t) = h(t) = a_0/\sqrt{2\pi}$ a constant. Hence $\omega(\alpha_t(A)) = \omega(A)$ for all t and all hermitian $A \in \mathfrak{A}$. Hence, ω is α_t invariant.

The fact that ω is a ground state has the following implications for the *-representation induced by ω . Suppose ω is an α_t invariant state of \mathfrak{A} and (π, \mathfrak{H}, f_0) is a cyclic *-representation of \mathfrak{A} induced by ω on a Hilbert space \mathfrak{H} with cyclic vector f_0 so that $\omega(A) = (f_0, \pi(A) f_0)$ for all $A \in \mathfrak{A}$. Since ω is α_t invariant we may define unitary operators U(t) on \mathfrak{H} by the relations

$$U(t) \pi(A) f_0 = \pi(\alpha_t(A)) f_0$$

for all $A \in \mathfrak{A}$. One can easily check that the above relations uniquely define isometries U(t) of \mathfrak{H} into \mathfrak{H} . From the group property of α_t and the continuity of $\omega(A^*\alpha_t(A))$ in t for all $A \in \mathfrak{A}$ it follows that $t \to U(t)$ is a strongly continuous one parameter group of unitary operators with the additional properties,

$$U(t) \pi(A) U(t)^{-1} = \pi(\alpha_t(A))$$

and

$$U(t)f_0 = f_0$$

for all real t and all $A \in \mathfrak{A}$.

From Stone's theorem (see e.g. ([12], Chapter X)) it follows there is a self-adjoint operator H which generates the one parameter group $U(t) = e^{itH}$. Since $U(t) f_0 = f_0$ for all real t we have $f_0 = \mathfrak{D}(H)$, the domain of H, and $H f_0 = 0$. Let $\{E(\lambda); -\infty < \lambda < \infty\}$ be the spectral resolution of H, i.e.,

$$H = \int dE(\lambda)$$
 and $U(t) = \int e^{it\lambda} dE(\lambda)$.

For $A, B \in \mathfrak{A}$ and h an L^1 -function we have

$$\int h(t) \,\omega(A\alpha_t(B)) \,dt = \int h(t) \left(f_0, \pi(A) \,U(t) \,\pi(B) \,f_0\right) dt$$
$$= \int h(t) \int e^{it\lambda} (\pi(A^*) \,f_0, dE(\lambda) \,\pi(B) \,f_0) dt$$
$$= \sqrt{2\pi} \int \tilde{h}(-\lambda) \left(\pi(A^*) \,f_0, dE(\lambda) \,\pi(B) \,f_0\right)$$

where in the last equality we have carried out the *t* integration. We have ω is a ground state if and only if the above integral vanishes for all $A, B \in \mathfrak{A}$ provided \tilde{h} vanishes on the negative real axis $(-\infty, 0]$. Since $\{\pi(A^*) f_0; A \in \mathfrak{A}\}$ and $\{\pi(B) f_0; B \in \mathfrak{A}\}$ are dense in \mathfrak{H} we have the fact that ω is a ground state is equivalent to the fact that the spectral measure $E(\lambda)$ has its support on the positive real axis $[0, \infty)$. Hence, ω is a ground state if and only if *H* is positive, i.e., $H \ge 0$.

If ω is a ground state and if we associate the self-adjoint operator H with the energy of a physical system then the vector f_0 is a vector of norm one which minimizes the energy (f, Hf) with ||f|| = 1. This is the origin of the term "ground state" for the state $\omega(A) = (f_0, \pi(A) f_0)$ for all $A \in \mathfrak{A}$.

The following theorem may be useful in characterizing ground states in terms of unbounded derivations.

Theorem 2.2. Suppose $\{\alpha_t\}$ is a strongly continuous one parameter group of *-automorphisms of a C*-algebra \mathfrak{A} with unit. Suppose δ is the generator of $\{\alpha_t\}$ and \mathfrak{D} is a core for δ . Then, a state ω is a ground state for $\{\alpha_t\}$ if and only if

$$-i\omega(A^*\delta(A)) \ge 0$$

for all $A \in \mathfrak{D}$.

Proof. First suppose ω is a ground state for $\{\alpha_t\}$. Let (π, \mathfrak{H}, f_0) be a cyclic *-representation of \mathfrak{A} induced by ω with cyclic vector $f_0 \in \mathfrak{H}$ so that $\omega(A) = (f_0, \pi(A) f_0)$ for all $A \in \mathfrak{A}$. We have from the previous discussion that there is a strongly continuous one parameter group of unitary operators $U(t) = e^{itH}$ with $U(t) f_0 = f_0$ and

$$U(t) \pi(A) U(t)^{-1} = \pi(\alpha_t(A))$$

for all real t and $A \in \mathfrak{A}$. Since ω is a ground state we have that the generator H of $\{U(t)\}$ is positive, i.e., $H \ge 0$.

Now if $A \in \mathfrak{D}(\delta)$ we have

$$(it)^{-1} (U(t) - I) \pi(A) f_0 = (it)^{-1} \pi(\alpha_t(A) - A) f_0 \to -i\pi(\delta(A)) f_0$$

as $t \to 0$. Hence, from Stone's theorem we have $\pi(A) f_0 \in \mathfrak{D}(H)$, the domain of *H*, and $H\pi(A) f_0 = -i\pi(\delta(A)) f_0$. Now, if $A \in \mathfrak{D} \subset \mathfrak{D}(\delta)$ we have

$$-i\omega(A^*\delta(A)) = -i(f_0, \pi(A^*) \pi(\delta(A)) f_0) = (f_0, \pi(A^*) H\pi(A) f_0)$$

= (\pi(A) f_0, H\pi(A) f_0) \ge 0.

Hence, if ω is a ground state for $\{\alpha_t\}$ then $-i\omega(A^*\delta(A)) \ge 0$ for all $A \in \mathfrak{D} \subset \mathfrak{D}(\delta)$.

Next suppose ω is a state of \mathfrak{A} so that $-i\omega(A^*\delta(A)) \ge 0$ for all $A \in \mathfrak{D} \subset \mathfrak{D}(\delta)$ where \mathfrak{D} is a core for δ . We first show $-i\omega(A^*\delta(A)) \ge 0$ for all $A \in \mathfrak{D}(\delta)$. Since \mathfrak{D} is a core for δ there is for each $A \in \mathfrak{D}(\delta)$ a sequence $\{A_n \in \mathfrak{D}\}$ so that $||A_n - A|| \to 0$ and $||\delta(A_n) - \delta(A)|| \to 0$ as $n \to \infty$. Since multiplication is jointly continuous we have $||A_n^*\delta(A_n) - A^*\delta(A)|| \to 0$ as $n \to \infty$. Hence, if $A \in \mathfrak{D}(\delta)$ we have

$$-i\omega(A^*\delta(A)) = \lim_{n \to \infty} -i\omega(A^*_n\delta(A_n)) \ge 0.$$

Hence, $-i\omega(A^*\delta(A)) \ge 0$ for all $A \in \mathfrak{D}(\delta)$.

Next we will show ω is α_t invariant. Since $\alpha_t(I) = I$ for all real t it follows that $I \in \mathfrak{D}(\delta)$ and $\delta(I) = 0$. If $A \in \mathfrak{D}(\delta)$ and λ is a complex number we have $-i\omega((\lambda I + A)^* \delta(\lambda I + A)) \ge 0$. Hence, we have $-i\omega(\overline{\lambda}\delta(A) + A^*\delta(A)) \ge 0$ for all complex λ . Hence, $\omega(\delta(A)) = 0$ for all $A \in \mathfrak{D}(\delta)$. Since α_t maps $\mathfrak{D}(\delta)$ into $\mathfrak{D}(\delta)$ we have for all $A \in \mathfrak{D}(\delta)$

$$\frac{d}{dt}\,\omega(\alpha_t(A)) = \omega(\delta(\alpha_t(A))) = 0\,.$$

Hence, $\omega(\alpha_t(A)) = \omega(A)$ for real t and $A \in \mathfrak{D}(\delta)$. Since $\mathfrak{D}(\delta)$ is norm dense in \mathfrak{A} we have ω is α_t invariant.

Let (π, \mathfrak{H}, f_0) be the cyclic *-representation induced by ω and let $t \rightarrow U(t)$ be the strongly continuous one parameter unitary group defined by the relations

$$U(t) \pi(A) f_0 = \pi(\alpha_t(A)) f_0$$

for t real and all $A \in \mathfrak{A}$. Let H be the generator of the group $\{U(t)\}$, i.e., $U(t) = e^{itH}$. To prove ω is a ground state we must show $H \ge 0$. Suppose $A \in \mathfrak{D}(\delta)$. Then, we have

$$(it)^{-1} (U(t) - I) \pi(A) f_0 = (it)^{-1} \pi(\alpha_t(A) - A) f_0 \Rightarrow -i\pi(\delta(A)) f_0$$

as $t \rightarrow 0$.

Hence, from Stone's theorem we have $\pi(A) f_0 \in \mathfrak{D}(H)$ and $H\pi(A) f_0 = -i\pi(\delta(A)) f_0$ for all $A \in \mathfrak{D}(\delta)$. We have for $A \in \mathfrak{D}(\delta)$

$$\begin{aligned} (\pi(A) f_0, H\pi(A) f_0) &= -i(\pi(A) f_0, \pi(\delta(A)) f_0) \\ &= -i(f_0, \pi(A^*\delta(A)) f_0) \\ &= -i\omega(A^*\delta(A)) \ge 0 \,. \end{aligned}$$

Let H_1 be the closure of the restriction of H to $\{\pi(\mathfrak{D}(\delta)) f_0\}$, i.e., $H_1 = H | \{\pi(\mathfrak{D}(\delta)) f_0\}$. From the above inequality we have H_1 is positive. We will show H is positive by showing $H_1 = H$.

Since H_1 is a restriction of H (i.e., $H_1 \,\subset \, H$) we have H_1^* is an extension of $H^* = H$. Hence, we have $H_1 \,\subset \, H \,\subset \, H_1^*$. We will show $H_1 = H_1^*$ thereby showing $H = H_1$.

We have $U(t) \{\pi(\mathfrak{D}(\delta)) f_0\} = \{\pi(\alpha_t(\mathfrak{D}(\delta)))\} f_0\} = \{\pi(\mathfrak{D}(\delta)) f_0\}$ since $\mathfrak{D}(\delta)$ is invariant under α_t . Since $\{\pi(\mathfrak{D}(\delta)) f_0\}$ is a dense linear manifold of $\mathfrak{D}(H_1)$ invariant under U(t) it follows from Lemma 2 of [19] that H_1 is self-adjoint. Hence, $H = H_1$ is positive and ω is a ground state. This completes the proof of the theorem.

Theorem 2.3. Suppose $\{\alpha_t\}$ is a strongly continuous one parameter group of *-automorphisms of a C*-algebra \mathfrak{A} with unit. Suppose $\{\alpha_t\}$ is approximately inner. Then, there exists a ground state ω for $\{\alpha_t\}$. The ground state need not be unique.

Proof. Suppose the hypothesis of the theorem are satisfied. Since $\{\alpha_t\}$ is approximately inner there is a sequence of hermitian elements $\{H_n \in \mathfrak{A}\}$ so that $||e^{itH_n}Ae^{-itH_n} - \alpha_t(A)|| \rightarrow 0$ as $n \rightarrow \infty$ for all $A \in \mathfrak{A}$ where for fixed $A \in \mathfrak{A}$ the convergence is uniform on compact sets. By adding a multiple of the unit to H_n we can arrange it so that H_n is positive and zero is in the spectrum of H_n , i.e., $0 \in \sigma(H_n)$ and $H_n \ge 0$ for n = 1, 2, Since $0 \in \sigma(H_n)$ it follows from ([16] or ([10], p. 306) there is a state ω_n of \mathfrak{A} so that $\omega_n(H_n) = \omega_n(H_n^2) = 0$. Since the state space of a C^* -algebra is compact in the weak *-topology there is a state ω which is a cluster point of the sequence $\{\omega_n\}$ in the weak *-topology. We will show ω is a ground state.

Suppose h is a continuous L^1 -function whose Fourier transform \tilde{h} vanishes on the negative real axis $(-\infty, 0]$. Suppose $A, B \in \mathfrak{A}$. We will show

$$\int h(t) \,\omega(A\alpha_t(B)) \,dt = 0 \,.$$

Let

$$\int n(t) \, \omega(A \alpha_t(B)) \, a t = 0 \, .$$

 $B_0 = \int h(t) \alpha_t(B) dt$ and $B_n = \int h(t) e^{itH_n} A e^{-itH_n} dt$.

Suppose $\varepsilon > 0$. Since $h \in L^1$ there is a constant c so that

$$2\|B\|\int_{|t|>c}|h(t)|\,dt<\varepsilon/2\,.$$

Since $e^{itH_n}Be^{-itH_n}$ converges to $\alpha_t(B)$ uniformly for $|t| \leq c$ there is an integer n_0 so that $||h||_1 ||e^{itH_n}Be^{-itH_n} - \alpha_t(B)|| < \varepsilon/2$ for $|t| \leq c$ and $n \geq n_0$ where $||h||_1$ is the L^1 norm of h. For $n \geq n_0$ we have

$$\begin{split} \|B_n - B_0\| &\leq \|\int h(t) \left(e^{itH_n} B e^{-itH_n} - \alpha_t(B) \right) dt \| \\ &\leq \int_{-c}^{+c} |h(t)| \| e^{itH_n} B e^{-itH_n} - \alpha_t(B) \| dt \\ &+ \int_{|t| > c} |h(t)| \| e^{itH_n} B e^{-itH_n} - \alpha_t(B) \| dt \\ &\leq \int_{-c}^{c} |h(t)| \left(\|h\|_1 \right)^{-1} (\varepsilon/2) dt + 2 \|B\| \int_{|t| > c} |h(t)| dt \\ &\leq \varepsilon/2 + \varepsilon/2 = \varepsilon \,. \end{split}$$

Since ω is a cluster point of the sequence $\{\omega_n\}$ in the weak *-topology there is an integer $r \ge n_0$ so that $|\omega_r(AB_0) - \omega(AB_0)| < \varepsilon$. Now, we have

$$\omega_r(AB_r) = \int h(t) \,\omega_r(Ae^{itH_r}Be^{-itH_r}) \,dt$$
$$= \int h(t) \,\omega_r(Ae^{itH_r}B) \,dt$$
$$= \sqrt{2\pi} \,\omega_r(A\tilde{h}(-H_r)B) = 0$$

where we have $\tilde{h}(-H_r) = 0$ since the Fourier transform \tilde{h} of h is a continuous function which vanishes on the negative real axis $(-\infty, 0]$ and the spectrum of $-H_r$ is contained in this interval. Hence, we have

$$\begin{split} |\omega(AB_0)| &\leq |\omega(AB_0) - \omega_r(AB_0)| + |\omega_r(AB_0) - \omega_r(AB_r)| + |\omega_r(AB_r)| \\ &\leq \varepsilon + ||A(B_0 - B_r)|| + 0 \\ &\leq \varepsilon + ||A|| \varepsilon \,. \end{split}$$

Since $\varepsilon > 0$ is arbitrary we have

$$\omega(AB_0) = \int h(t) \, \omega(A\alpha_t(B)) \, dt = 0$$

Hence, ω is a ground state. This completes the proof of the theorem.

Remark. Since for quantum lattice systems the dynamics is given by an approximately inner one parameter group of *-automorphisms (see e.g. ([14], p. 193), [13] and [1]), it follows that quantum lattice systems have ground states. Ruelle has shown the existence of ground states for quantum lattice systems in [15, Theorems 2(c) and 4]. We thank the referee for pointing out this reference to us.

Existence of KMS States

We begin this section with the definition of KMS states (see [14, 13] and [6]).

Definition 3.1. Suppose $\{\alpha_t\}$ is a one parameter group of *-automorphisms of a C*-algebra \mathfrak{A} with unit. We say ω is a KMS state for $\{\alpha_t\}$ of inverse temperature $\beta > 0$ if for each $A, B \in \mathfrak{A}$ there exists an analytic function F which is holomorphic for $0 < \operatorname{Im}(z) < \beta$ and continuous for $0 \leq \operatorname{Im}(z) \leq \beta$ so that

$$\omega(A\alpha_t(B)) = F(t)$$
 and $\omega(\alpha_t(A) B) = F(t + i\beta)$

for all real t.

As in the case of ground states it follows that if ω is a KMS state for $\{\alpha_t\}$ then ω is α_t invariant. It is thought that KMS states describe physical systems in thermal equilibrium where the dynamics is given by the *-automorphism group $\{\alpha_t\}$ (see [14]).

Theorem 3.2. Suppose $\{\alpha_t\}$ is a strongly continuous one parameter group of *-automorphisms of a C*-algebra \mathfrak{A} with unit. Suppose $\{\alpha_t\}$ is approximately inner. Furthermore, suppose \mathfrak{A} has one or more trace states τ [i.e., $\tau(AB) = \tau(BA)$ for all $A, B \in \mathfrak{A}$]. Then, there exists at least one KMS state ω_β for all inverse temperatures $\beta > 0$.

Proof. Suppose the hypothesis of the theorem is satisfied and π is a trace state of \mathfrak{A} and $\beta > 0$. Since $\{\alpha_t\}$ is approximately inner there is a sequence of hermitian elements $\{H_n \in \mathfrak{A}\}$ so that $\|e^{itH_n}Ae^{-itH_n} - \alpha_t(A)\| \rightarrow 0$ as $n \rightarrow \infty$ for each fixed $A \in \mathfrak{A}$ where the convergence is uniform for t in a compact set. Let $\omega_n(A) = \tau(e^{-\beta H_n}A)/\tau(e^{-\beta H_n})$ for all $A \in \mathfrak{A}$. A straight forward computation shows that the ω_n are states of \mathfrak{A} which satisfy the KMS condition for the automorphism groups $\alpha_t^{(n)}(A) = e^{itH_n}Ae^{-itH_n}$ for $A \in \mathfrak{A}$. Since the state space of a C*-algebra with unit is compact in the weak *-topology there is a state ω which is a cluster point of the sequence $\{\omega_n\}$ in the weak *-topology. We will show ω satisfies the KMS condition.

Suppose $A, B \in \mathfrak{A}$. Let \mathfrak{A}_0 be the smallest C^* -subalgebra of \mathfrak{A} containing $\{A, \alpha_t(B), H_n; -\infty < t < \infty, n = 1, 2, ...\}$. Since $\alpha_t(B)$ is norm continuous in t, \mathfrak{A}_n is norm separable. Hence, there is a subsequence $\{\omega_{n(k)}\}$ of the sequence $\{\omega_n\}$ which converges weakly to ω on \mathfrak{A}_0 as $k \to \infty$. Let

$$F_k(z) = \omega_{(n)(k)} (A e^{i z H_{n(k)}} B e^{-i z H_{n(k)}})$$

We have F_k is an entire analytic function which is bounded in the strip $0 \leq \text{Im}(z) \leq \beta$. Since analytic functions are harmonic we can express $F_k(z)$ for $0 \leq \text{Im}(z) \leq \beta$ in terms of $F_k(z)$ on the lines Im(z) = 0 and $\text{Im}(z) = \beta$, i.e.,

$$F_k(z) = \int K_1(t, z) f_{1k}(t) dt + \int K_2(t, z) f_{2k}(t) dt$$

for $0 < \text{Im}(z) < \beta$ where

$$f_{1k}(t) = F_k(t) = \omega_{n(k)} (A e^{it H_{n(k)}} B e^{-it H_{n(k)}})$$

$$f_{2k}(t) = F_k(t + i\beta) = \omega_{n(k)} (e^{it H_{n(k)}} A e^{-it H_{n(k)}}\beta)$$

for all real *t* (here in the second equation we have used the fact that $\omega_{n(k)}$ satisfies the KMS condition). The functions K_1 and K_2 are positive L^1 -functions of *t* for each fixed *z* and $||K_1(\cdot, z)||_1 + ||K_2(\cdot, z)||_1 = 1$ for all $0 < \text{Im}(z) < \beta$ where $||K_1(\cdot, z)||_1$ is the L^1 norm of the function $h(t) = K_1(t, z), i = 1, 2$ (see [7], section 18.2).

We wish to thank Professor R. Herman for pointing out to us this integral representation of a function harmonic in the strip and there by greatly simplifying the proof of this theorem.

We have

$$\begin{split} |\omega(A\alpha_t(B)) - f_{1k}(t)| &\leq |\omega(A\alpha_t(B)) - \omega_{n(k)}(A\alpha_t(B))| \\ &+ |\omega_{n(k)}(A\alpha_t(B)) - \omega_{n(k)}(Ae^{itH_{n(k)}}Be^{-itH_{n(k)}})| \\ &\leq |\omega(A\alpha_t(B)) - \omega_{n(k)}(A\alpha_t(B))| \\ &+ \|A\| \|\alpha_t(B) - e^{itH_{n(k)}}Be^{-itH_{n(k)}}\| . \end{split}$$

Since $\{A\alpha_t(B)\}$ is norm compact for t in a compact set and $\omega_{n(k)}$ converges weakly to ω on \mathfrak{A}_0 we have $|\omega(A\alpha_t(B)) - \omega_{n(k)}(A\alpha_t(B))|$ tends to zero uniformly on compact sets as $k \to \infty$. Since the second term in the above inequality tends to zero uniformly on compact sets we have $f_{1k}(t)$ tends to $\omega(A\alpha_t(B))$ uniformly for t in a compact set. A similar calculation shows that $f_{2k}(t)$ tends to $\omega(\alpha_t(B) A)$ uniformly for t in a compact set. It follows from the integral representation of $F_k(z), 0 < \operatorname{Im}(z) < \beta$, and the facts that f_{1k} and f_{2k} are uniformly bounded [in fact, $|f_{1k}(t)| \leq ||A|| ||B||$ and $||f_{2k}(t)| \leq ||A|| ||B||$ for all real t and k = 1, 2, ...] and $||K_1(\cdot, z)||_1$ $+ ||K_2(\cdot, z)||_1 = 1$, that $F_k(z)$ converges to an analytic function F(z)which is holomorphic for $0 < \operatorname{Im}(z) < \beta$ and bounded and continuous for $0 \leq \operatorname{Im}(z) \leq \beta$.

Since $F(t) = \omega(A\alpha_t(B))$ and $F(t+i\beta) = \omega(\alpha_t(B)A)$ it follows that ω satisfies the KMS condition. This completes the proof of the theorem.

Remark. Since for quantum lattice systems the dynamics is given by an approximately inner one parameter group of *-automorphisms (see ([14], p. 193), [13] and [1]) and since the C*-algebra describing quantum lattice systems have trace states it follows that these systems have KMS states for all inverse temperatures $\beta > 0$. Actually, we have KMS states exist for all inverse temperatures both positive and negative since the automorphism group $\{\alpha'_t = \alpha_{-t}\}$ is approximately inner if and only if $\{\alpha_t\}$ is approximately inner. It is the usual convention to define KMS states only for positive temperatures.

R. T. Powers and S. Sakai

Unbounded Dérivations of UHF Algebras

A uniformly hyperfinite (UHF) algebra is a C*-algebra \mathfrak{A} which contains an increasing sequence $M_1 \subset M_2 \subset \cdots$ of $(n_i \times n_i)$ -matrix algebras whose union $\mathfrak{A}_0 = \bigcup_{i=1}^{\infty} M_i$ is a norm dense *-subalgebra of \mathfrak{A} . UHF algebras were introduced and studied by Glimm [5].

Suppose $\{\alpha_t\}$ is a strongly continuous one parameter group of *-automorphisms of a UHF algebra \mathfrak{A} and δ is the derivation which generates $\{\alpha_t\}$. An element $A \in \mathfrak{A}$ is said to be an analytic element for δ or $\{\alpha_t\}$ if the function $t \to \alpha_t(A)$ can be extended to an analytic function in the strip $|\mathrm{Im}(z)| < r$ with z = t + iy and r > 0. It follows from Nelson's paper [11] that an element $A \in \mathfrak{A}$ is an analytic element if and only if $A \in \mathfrak{D}(\delta), \ \delta(A) \in \mathfrak{D}(\delta), \ \delta(\delta(A)) = \delta^2(A) \in \mathfrak{D}(\delta), \dots$ and

$$\sum_{n=0}^{\infty} \frac{s^n}{n!} \|\delta^n(A)\| < \infty$$

for all $0 \leq s \leq r$ with r > 0.

Recently, it was shown in [17] that if $\{\alpha_t\}$ is a strongly continuous one parameter group of *-automorphisms of a UHF algebra \mathfrak{A} and δ is the derivation which generates $\{\alpha_t\}$, then there exists an increasing sequence $M_1 \subset M_2 \subset \cdots \subset \mathfrak{A}$ of $(n_1 \times n_1)$ -matrix algebras whose union $\mathfrak{A}_0 = \bigcup_{i=1}^{\infty} M_i$ is a norm dense *-subalgebra of \mathfrak{A} and furthermore, each element $A \in \mathfrak{A}_0$ (i.e., $A \in M_n$ for some integer *n*) is an analytic element for δ . Furthermore, for each matrix algebra M_n there is an hermitian element $H_n \in \mathfrak{A}$ so that $\delta(A) = i[H_n, A]$ for all $A \in M_n$. It follows that if $A \in \mathfrak{A}_0$ we have $\delta(A) = \lim_{n \to \infty} i[H_n, A]$. We will show that if \mathfrak{A}_0 is a core for δ then $\{\alpha_t\}$ is approximately inner. First we consider the question of when a *-derivation of \mathfrak{A}_0 into \mathfrak{A} uniquely defines a one parameter group of *-automorphisms.

Theorem 4.1. Suppose \mathfrak{A} is a UHF algebra and $M_1 \subset M_2 \subset \cdots \subset \mathfrak{A}$ is an increasing sequence of $(n_i \times n_i)$ -matrix algebras whose union $\mathfrak{A}_0 = \bigcup_{i=1}^{i=1} M_i$ is a norm dense *-subalgebra of \mathfrak{A} . Suppose δ is a *-derivation of \mathfrak{A}_0 into \mathfrak{A} , i.e., δ is a linear mapping of \mathfrak{A}_0 into \mathfrak{A} with the properties

(i) $\delta(AB) = \delta(A)B + A\delta(B)$ for $A, B \in \mathfrak{A}_0$.

(ii) $\delta(A^*) = \delta(A)^*$ for $A \in \mathfrak{A}_0$.

Then, δ is closable, i.e., there is a unique closed derivation $\overline{\delta}$ with domain $\mathfrak{D}(\overline{\delta}) \supset \mathfrak{A}_0$ so that $\overline{\delta}(A) = \delta(A)$ for all $A \in \mathfrak{A}_0$ and for all $A \in \mathfrak{D}(\overline{\delta})$ there is a sequence $A_n \in \mathfrak{A}_0$ so that $||A_n - A|| \to 0$ and $||\overline{\delta}(A) - \delta(A_n)|| \to 0$ as $n \to \infty$. Furthermore, $\overline{\delta}$ is the generator of a strongly continuous one

parameter group of *-automorphisms of \mathfrak{A} if and only if the only norm continuous linear functionals $\varrho_+ \in \mathfrak{A}^*$ satisfying the equations

$$\varrho_+(A + \delta(A)) = 0$$
$$\varrho_-(A - \delta(A)) = 0$$

for all $A \in \mathfrak{A}_0$ are the zero functionals $\varrho_+ = \varrho_- = 0$.

Proof. Suppose δ is a *-derivation of \mathfrak{A}_0 into \mathfrak{A} . First we show δ is closable. To show δ is closable it is sufficient to show that if $A_n \in \mathfrak{A}_0$ and $||\delta(A_n) - B|| \to 0$ and $||A_n|| \to 0$ as $n \to \infty$ then B = 0.

Let τ be the unique trace state of \mathfrak{A} i.e., $\tau(AB) = \tau(BA)$ for all $A, B \in \mathfrak{A}$ and τ is a state of \mathfrak{A} . We will show that $\tau(\delta(A)) = 0$ for all $A \in \mathfrak{A}_0$. Let $\{e_{ij}^{(n)}; i, j = 1, ..., m(n)\}$ be a family of matrix units which span $M_n \subset \mathfrak{A}_0$. Let H_n be the hermitian element of \mathfrak{A} given by

$$H_n = (-i/m(n)) \sum_{i,j=1}^{m(n)} \delta(e_{ij}^{(n)}) e_{ji}^{(n)}.$$

A straight forward computation shows $\delta(A) = i[H_n, A]$ for all $A \in M_n$. Hence, we have for $A \in M_n \tau(\delta(A)) = i\tau([H_n, A]) = 0$. Since $\mathfrak{A}_0 = \bigcup_{n=1}^{\infty} M_n$ we have $\tau(\delta(A)) = 0$ for all $A \in \mathfrak{A}_0$.

We define an inner product $(A, B) = \tau(A^*B)$ on \mathfrak{A} . Let \mathfrak{H} be the Hilbert space obtained by completing \mathfrak{A} with respect to this inner product. We consider $\mathfrak{A}_0 \subset \mathfrak{A} \subset \mathfrak{H}$ as dense subsets of \mathfrak{H} . Consider the linear operator Γ from \mathfrak{A}_0 into \mathfrak{H} given by $\Gamma A = i\delta(A)$ for $A \in \mathfrak{A}_0$. We have Γ is hermitian since for $A, B \in \mathfrak{A}_0$ we have

$$(A, \Gamma B) = \tau(A^* i\delta(B)) = i\tau(A^*\delta(B))$$
$$(\Gamma A, B) = \tau((i\delta(A))^* B) = -i\tau(\delta(A^*) B)$$

and

$$(A, \Gamma B) - (\Gamma A, B) = i\tau (A^*\delta(B) + \delta(A^*) B) = i\tau (\delta(A^*B)) = 0.$$

Since Γ is hermitian the hermitian adjoint Γ^* is densely defined and, therefore, Γ is closable (see [12], p. 305 and 306). Hence, if $A_n \to 0$ and $\Gamma A_n \to F \in \mathfrak{H}$ in the Hilbert space topology we have F = 0. Now suppose $A_n \in \mathfrak{A}_0$, $\|\delta(A_n) - B\| \to 0$ and $\|A_n\| \to 0$ as $n \to \infty$ with $B \in \mathfrak{A}$, then $A_n \to 0$ and $\Gamma A_n \to iB$ in the norm topology of \mathfrak{H} . Hence, B = 0. Hence, δ is closable.

Let $\overline{\delta}$ be the closure of δ and let $\mathfrak{D}(\overline{\delta})$ be the domain of $\overline{\delta}$. We will show $\overline{\delta}$ is a *-derivation of $\mathfrak{D}(\overline{\delta})$ into \mathfrak{A} . Suppose $A \in \mathfrak{D}(\overline{\delta})$. Then there is a sequence $\{A_n \in \mathfrak{A}_0\}$ so that $||A_n - A|| \to 0$ and $||\delta(A_n) - \overline{\delta}(A)|| \to 0$ as $n \to \infty$. Hence, $||A_n^* - A^*|| \to 0$ and $||\delta(A_n^*)| - \delta(A)^*|| \to 0$ as $n \to \infty$. Since $\overline{\delta}$ is closed we have $A^* \in \mathfrak{D}(\overline{\delta})$ and $\overline{\delta}(A^*) = \overline{\delta}(A)^*$. Next, suppose $A, B \in \mathfrak{D}(\overline{\delta})$. Then there are sequences $\{A_n, B_n \in \mathfrak{A}_0\}$ so that $||A_n - A|| \to 0$, $||B_n - B|| \to 0$, $||\delta(A_n) - \overline{\delta}(A)|| \to 0$ and $||\delta(B_n) - \overline{\delta}(B)|| \to 0$ as $n \to \infty$. Hence, we have $||A_nB_n - AB|| \to 0$ and $||\delta(A_nB_n) - (\overline{\delta}(A)B + A\overline{\delta}(B))|| \to 0$ as $n \to \infty$. Hence, $AB \in \mathfrak{D}(\overline{\delta})$ and $\overline{\delta}(AB) = \overline{\delta}(A)B + A\overline{\delta}(B)$. Hence, $\overline{\delta}$ is a closed *-derivation of $\mathfrak{D}(\overline{\delta})$ into \mathfrak{A} .

Next, we will show $\overline{\delta}$ is the generator of a strongly continuous one parameter group of *-automorphisms of \mathfrak{A} if and only if the only norm continuous linear functionals ϱ_{\pm} satisfying the equations $\varrho_{+}(A + \delta(A)) = 0$ and $\varrho_{-}(A - \delta(A)) = 0$ for all $A \in \mathfrak{A}_{0}$ are the zero functionals.

First, suppose $\overline{\delta}$ is the generator of a strongly continuous one parameter group of *-automorphisms of \mathfrak{A} . Suppose ϱ_+ is a norm continuous linear functional on \mathfrak{A} and $\varrho_+(A + \delta(A)) = 0$ for all $A \in \mathfrak{A}_0$. Since \mathfrak{A}_0 is a core for $\overline{\delta}$ we have for all $A \in \mathfrak{D}(\overline{\delta})$ there is a sequence $\{A_n \in \mathfrak{A}_0\}$ so that $||A_n - A|| \to 0$ and $||\delta(A_n) - \overline{\delta}(A)|| \to 0$ as $n \to \infty$. Hence, we have $\varrho_+(A + \overline{\delta}(A)) = \lim_{n \to \infty} \varrho_+(A_n + \delta(A_n)) = 0$. Hence, $\varrho_+(A + \overline{\delta}(A)) = 0$ for all $A \in \mathfrak{D}(\overline{\delta})$. For $A \in \mathfrak{D}(\overline{\delta})$ we have

$$\frac{d}{dt} \varrho_+(\alpha_t(A)) = \varrho_+(\delta(\alpha_t(A))) = - \varrho_+(\alpha_t(A)).$$

Hence, $\varrho_+(\alpha_t(A)) = e^{-t}\varrho_+(A)$ for all $A \in \mathfrak{D}(\overline{\delta})$, and all real *t*. Since $|\varrho_+(\alpha_t(A))| \leq ||\varrho_+|| ||\alpha_t(A)|| = ||\varrho_t|| ||A||$ for all real *t* and e^{-t} grows without bound as $t \to -\infty$ we have $\varrho_+(A) = 0$ for all $A \in \mathfrak{D}(\overline{\delta})$. Since ϱ_+ is continuous and $\mathfrak{D}(\overline{\delta})$ is dense in \mathfrak{A} it follows $\varrho_+ = 0$. A similar argument shows $\varrho_- = 0$. Hence, if $\overline{\delta}$ is the generator of a strongly continuous one parameter group of *-automorphisms the functionals ϱ_{\pm} are necessarily zero.

Now, suppose δ is a *-derivation of \mathfrak{A}_0 into \mathfrak{A} with the property that the only norm continuous linear functionals ϱ_{\pm} on \mathfrak{A} satisfying the equations $\varrho_+(A + \delta(A)) = 0$ and $\varrho_-(A - \delta(A)) = 0$ for all $A \in \mathfrak{A}_0$ are the zero functionals. We will show that $\overline{\delta}$ the closure of δ is the generator of a strongly continuous one parameter group of *-automorphisms of \mathfrak{A} .

It follows from semi-group theory (see [3] or [8]) that $\overline{\delta}$ is the generator of strongly continuous contraction semi-group if and only if the mapping $A \rightarrow \lambda A - \overline{\delta}(A)$ from $\mathfrak{D}(\overline{\delta})$ into \mathfrak{A} is one to one and has range all of \mathfrak{A} and the norm of the inverse mapping (consider as a linear mapping of the Banach space \mathfrak{A} into itself) satisfies the relation $\|(\lambda - \overline{\delta})^{-1}\| \leq \lambda^{-1}$ for all $\lambda > 0$. If $\overline{\delta}$ is the generator of a one parameter group of *-automorphisms (i.e., the automorphisms α_t exist for both positive and negative t), then both $\overline{\delta}$ and $-\overline{\delta}$ are generators of contraction semigroups. Hence, $\overline{\delta}$ generates a one parameter group of *-automorphisms if $A \rightarrow \lambda A \pm \overline{\delta}(A)$ are one to one mappings of $\mathfrak{D}(\overline{\delta})$ onto \mathfrak{A} and $\|(\lambda \pm \overline{\delta})^{-1}\| \leq \lambda^{-1}$ for all $\lambda > 0$. A straight forward computation shows that these conditions on $\overline{\delta}$ are equivalent to the conditions $||A + \lambda \overline{\delta}(A)|| \ge ||A||$ for all $A \in \mathfrak{D}(\overline{\delta})$ and the range of the maps $A \to A + \lambda \delta(A)$ of $\mathfrak{D}(\overline{\delta})$ into \mathfrak{A} is all of \mathfrak{A} for real $\lambda \neq 0$.

We will begin by showing $||A + \lambda \delta(A)|| \ge ||A||$ for all $A \in \mathfrak{A}_0$ and all real λ . Suppose $A \in \mathfrak{A}_0$ and λ is real. There is an integer *n* so that $A \in M_n$ and there is an hermitian element $H_n \in \mathfrak{A}$ so that $\delta(B) = i[H_n, B]$ for all $B \in M_n$. Since $A \in M_n$ there is a state ω of M_n so that $\omega(A^*A) = ||A^*A|| = ||A||^2$. It follows from the Hahn-Banach theorem that ω has an extension which we also denote by ω to a state on all of \mathfrak{A} . Now, we have

$$\omega((A + \lambda\delta(A))^* (A + \lambda\delta(A)))$$

= $\omega(A^*A) + \lambda\omega(\delta(A^*A)) + |\lambda|^2 \omega(\delta(A)^* \delta(A))$
= $\omega(A^*A) + i\lambda\omega([H_n, A^*A]) + |\lambda|^2 \omega(\delta(A)^* \delta(A))$

Since $D = ||A||^2 I - A^*A \ge 0$ and $\omega(D) = 0$ it follows from the generalized Schwarz inequality that

$$|\omega(BD)|^{2} = |\omega(BD^{1/2}D^{1/2})|^{2} \le \omega(BDB^{*}) \omega(D) = 0$$
$$|\omega(DB)|^{2} = |\omega(D^{1/2}D^{1/2}B)|^{2} \le \omega(D) \omega(B^{*}DB) = 0$$

for all $B \in \mathfrak{A}$. Hence, we have

$$\omega([H_n, A^*A]) = -\omega([H_n, D]) = \omega(DH_n) - \omega(H_nD) = 0 - 0 = 0.$$

Since $\omega([H_n, A^*A]) = 0$ we have

$$\omega((A + \lambda\delta(A))^* (A + \lambda\delta(A))) = \omega(A^*A) + |\lambda|^2 \omega(\delta(A)^* \delta(A))$$
$$= ||A||^2 + |\lambda|^2 \omega(\delta(A)^* \delta(A))$$
$$\ge ||A||^2.$$

Since $\omega(B^*B) \leq ||B||^2$ for all $B \in \mathfrak{A}$ we have $||A + \lambda \delta(A)|| \geq ||A||$ for all $A \in \mathfrak{A}_0$ and λ real. Since \mathfrak{A}_0 is a core for $\overline{\delta}$ it follows that $||A + \lambda \overline{\delta}(A)|| \geq ||A||$ for all $A \in \mathfrak{D}(\overline{\delta})$ and λ real. It follows that if $(I + \lambda \overline{\delta})^{-1}$ exists then $||(I + \lambda \overline{\delta})^{-1}|| \leq 1$ for all real λ .

Since $||A + \lambda \overline{\delta}(A)|| \ge ||A||$ for all $A \in \mathfrak{D}(\overline{\delta})$ and λ real and since $\overline{\delta}$ is closed a straight forward computation shows the range of the map $A \to A + \lambda \overline{\delta}(A), A \in \mathfrak{D}(\delta)$ is norm closed for λ real and $\lambda \pm 0$. If the range of this mapping is not all of \mathfrak{A} then it follows from the Hahn-Banach theorem there is a non zero norm continuous linear functional ϱ_{λ} on \mathfrak{A} so that $\varrho_{\lambda}(A + \lambda \overline{\delta}(A)) = 0$ for all $A \in \mathfrak{D}(\overline{\delta})$. By assumption we have the only norm continuous solutions to the equations $\varrho_{+} (A + \delta(A)) = 0$ and $\varrho_{-}(A - \delta(A)) = 0$ for all $A \in \mathfrak{A}_{0}$ are the functionals $\varrho_{+} = \varrho_{-} = 0$. Hence, it follows that the mappings $A \to A \pm \overline{\delta}(A), A \in \mathfrak{D}(\overline{\delta})$ have range all of \mathfrak{A} . Since these mappings are norm increasing we have $(I \pm \overline{\delta})^{-1}$ exist and $||(I \pm \overline{\delta})^{-1}|| \le 1$. From the resolvent equation $A^{-1} - B^{-1} = A^{-1}(B-A)B^{-1}$ and solving for $B = (I + A^{-1}(B-A))^{-1}A^{-1}$ [valid when $||A^{-1}(B-A)|| < 1$] we have

$$(\lambda + \overline{\delta})^{-1} = (I + (\lambda - 1) (I + \overline{\delta})^{-1})^{-1} (I + \overline{\delta})^{-1} (\lambda - \overline{\delta})^{-1} = (I + (\lambda - 1) (I - \overline{\delta})^{-1})^{-1} (I - \overline{\delta})^{-1}$$

for all λ so that $|\lambda - 1| < 1$ since then $||(\lambda - 1)(I \pm \overline{\delta})^{-1}|| \leq |\lambda - 1| < 1$ and then $I + (\lambda - 1)(I \pm \overline{\delta})^{-1}$ is invertable. Hence, we have $(\lambda \pm \overline{\delta})^{-1}$ exists for $0 < \lambda < 2$. Since $||A + \lambda \overline{\delta}(A)|| \geq ||A||$ for all $A \in \mathfrak{D}(\overline{\delta})$ and λ real it follows $||\lambda A \pm \overline{\delta}(A)|| \geq \lambda ||A||$ for all $\lambda > 0$ and $A \in \mathfrak{D}(\overline{\delta})$. Hence, $||(\lambda \pm \overline{\delta})^{-1}|| \leq \lambda^{-1}$ for $0 < \lambda < 2$. Using the resolvent equation again we have

$$(\lambda' + \overline{\delta})^{-1} = (I + (\lambda' - \lambda)(\lambda + \overline{\delta})^{-1})^{-1}(\lambda + \overline{\delta})^{-1} (\lambda' - \overline{\delta})^{-1} = (I + (\lambda' - \lambda)(\lambda - \overline{\delta})^{-1})^{-1}(\lambda - \overline{\delta})^{-1}$$

provided $\|(\lambda' - \lambda)(\lambda \pm \overline{\delta})^{-1}\| \leq |(\lambda' - \lambda)/\lambda| < 1$. Setting $\lambda = 2 - \varepsilon$ the above equations show that $(\lambda' \pm \overline{\delta})^{-1}$ exist for $\|(\lambda' - (2 - \varepsilon))/(2 - \varepsilon)\| < 1$ or $0 < \lambda' < 4 - 2\varepsilon$. Hence, $(\lambda \pm \overline{\delta})^{-1}$ exists for $0 < \lambda < 4$ and $\|(\lambda + \overline{\delta})^{-1}\| \leq \lambda^{-1}$. Continuing in this manner we find $(\lambda \pm \overline{\delta})^{-1}$ exists for all $\lambda > 0$ and $\|(\lambda \pm \overline{\delta})^{-1}\| \leq \lambda^{-1}$. Hence, from the general theory of semi-groups $\overline{\delta}$ and $-\overline{\delta}$ are generators of contraction semi-groups or equivalently $\overline{\delta}$ is the generator of a strongly continuous group of contractions $\{\alpha_i\}$.

We complete the proof of the theorem by showing $\{\alpha_t\}$ is a group of *-automorphisms. Let $\beta_t(A) = \alpha_t(A^*)^*$ for all $A \in \mathfrak{A}$ and all real *t*. We have $\{\beta_t\}$ is a strongly continuous group of contractions of \mathfrak{A} into \mathfrak{A} . The generator of $\{\beta_t\}$ is the operator $\delta_1(A) = \delta(A^*)^* = \delta(A)$ for all $A \in \mathfrak{D}(\overline{\delta})$. Hence, $\alpha_t = \beta_t$ for all real *t* and, hence, $\alpha_t(A^*) = \alpha_t(A)^*$ for all $A \in \mathfrak{A}$.

Next, suppose $A, B \in \mathfrak{D}(\overline{\delta})$ and let $C(t) = \alpha_{-t}(\alpha_t(A) \alpha_t(B))$. Since α_t maps $\mathfrak{D}(\overline{\delta})$ into $\mathfrak{D}(\overline{\delta})$ and since $\overline{\delta}$ is a *-derivation $\alpha_t(A) \alpha_t(B) \in \mathfrak{D}(\overline{\delta})$. A straight forward calculation then shows dC(t)/dt = 0 for all real twhere the derivative exists in the sense of norm convergence. Hence $\alpha_{-t}(\alpha_t(A) \alpha_t(B)) = AB$ and $\alpha_t(AB) = \alpha_t(A) \alpha_t(B)$ for all $A, B \in \mathfrak{D}(\overline{\delta})$. Since the α_t are contractions and $\mathfrak{D}(\overline{\delta})$ is dense in \mathfrak{A} we have $\alpha_t(AB) = \alpha_t(A) \alpha_t(B)$ for all $A, B \in \mathfrak{A}$. Hence, $\{\alpha_t\}$ is a strongly continuous one parameter group of *-automorphisms of \mathfrak{A} . This completes the proof of the theorem.

Remark. Theorem 4.1 shows that $\overline{\delta}$ is the generator of a strongly continuous one parameter group of *-automorphisms of \mathfrak{A} if and only if the sets $S_{\pm} = \{A \pm \delta(A); A \in \mathfrak{A}_0\}$ are norm dense in \mathfrak{A} . The result remains true if the sets S_{\pm} are replaced by the sets $S'_{\pm} = \{\lambda A \pm \delta(A); A \in \mathfrak{A}_0\}$ with the real part of λ not equal to zero.

If T is a densely defined hermitian operator on a Hilbert space \mathfrak{H} then T has a self-adjoint extension T_1 if and only if the dimension of \mathfrak{D}_+ equals the dimension of \mathfrak{D}_- where $\mathfrak{D}_+ = \{\operatorname{Range}(T+iI)\}^{\perp}$ and $\mathfrak{D}_{-} = \{\operatorname{Range}(T - iI)\}^{\perp}$. It would be interesting to know under what conditions a *-derivation δ of \mathfrak{A}_{0} into \mathfrak{A} has an extension δ_{1} which is the generator of a strongly continuous one parameter group of *-automorphisms.

Theorem 4.2. Suppose \mathfrak{A} is a UHF algebra and $M_1 \subset M_2 \subset \cdots \subset \mathfrak{A}$ is an increasing sequence of $(n_i \times n_i)$ -matrix algebras whose union $\mathfrak{A}_0 = \bigcup_{i=1}^{\infty} M_i$ is a norm dense *-subalgebra of \mathfrak{A} . Suppose δ is a *-derivation of \mathfrak{A}_0 into \mathfrak{A} whose closure $\overline{\delta}$ is the generator of a strongly continuous one parameter group of *-automorphisms $\{\alpha_i\}$. Then, the automorphism group $\{\alpha_i\}$ is approximately inner.

Proof. Suppose the hypothesis of the theorem is true. Let $\{e_{ij}^{(n)}; i, j = 1, ..., m(n)\}$ be a family of matrix units which span M_n and let

$$H_n = (-i/m(n)) \sum_{1,1=1}^{m(n)} \delta(e_{ij}^{(n)}) e_{ji}^{(n)}.$$

Let $\delta_n(A) = i[H_n, A]$ for all $A \in \mathfrak{A}$. We have δ_n is an inner *-derivation of \mathfrak{A} into \mathfrak{A} and $\delta_n(A) = \delta(A)$ for all $A \in M_n$. We will show that $(I - \delta_n)^{-1}$ converges strongly to $(I - \overline{\delta})^{-1}$ as $n \to \infty$.

Since $\overline{\delta}$ is the generator of $\{\alpha_t\}$ we have $(I - \overline{\delta})^{-1}$ exists. In fact, we have

$$(I-\overline{\delta})^{-1}(A) = \int_0^\infty e^{-t} \alpha_t(A) dt$$

for all $A \in \mathfrak{A}$. Hence, the range of the map $A \to A - \overline{\delta}(A)$, $A \in \mathfrak{D}(\overline{\delta})$, is all of \mathfrak{A} . Since \mathfrak{A}_0 is a core for $\overline{\delta}$ (i.e., $\overline{\delta}$ is the closure of its restriction to \mathfrak{A}_0) the set $S_- = \{A - \overline{\delta}(A); A \in \mathfrak{A}_0\}$ is norm dense in \mathfrak{A} . Suppose $A \in S_-$. We have $A = B - \overline{\delta}(B)$ with $B \in \mathfrak{A}_0$ and

$$\|(I - \delta_n)^{-1} (A) - (I - \overline{\delta})^{-1} (A)\|$$

$$= \|\{(I - \delta_n)^{-1} (\overline{\delta} - \delta_n) (I - \overline{\delta})^{-1}\} (A)\|$$

$$= \|\{(I - \delta_n)^{-1} (\overline{\delta} - \delta_n) (I - \overline{\delta})^{-1} (I - \overline{\delta})\} (B)\|$$

$$= \|(I - \delta_n)^{-1} (\delta(B) - \delta_n(B))\|$$

$$\leq \|\delta(B) - \delta_n(B)\| \to 0$$

as $n \to \infty$ since $||(I - \delta_n)^{-1}|| \leq 1$ and $B \in \mathfrak{A}_0$. Hence, for $A \in S_- (I - \delta_n)^{-1} (A)$ converges in norm to $(I - \overline{\delta})^{-1} (A)$ as $n \to \infty$. Since $||(I - \overline{\delta})^{-1}|| \leq 1$ and $||(I - \delta_n)^{-1}|| \leq 1$ for all n = 1, 2, ... and S_- is norm dense in \mathfrak{A} we have $(I - \delta_n)^{-1} (A)$ converges to $(I - \overline{\delta})^{-1} (A)$ for all $A \in \mathfrak{A}$.

Since $(I - \delta_n)^{-1}$ converges strongly to $(I - \overline{\delta})^{-1}$ we have by the Trotter convergence theorem (see [21] or ([9], p. 502))

$$\alpha_t(A) = \{\exp(t\overline{\delta})\} (A) = \lim_{n \to \infty} \{\exp(t\delta_n)\} (A)$$
$$= \lim_{n \to \infty} e^{itH_n} A e^{-ttH_n},$$

for all $A \in \mathfrak{A}$. Hence, $\{\alpha_i\}$ is approximately inner. This completes the proof of the theorem.

Conjecture. We conjecture that every strongly continuous one parameter group of *-automorphisms of a UHF algebra is approximately inner. The truth of this conjecture would show that every strongly continuous one parameter group of *-automorphisms of a UHF algebra has a ground state and a KMS state for all inverse temperatures β .

References

- 1. Araki, H., Ion, P. D. F.: On the equivalence of KMS and Gibbs conditions for states of quantum lattice systems. Preprint
- 2. Borchers, H.: Commun. math. Phys. 2, 49-54 (1966)
- 3. Dunford, N., Schwartz, J.T.: Linear Operators, Part I. New York: Interscience Pub. 1963
- 4. Gelfand, M., Vilenkin, Y.: Generalized functions, Vol. I and IV. New York: Academic Press 1964
- 5. Glimm, J.: Trans. Amer. Math. Soc. 95, 318-340 (1960)
- 6. Haag, R., Hugenholtz, N. M., Winnink, M.: Commun. math. Phys. 5, 215-236 (1967)
- 7. Hille, E.: Analytic function theory, Vol. II. New York: Ginn and Co., 1962
- Hille, E., Phillips, R. S.: Functional analysis and semigroups. American Mathematical Society Colloquium Publications (revised ed.), Vol. 31. Providence, Rhode Island (1957)
- 9. Kato, T.: Perturbation Theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
- 10. Naimark, M.A.: Normed rings. In: Groningen: P. Noordhoff 1964
- 11. Nelson, E.: Ann. Math. 70, 572-613 (1959)
- 12. Riesz, F., Nagy, S.: Functional analysis. New York: Ungar Pub. Co., 1955
- Robinson, D. W.: I. Commun. math. Phys., 6, 151–160 (1967). II. Commun. math. Phys. 7, 337–348 (1968)
- 14. Ruelle, D.: Statistical mechanics. New York: W. A. Benjamin, Inc., 1969
- 15. Ruelle, O.: Commun. math. Phys., 11, 339-345 (1969)
- 16. Sakai, S.: C*-algebras and W*-algebras. Berlin-Heidelberg-New York: Springer 1971
- 17. Sakai, S.: On one-parameter subgroups of *-automorphisms on operator algebras and the corresponding unbounded derivations. Preprint
- 18. Schwartz, L.: Theorie des distributions. Paris: Hermann. Part I 1957; Part II 1959
- 19. Shale, D.: Math. Phys. 3, 915-921 (1962)
- 20. Streater, R. F., Wightman, A. S.: PCT, spin, and statistics, and all that. New York: W. A. Benjamin Inc., 1964
- 21. Trotter, H.F.: Pacific J. Math. 8, 887-919 (1958)

Communicated by A. S. Wightman

R. T. Powers Mathematics Department University of Pennsylvania Philadelphia, Pa. 19104, USA

288