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Abstract. The quantum analogue of the classical theory of the joint microcanonical
entropy of a pair of observables is investigated for a system of a large number of identical
non-interacting subsystems. It is shown that the quantum joint entropy coincides with the
classical joint entropy of an appropriately chosen auxiliary classical system, and known
results for classical systems are applied to prove the equivalence of the quantum micro-
canonical and quantum canonical ensembles.

1. Introduction and Statement of Results

The theory of the joint microcanonical entropy of two (or more)
classical observables has been developed by D. Ruelle and O. Lanford III.
This theory becomes particularly simple for systems consisting of a large
number of non-interacting subsystems; indeed, it is shown in Section A.4
of [1] that what is involved in this case is a question about sums of in-
dependent identically distributed random variables. In this paper, the
quantum analogues of these questions will be investigated. That is, the
joint quantum microcanonical entropy of a pair of observables will be de-
fined and its asymptotic behavior as the system in question becomes infi-
nitely large will be investigated. The main result is that the quantum
microcanonical entropy turns out to be identical with the classical micro-
canonical entropy of an appropriately chosen auxiliary "classical" sys-
tem; the results of Section A.4 of [1] are then applied to give rather
complete information about its behavior.

We will begin by describing in detail the sort of non-interacting
classical systems considered here. Let Ω be a finite set, equipped with a
measure M. (Ω is normally interpreted as the set of states of some atom or
molecule, and the measure of a subset of Ω is taken to be the number of
elements in that subset. For our purposes, however, it is essential to
allow more general choices of M.) Let fί9f2 be two real-valued functions
on Ώ, and regard the pair / = (/ l5 /2) as a mapping of Ω into 1R2. (/i and f2

can be interpreted as observables on the state space Ώ, and of particular
interest is the case where / x is the energy.) Let Ωk be a product of k copies



208 L. Truong

of Ω, and let Mk be the product of k copies of M Ωk is of course in-
terpreted as the state space for a system of k identical atoms. Now define

where J denotes an open convex subset of 1R2.
It is desirable to know the behavior of y (fc, /, J) for large k. The main

facts are as follows (see A.4 of [1]):
1. lim^logf (fc,/5 J) exists and is equal to supχlogf^(/c,/, J). This

fc->oo k

limit (which may be a real number or — oo) is denoted by S(f, J), and is
called the microcanonical entropy.

2. If xeIR2, define

s(f, x) = inf {s(f, J): J is an open convex set containing x}.

So defined, s(/, x) is a concave upper semi-continuous function from ΪR2

to IRu {— oo}. If J is an open convex set in 1R2,

s(/, J) = sup s(f, x).
xeJ

3. {x:s(f,x)> — oo} = conv(/(Ω))(=conv(/(Ω)), since Ω is finite).
If the components fuf2 of/are linearly independent modulo the constants
(i.e., if /i,/2, and 1 are linearly independent functions on Ω) then

int(conv(/(Ω)))φ0.

4. On int(conv(/(Ω))), s(f, x) is analytic and strictly concave in x.
In fact:

s(f, x) = x yx + log f J exp [ - yx /(ω)]

where yx is the unique solution of the equation

\f{ω)e~yf{ω)M{dω)
Ω

$e-
y'f{ω)M(dω)

Ω

(In the above, γ like x denotes an element of 1R2 and γ x = yixί + y2x1'>
etc.)

5. Suppose ε is an element in the interior of the convex hull of the
range of/l5 let /2(ε) denote the unique value of x such that

= sup
y

If β is chosen so that
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then

Let us next turn to the formulation of the quantum analogues of the
systems described above. Let J f be an ^-dimensional Hubert space
(whose unit vectors can be thought of as describing the pure quantum
states of some atom or molecule). For two self-adjoint operators H, B,
and for k e Έ +, let J^k be the tensor product of /c-copies of Jf. For 1 ̂  i: ^ k,
let (Hi) and (2 )̂ be the operators

1® ® 1 ® # ® 1 ® ®1
ith place

and
1® ®1®£®1® ®1

ith place

respectively, where 1 is the identity operator on Jf. For keΈ+, define

£ and B^iΣW
i = 1

Clearly both Hk, Bk are self-adjoint operators on Jfk. Schematically,
#? may be thought of as the analogue of Ω, the trace of an operator
on Jf7 as the analogue of the integral of a function on Ω with respect
to M, and H, B as the analogues of / l 5 / 2 . Next it must be decided what to
choose as the analogue of the classical Ϋ" heuristically, this should be
some sort of "quantum joint distribution" of Hk and J5k. However,
since the operators H, B need not commute, the definition of this
"quantum joint distribution" is not obvious, but the following choice
is reasonably satisfactory from the physical point of view:

Definition 1.1. Let J7, B be self-adjoint operators on J>f, J be an
open subset of IR2, and fc be an element of Έ +. Define

rq{k,H9B9J)= Σ tr(P(M)β(fc,Aθ)
(λ,μ)eJ

where P(k,J) [Q{Kμj] denotes the eigenprojection of if f c[5J belonging
to the eigenvalue I [ μ ] . As in the classical case, we are interested in
analyzing the asymptotic behavior of f^q(k,H,B,J) as fc->oo. It will be
shown that if H and B are given, ΩH B and M can be determined in terms
of H and B, and two real-valued functions fH,fB can be defined on
ΩH B, so that for any keΈ+ and any J,

or i^q(k,H,B,J) = ir(kJ,J) where f = {fH,fB). It will be shown that
if H, J5, and / are linearly independent, then/H, fB are linearly independent
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modulo constants on ΩH B. Thus studying the asymptotic behavior
of i^q(k,H,B,J) is reduced to studying the asymptotic behavior of
i^(k,f, J\ which is already known from classical statistical mechanics.
Therefore facts 1-4 stated above can be applied to i^q(k,H,B,J). In
particular, lim \ log ^(fe, H, B, J) exists and will be denoted by Sq(H,BJ)

(the quantum microcanonical entropy). If xeIR2, define Sq(H,B,x)
= inf {Sq(H, B,J):J is an open convex set containing x}.

Now consider what physical consequences can be deduced from the
above results. Let ε lie between the largest and smallest eigenvalues
of H; ε is interpreted as the average energy per subsystem. Holding ε
fixed, and regarding Sq(H, B, (ε, y)) as a function of y alone, a function
is obtained which is upper semi-continuous and strictly concave on the
interval where it is finite. By upper semi-continuity and the fact that the
function is different from — oo only on a finite interval, it must assume
its maximum at least once; strict concavity implies that it assumes its
maximum exactly once. Let B(ε) denote the unique value of y where the
maximum is assumed, i.e. B(ε) is the unique solution of

Sq{H, B, (ε, 5{ε))) = sup Sq(H, B, (ε, y)).
r

Roughly speaking, B(ε) should be interpreted as the overwhelmingly
probable value of Bk, given that Hk is near ε, for large k. Since Hk and Bk

are operators, this statement requires some explanation.
To give this explanation, the quantum microcanonical ensemble is

introduced. If I is an interval in 1R, let

P(KI) =

6(M) =
μe I

also, let L(3tfk) be the algebra of all linear operators on jPk.
Definition ί.2. Given ε, and given δ>0, define the quantum micro-

canonical ensemble to be the state ρ™'ε% on L(3tfk) given by

m . c . m = Tr(Γ P(fc,(ε-M))
Q Tr P(fe,(ε- (5, ε))

(The parameter δ is an unfortunate technical necessity; it should be
thought of as very small and will be allowed to go to zero whenever pos-
sible.)

The probabilistic interpretation of quantum mechanics indicates how
to associate with ρmc* and any self-adjoint TeL(^k) a probability
measure on the spectrum of T: the probability of any subset of the
spectrum is ρ m c < of the corresponding spectral projection. This con-
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struction allows one to speak of the microcanonical probability that T
belongs to some set, etc. Now apply this terminology to T = Bk. The
result is that if / is any open interval whose closure does not contain
£(ε), and if δ is small enough, then the microcanonical probability that
Bk belongs to / converges to zero exponentially as fc->oo. Note that this
assertion characterizes B(ε) uniquely and justifies its interpretation as the
most probable value of Bk given that Hk« ε.

To prove the above result, note that the microcanonical probability
that Bk is in / is just

Tr(P(fc,/e)β(M)) = rq{KH9B9I,xl)

Tr(P(fc,Jβ)) rq(k,H9BJεxK)9

where Iε denotes (ε — <5, ε). For large fc,

ί exp {+ klSJH, B9 Iεxl)- SJH, B9 Ie x 1R)]}.
rq(KH9B9Iεxl)

The fact that B(ε)φΊ implies that, for sufficiently small δ,

Sq(H, B, Iε x 1R) is strictly larger than Sq(H, B, Iε x I)

i.e., the probability behaves asymptotically for large k like e~k'δs, with
δs >0 . An easy extension of this argument shows that B(ε) is also the
large k limit of the microcanonical mean value of Bk, i.e. that

S(ε)= lim lim Q™f;d{Bk) (see Proposition 2.10).
δ-^0 /c->oo

To find a simpler way of computing J3(ε), introduce an auxiliary
parameter β, interpreted as the inverse temperature. Then if ε, β are
related by

we have

B(ε) =

This formula is referred to as the canonical prescription for computing

Remark. The reasons for considering only two observables (as
opposed to ή) are that:

(a) In physical applications, it is usually enough to have two
observables; one may be thought to be the energy of the system, and the
other any observable.

(b) There are technical difficulties in considering more than two
observables. For example, ir

q is defined to be the trace of a product
of projections, but the trace of the product of three or more self-adjoint
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operators may not yield a unique value, if the order in which the operators
are multiplied is permuted. Furthermore, the trace of three or more
self-adjoint operators might not even be a real number. However,
tr (HB) is independent of the order in which H and B are multiplied
together, and, if H and B are positive, tr (HB) is positive.

In Section 2, the results stated in this section will be proved.

I am grateful to Oscar E. Lanford III for his numerous helpful suggestions, in particular
for his extensive assistance with revision of the wording of the introduction.

2. Proof of Results

In this section we shall prove the existence and analyze the properties
of lim jlogi^(k,H,B,J) where H, B are self-adjoint operators on an

rc-dimensional Hubert space H, J is an open convex set of 1R2, and
i^q(k,H,B,J) = _ £ tτ(P{k,λ)Q(k,μ)). (See Definition 1.1.) Then the

(λ,μ)eJ

properties of lim jlogi^Jk, H, B, J) will be applied to obtain the results
/c->-oo

on the equivalence of ensembles for observables stated in Section 1.

Lemma 2.1. (a) Speciίfc = \λ: λ = { £ λhλte Specif, 1 <ί<k\.

(b) If λe Specif, then the projection P(k, λ) of Hk onto the eigensub-
space of Hk with eigenvalue λ is given by

U) = Σ \Pλt®---®Pλk--λ1,...,λkESpecHsuchthatλ=ϊ £ λ\ .
k

Σ
ί = l

Similar statements hold for Bk.

Proof. Statements (a) and (b) will be proved together. Let λί9...9λk

be eigenvalues of H (repetition is allowed), and let /i 1 ?...,/i k be the

respective eigenvectors. Then by applying the definition of Hk,

χ. where λte S p e c M C Spec Hk.
ί I J

It is clear that if (2 1 ? ...,λk)e (SpecH)k then Pλl® ®Pλk is a pro-
jection of Jfk. If (λu ...,λk) and (λ[, ...,λ'k) are two distinct elements of
(Spec Hf, then Pλi ® ® Pλk and Pλ> (x) (x) Pλk are mutually orthogonal.
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To see this suppose λt φ λ'h then Pλι Pλi = 0, so

(Pχί®~'®Pχt®~ ®PχO'(Pχί®-®Pχ;®~ ®Pχd

= o.
_ __ k

Now suppose λ e Specify, then: (i) If λ is expressible as \ Σ λt, where
_ ί = l

λteSpecif, let JP(fe5l) = ΣPAl(g) (8)PΛk5 where the sum is taken over
/ k \

all λu ..., Afe such that A = i ^] λf : and (ii) If λ is not expressible as

fc _
I £ Λ,ί5 then let P(k,λ) = O (the zero projection). A straight-forward

i = l _ _

computation will show that Ik = ΣP(k, λ)<ΣP(k, λ) = Ik, which implies
P(fe, I) = P(fc, I) for all I, which implies both (a) and (b).

Let Ω = {(λ, μ): (A, μ)e Specif x SpecB, tr(PA2M) + 0}. Let/ H ,/ B : Ω- ÎR
be defined by

fH(λ,μ) = λ9 . fB(λ,μ) = μ,

and / = (fHίfB), i.e., / is the identity function on JQ. Let M be a measure
on Ώ defined by

Note that: ( i) tr(P λ β μ )>0, since PλQμ is positive and (ii) M(Ω) = n,
independent of ϋ , B, since

M(Ω)= Σ tr(PAβμ)
(λ,μ)sΩ

Σ
(Λ,μ)eSpeciϊxSpecβ

y(A,μ)eSρeci/xSpecB

= tr/

= n.

The object of introducing the above definitions is to show that Ϋ~q(k,H9B9J)
can be expressed as

Assuming that this expression is proved, the techniques of classical
statistical mechanics1 can be applied to analyze

lim i logτΓ_(fc, H, B,J).
k->oo

1 SeeLanford, A.4of [1].
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Proposition 2.2. Let J CIR2 be open and convex, Ωk be the Cartesian
product of k copies of Ω, and Mk the product measure induced by M on Ωk.
Then

Proof. By definition

rq(k,H,B,J)= Σ tr(P(kJ)Q(Kμ)).
(λ,μ)eJ

This expression can be rewritten as

where k k

Σλi9 μ={γaμj and
i = l i = l

by Lemma 2.1.
Evidently only those fc-tuples of pairs which are elements of Ωk will

contribute to the sum. For if (λh μt) φ Ω then

and

tr((PAl® ®Pλfc)(QμiΘ ® β J ) = Π tr(PAlQμ().
i = l

(
k k \ k

k Σ λiΛ Σ ^ = i Σ /(ωi) τ h u s

i = 1 i= 1 / ί = 1

f^(fc, H, £, J) can be rewritten as

( i ) ( 1 ? , , ) and i Σ
U = l i = l

which is precisely the expression

Thus the proposition is proved.
Having the above proposition, all desired properties of i^q(K H, B, J)

can be deduced.

Proposition 2.3. // H, B and J are fixed, then

lim {log rq{K H, B, J) = sup {log rq{k, H, B, J).

Proof. The proposition follows immediately from Proposition 2.2
and fact 1 of Section 1.
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Let SJH, B, J) = lim \ log yi(fc, H9 B9 J). If x e 1R2, define
fc-+oo

q ( , , ) 9 ( , , ) ,
(2)

where J runs over the convex open sets containing x .
Then

Sβ(H,B,J) = S(/,J) ,

)

These two equations in (3) follow immediately from the definitions of
Sq{H, B, J), Sq(H, B9 x)9 S(/, J), S(/, x) and Proposition 2.2.

The following proposition is an immediate consequence of the second
equation of (3) and fact 2 of Section 1.

Proposition 2.4. Sq(H, B, x) is a concave upper semi-continuous func-
tion from 1R2 to IRu { — oo}.

Next it is of interest to determine for what region of 1R2 Sq(H, B,x)> — oo
and a condition on H and B so that the aforesaid set is not empty. Before
the condition can be stated, the next two lemmas are needed.

Lemma 2.5. // P and Q are projections of Jf such that tr(Pg) = tr P

Proof. tr((P-ρ) 2) = trP-2tr(Pβ) + trρ = 0, by hypothesis. Since
(P - Q)2 is positive then (P - Q)2 = 0 and so P = Q. Thus the lemma is
proved.

Lemma 2.6. // H9 B and I are linearly independent on J f then
conv(Ώ) has nonempty interior. (The converse is also true.)

Proof. It suffices to prove that Ω is not a subset of a straight line.
For any AeSpecH there exists a μeSpeel? such that (λ, μ)eΩ since
0 < t r P λ = Σ{tr(P A β μ ) :μeSpec5}. Thus there exists a μ such that
tv(PλQμ)>0. Similarly the above assertion is valid with μ and λ inter-
changed. The proof of this lemma is by contradiction. If there exist
constants a, b, c such that aλ + bμ = c for any pair (λ, μ) e Ω, the only
non-trivial case is where a and b are both nonzero. For if either a or b — 0
then respectively B or H is a dilation. Obviously in these two cases
H, B, and / are linearly dependent. Thus the only case of interest is when
Ω is a subset of a line ax-\-by = c which is not parallel to the x or y
axis. In this case, for each λ e Spec H there is a unique μ e Spec B such
that (λ, μ) e Ω. The same assertion holds when λ and μ are interchanged,
since the line is not parallel to either axis.

Thus, by the above assertion,

Ω={(λl9μί),...,(λhμι)}
where

{λu ...,/lJ = Spec# and {μu ...,μι} =
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From the definition of Ω,

μ) = 0 if i Φ ;

> 0 if i=j.

Similarly

and from Lemma 2.5,

Thus

ί = l

but aλί + bμi = c by assumption. Therefore aH + bB = cI, which con-
tradicts the hypothesis that # , £, and / are linearly independent.

Proposition 2.7. (a) {x: Sq(H, B, x) > - oo} = conv /(Ω), and (b) ι/
JF/, 5, 7 ar^ linearly independent then {x: Sq(H,B, x)> — oo} /zas

interior.

Note that since /(Ω) is finite and /(Ω)ClR2, (conv/(Ω)) = conv/(Ω).
Proof, (a) follows from the definition of Ω, /, (3), the first half of

fact 3, Section 1 and the fact that f(Ω) = Ω: and (b) is an immediate
consequence of (a), Lemma 2.6, and the second half of fact 3, Section 1.

The analyticity and strict concavity of Sq(H,B,x) on intconvΏ
follow directly from Proposition 2.7, fact 4 of Section 1 and the following
observations:

If y elR2, define

Σ
(λ,μ)eSρecHxSpecB

(λ,μ)eΩ

By definition, (λ,μ) = f(λ,μ) and tr(PλQμ) = M{(λ,μ)}. For simplicity,
denote yίλ = y2μ by γ (A, μ). Thus one can write

Z(γ, H,B)=\e~y f{ω)dM(ω). (4)
Ω

Let My be the probability measure on Ω defined as follows: if ω e Ω, then

Z(y,H,B)
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Theorem 2.8. Suppose H, B, I are linearly independent. Then on
int conv Ω, Sq(H, B, x) is analytic and strictly concave in x. Furthermore

Sq(H, B, x) = logZ(y(x),H,B) + x γ(x),

where x = J/(ω) dMy.
Ω

Since Sq(H, B, x) is strictly concave in x, the quantity Sq(H, 5, (ε, y)),
as a function of y with ε held fixed, takes on its maximum at a single
point2, which is denoted by B(ε).

trifle-'")
Ire1

tr(Be~βH)

Proposition 2.9. // β, ε are chosen so that ε = — _βΊj—, then

Proof. By a straight-forward computation,

tr(He-pH) [e H[U> ^ ω

~fe-βfHiω)dM(ω)

tre~βH \e'βfH{ω)dM{ω) '
Ω

Then applying fact 5 of Section 1, the desired result is obtained.

Proposition 2.10. For any ε in the interior of the convex hull of the
spectrum of H,

' ^ofc-oo tr[P(/c,(ε-(5,ε))]

Proof. Let δ>0. Then there exists a unique pair εδ,B
r with ε — δ

<εδ<ε, such that

sup {Sq(H, B,a,β):ε-δ<oc<ε} = Sq(H, B, εδ, B').

The existence of εδ, B' follows from the fact that Sq(H, B, α, β) is upper
semi-continuous in α, β and equal to — oo for α, β outside conv(Ω);
the uniqueness follows from the strict concavity of Sq. Clearly,

Sq(H, B, εδ9 B') = sup Sg(fl, B9 εδ9 y),

so _

B' = B(εδ).

Now, as δ = 0, εδ converges to ε (since ε — δ ̂  εδ ̂  ε), and Proposition 2.9
implies that B(ε) is continuous in ε; hence, it is only necessarily to show

2 Provided ε e int conv (Spec (H)).
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that

Note first that

for all fc, and write the spectral resolution for Bk as

Now let a > 0. Then

lim {log tr [β(fe, ( - oo, B' - a)) Plk, (ε - <5, ε))]
fc->oo

= sup {Sq(H,B,a, β):ε — δ<ot<ε: β<B' — a}

< sup {Sq(H, B,ot, β):s — δ<oί<ε}

= lim \ log tr [P(fe, (ε - (5, ε))] .
fc-> oo

Thus,
tr [Q(/c; ( - ^ f f - f l ) ) P(fc, (ε - δ, β))] =

tr[P(fc,(ε-δ,ε))]

and since Q(fc, ( - oo, B' - a)) + β(k, [β' - α, oo)) = 1,

s - <̂ ? e))] _ 1

Now

, (ε - δ, ε))] tr [β(/c, [B' - α, oo)) P(/c, (ε - δ, ε))]

tr[P(/c,(ε-M]

11 k

tr[P(fc,(ε-M)]
So

tr[BtP(fc,(e-g,6))]
ί™lr[P(Jk,(ε-δ,ε))]

Since a is any strictly positive number

tr [BtP(fe, ( a g , β ) ) ] ^

*-«, tr[P(/c,(ε-<5,ε))] ~ '

A similar argument show that

tr[5fcP(fc,(εM)] ^
fe-oc tr[P(/c,(e-(5,ε))] ~ '

these two inequalities together imply (5).
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Remark. Suppose that H and B commute. Then they can be simultane-
ously diagonalized, and Ω is the set {(λ1,μι\...,(λj,μj)} of pairs of
simultaneous eigenvalues. The mapping Ή.y~>fH, B\->fB extends to an
isomorphism from the algebra of matrices generated by H and B and the
algebra of all complex-valued functions on Ω. In this special case, then,
the quantum theory reduces completely to the classical theory.
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