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Introduction

In 1953, Green [1] proposed that the usual anticommutation
relations of Fermi-Dirac statistics be generalized. He proposed new
relations which are satisfied by the Fermi-Dirac creation and annihi-
lation operators but admit additional representations, each of which
can also be given a particle interpretation. These particles are called
parafermions.

For n degrees of freedom it has been shown [4] that the representations
of Green's relations are just the representations of SO(2n + 1, R\ which
are well known. For infinitely many degrees of freedom the situation
is more complicated. Reducible representations may be constructed
by the use of Green's ansatz [1 2] from which certain standard irreducible
representations are chosen. The uniqueness of these standard repre-
sentations is usually discussed in terms of the existence of a unique
vacuum vector which is annihilated by all annihilation operators.
The purpose of this paper is to obtain uniqueness results relating to
unitary invariance as was done for ordinary particles by Segal [5,
Theorems 1,2,3] and Weinless [6, Theorem 2.1].

Preliminaries

A bounded representation of Green's parafermion relations is a
triple {H, C,K} where H and K are complex Hubert spaces and C
is a complex linear map from H into the bounded operators on K
satisfying

[[C*(z), CO;)], C(x)] = - 2 <x, z> C(JO , (1)

] , C(x)] = 0 x,y,zeH. (2)

C*(z) represents the adjoint of C(z).



112 S. Robbins

The representation is said to be over the single particle space H
and have representation space K. Two representations over H, {H, C, K}
and {H, C", K'} are unitarily equivalent if there exists a unitary operator
U from K onto K! such that U C(z) U~1 = C(z\ for zeH.

A vector v e K is called cyclic for the representation if it is cyclic
for the algebra A of finite linear combinations of products of operators
in the form C(z) or C*(z\ i.e. if Av is dense in K. A representation is
called the standard representation of order p if there is a cyclic vector
veK such that

C*(z)υ = 0,

C*(z)C(y)v = (y,z)pv (y,zeH).

In this case p must be a positive integer and the standard representation
of order p is irreducible and unique up to unitary equivalence [2, p. B1158].

We will be considering continuous representations Γ of the unitary
group of H on K. For these there exists a unique map dΓ which takes
a self-adjoint operator A on H into a self-adjoint operator dΓ(A) on
K such that

Γ(eitΛ) = eitdΓ{A).

^ 0 whenever i ^ O w e will write dΓ ^ 0.
Pz will denote the projection on the one dimensional space spanned

by z, and n(z) is defined by

C(z) will be interpreted as creating a particle with wave function z
and C*(z) will be the corresponding annihilator. If A is an observable
on the single particle space H, i.e. a self-adjoint operator on H, then
dΓ(A) will be the corresponding observable on K. n{z) + constant can
be thought of as the number of particles with wave function z.

We will need the following lemma whose proof does not depend
on the relations (1) and (2).

Lemma. Suppose {H, C, K} is a bounded representation of Green's
parafermion relations and Γ is a representation of the unitary group of
H on K satisfying

Γ(U)C(z)Γ(Uy1 = C(Uz) (3)

for all zeH and all unitaries U on H. If A is self-adjoint on H and
zeDom(i4) then Dom(dΓ(Ά)) is invariant under C(z) and C*(z) and

tdΓ(A),C(z)-]QC(Az), (4)

ldΓ(A),C*(z)-]Q-C*(Az). (5)
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As a special case of this, when ||z|| = 1,

<y,z>C(z), (6)

-<z9yyC*(z)9 (7)

which is equivalent to

eitdr{pz) c { y ) e-ίtd

^ e-itdr{pz) =

As a direct consequence of the relation (1),

and so when ||z|| = 1,

eitn{z)C(y) e"ίtn{z) = C(eίtPzy),

gίί«ωc*(3;) e~ i ί n ( z ) = C(e~ίtPzy).

Thus for ||z|| = ί^-iίdΓ(Pz)^ίn(2) commutes with all C(y) and C*(y)
and since (8) and (9) imply that n(z) and dΓ(Pz) commute, n(z) — dΓ(Pz)
commutes with all C(y) and C*(y). For arbitrary zef/, zφO, we define
B(z) by

5(z) is then a self-adjoint operator whose domain is invariant under
and commutes with all elements of A. In the interesting cases B(z)
will in fact be independent of z. When the representation is irreducible
it will be a scalar.

Uniqueness Results

Theorem 1 gives a general uniqueness result for parafermion fields.
Theorems 2 and 3 extend this result along different lines. In the last
section the possibility of obtaining a stronger theorem is discussed.

Theorem 1. Let {H, C, K) be a bounded representation of Green's
parafermion relations for which there exists a cyclic unit vector vEK
and a representation Γ of the unitary group of H on K such that

, (i i)

Γ{U)υ = v, (12)

(13)
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for all z eH and all unitaries U on H. Then {H, C,K} is a finite direct
sum of standard representations of distinct orders.

Proof of Theorem 1, dΓ(Λ)v = 0 for all self-adjoint A on H since

dΓ(I) C*(z) v = C*(z) dΓ(I) v - C*(z) v = - C*(z) v .

Since dT(l) ^ 0, C*(z) v = 0 for all zeH. Now suppose (y, z> = 0.

dΓ(Py) C*(y) C(z) v = - C*(y) C{z) v + C*(y) C(z) dΓ(Py) υ

= -C*(y)C(z)υ.

Since dΓ{Py)Z0,
C*{y)C{z)v = 0 when (y,z} = 0. (14)

We will show that the operator B(z) defined by (10) is independent
of z. It is sufficient to consider the case in which z is a unit vector. Since
dΓ{Pz)v = 0, and C*{z)v = 0,

B{z)v=C*{z)C{z)v.

Since B(z) commutes with C(z) and C*(z\

B(z)kv = (C*(z)C(z))kv.
If DeA, then

B{z) Dv = DB(z) υ = D C*{z) C{z) veAv,

\\B(z)kDv\\ = \\DB(z)k v\\ S \\D\\ ||C*(z) C(z)\\k \\v\\ .
Therefore,

B(z)ktkDv

r
converges and so each element of Av is an analytic vector for B(z).
We will be done if we show that B(z) v is independent of z, for from this
it follows that if DeA, B(z)Dv = DB(z)v is independent of z and thus
B(z) is independent of z on a dense invariant set of analytic vectors.

We show that B(z)v is independent of z by using (14). If y and z
are unit vectors then

C*(z)C(y)v=C*(Pyz)C(y)v
= (y,z}C*(y)C(y)v

C*(z)C(y)v=C*(z)C(Pzy)v

= <y,z}C*(z)C(z)v

= (y,z}B(z)υ.

Thus B(y)v = B(z)v when <y,z> + 0. For <j/,z> = 0 we obtain the
result by observing that if w = y + z, B(y) v = B(w) v = B(z) v.
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Since Γ(U) dΓ(Pz) Γ(l/)" 1 = dΓ(PUz) and

Γ(U) n(z) Γ(Uy1 = n(l/z), Γ(U) B(z) Γ{U)~1 =

Thus, Γ(U) commutes with B(z).
Let B = B{z). Assume ||z|| = l and dΓ(Pz)w = 0. Then C*(z)w = 0

and £w = C*(z) C{z) w. Let wm - C{z)m w. From (1) it follows that

C*(z)ww = m(JB-m+l)w w _ 1 ,

| | w j 2 = <wm_1?C*(z)wm>

= m<wm_1,(B--ro+l)vvm_1>

= m! <w, (B - m + 1) (B - m + 2)... (B --1) B w> .
Therefore

< B ( B - l ) ( B - 2 ) . . . ( B - m ) w , w > ^ 0 , for m ^ O . (15)

Let Ko be the Hubert space spanned by Bkv, k = 0,1, 2,.... £ is bounded
on Ko since if β is any polynomial in B,

BQv = QBv = βC*(z) C(z) v = C*(z) C(z) Qv,

Now consider B as a bounded operator from Ko into itself. If weX 0 ,
dΓ(Pz)w = 0 since B commutes with all Γ{U). Thus (15) holds for all
weK0 and so on Ko, B(B — 1) (B — 2)... (B — m) ̂  0 for every integer m.
Thus the spectrum of B just consists of integral eigenvalues. Let
K0(m) = {wE Ko\ Bw = mw}. Let Pm be the projection on the closure
of AK0(m). If w e K0(m\ w = ΣakB

kv and

So K0(m) either has dimension 0 or 1. Let S = {m: K0(m) has dimension 1}.
P v

Let υm = •• m ,, , m e S . Define Km to be the closure of AK0(m). If m + s
II w ^ l l

then Km and Xs are orthogonal since if weAK0(m) then Bw = mw.
K= X ®Km and C*(z)i;m-0 since [C*(z),PJ = 0.

meS

C*(y)C(z)vm = PmC*(y)C(z)v

So Γ(U)υm = υm. Since each Pm commutes with C(z) and C*(z) the
representation is the desired direct sum. This completes the proof of
Theorem 1.
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Theorem 2. In Theorem ί, Eq.(ί2) can be replaced by the weaker
condition: There exists a non-negative self-adjoint operator A on H whose
discrete spectrum does not contain 0 such that Γ(eιtA) v = v.

To prove Theorem 2 we will use the following properties of dΓ.
Suppose A and B are commuting self-adjoint operators on H. Then

a) dΓ(A) and dΓ(B) commute.
b) dΓ{A + B) = dΓ{A) ±dΓ{B), where + indicates that the closure of

the sum should be taken.
c) dΓ(μA) = adΓ(A) if α # 0 and is real.
d) If dΓ ^ 0 and A ^ B then dΓ(A) ^ dΓ{B).
Let A = § λE(dλ) be the spectral resolution of A. Define Pk = E(Ik)

where Ik is the interval (•£, oo). Then A^jPk so by d) above, dΓ(A)
^{dΓ(Pk)^0 and dΓ(A) and jdΓ(Pk) commute. Since dΓ{A)v = 0 we
have also jdΓ(Pk)v = 0 so Γ(eίtPk)v = v. Since 0 is not in the discrete
spectrum of A, Pk^I strongly as k—>oo.

so eitPk-+eίt strongly for each t. Therefore Γ(eitPk)-+Γ(eu) strongly so
Γ{eu)v = v. Thus, dΓ(I)v = 0.

If E is any bounded, non-negative self-adjoint operator on H then
| | £ | | J ^ £ ^ 0 and so dΓ(\\E\\ I)^dΓ(E)^0. Thus dΓ(E)v = 0. By
separating a bounded self-adjoint operator into positive and negative
parts we obtain dΓ(E) v = 0 for all bounded self-adjoint operators on H.
From this it follows that Γ((7)ι; = ι; for all unitaries U on H.

Theorem 3. Let {H, C, K} be a bounded representation of Green's
parafermion relations for which there exists a cyclic vector v e K and a
representation of the unitary group of H on K such that for all zeH
and all unitaries U on H,

, (16)

(17)

there exists a non-negative self-adjoint operator A on H other than 0
such that dΓ(A)^0, and either the representation is irreducible or the
operator A above is not a multiple of the identity. Then {H, C, K} is a
direct sum of standard representations of distinct orders.

The only use of the positivity condition (13) in Theorem 1 was to
prove that C*(y)v = 0 and C*(y) C(z)v = 0 for orthogonal y and z.
These will now be proved under the weaker hypotheses.

By (16) and (17), ||C*(z)t;|| and \\C*(y) C(z) v\\ are independent of y
and z when y and z are orthogonal unit vectors. We can show that these
are zero by finding values of y and z for which they are arbitrarily small.
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Since \\C(y)\\=\\Γ(U)C(y)Γ(Ur1\\= \\C(Uy)\\, \\C(y)\\ depends only
on I y! and since C{y) is a linear function of y,

\ = \\c\\\\y\\.

In a similar manner,

Choose r =t= 0 in the spectrum of A For each ε > 0 there is a unit
vector zeK such that \\(A - r) z || < ε. By (7), dΓ(4) C*(z) v=- C*(Az) v so

^ - <C*((A - r) z) v, C*(z) v) - r(C*{z) v, C*{z) υ}

^\\C*{z)v\\\\C*((A^r)z)υ\\-r\\C*{z)v\\2

 9

\\C*(z)v\\S\\C*((A-r)z)v\\/r,

\\C*(z)v\\^ε\\C*\\\\v\\/r.

Thus, C*{z)v = 0 for all z.
We will now show that C*(y) C(z)v = 0 for orthogonal y and z.

We first treat the case in which A is not a multiple of the identity. Choose
two distinct numbers r and 5 in the spectrum of A and assume r < s.
For each ε > 0 there exist orthogonal unit vectors y and z such that
both \{A - r) z\\ and ||(>4 - s) y\\ are less than ε. Then if w = C*(y) C(z) v,
(6) and (7) imply

dΓ(A) w = C*(y) C(Az) v - C*{Ay) C{z) υ .

0 ^ <dΓ(A) w, w>

t;, w> - <C*(τ4y) C(z) υ9

Thus, | |w | |^2ε | |C | | | |C*| | \\v\\/(s-r) and so C*(y)C(z)v = 0 for all
orthogonal pairs of unit vectors y and z in H.

This leaves the case in which the representation is irreducible. In
this case dΓ(Pz) — n(z) is a scalar. Since dΓ(Pz)v = 0 and C*(z)v = 0
for all zeH, C*(z) C(z) v= \\z\\2 B(z)υ where B(z) is now a scalar
depending only on z. As in the proof of Theorem 1, (15) with v replacing w
shows that B(z) must be an integer when z is a unit vector. Since B(z)
is continuous on the unit ball of H, B(z) must be a constant p on this
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ball, and thus,
C*(z)C(z)υ = p\\z\\2υ, (18)

for all zeH. Applying (18) for z = x + y and z = x + iy and subtracting
gives C*(x)C(y)v = p(y,x}v. This completes the proof of Theorem 3.

Concluding Remarks

In Theorems 2 and 3 we showed that each of (12) and (13) could
separately be replaced by weaker conditions. In [3, pp. 70-75] examples
were given that show that these conditions could not be eliminated
and that a simultaneous weakening of both conditions as in [6, Theorem
2.1] is impossible. Theorem 2 gives a maximal weakening of* (12). In
Theorem 3 the weakened condition is unaesthetic mathematically
and inconvenient physically since for reducible representations it
requires that the operator A is not a multiple of the identity. This case
is physically interesting because dΓ(I) represents the number operator on
K. We would like to have a theorem which states that subject to (11)
and (12) it is sufficient to have a positive number operator. It can be
easily shown that in this case the condition dΓ(J)^0 is equivalent to
C*(z)v = 0 for all zeH, a condition much easier to establish. We have
found an example of a direct sum of two irreducible non-standard
parafermion fields for which (11), (12) and this condition are satisfied.
This shows that Theorem 3 also gives a maximal weakening of (13).
We would like to thank Project MAC of the Massachusetts Institute
of Technology for making available MACSYMA, their symbolic
manipulation system. It was with the use of this system that the latter
example was found.
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