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Abstract. We give a complete description of the states of the C.C.R. algebra for a finite
number of degrees of freedom which are invariant with respect to subgroups of the transla-
tion group of phase space. We make precise some well-known results of quantum mechanics
such as Bloch theorem.

§ I. Introduction

In this paper we shall deal with the algebra A (G, ξ) of canonical
commutation relations (C.C.R.) introduced in [2] (see also [3]) where G
is an abelian group and ξ a bicharacter [Definition (2.1)]; for G = IR2iV

and ξ((x,p),(x',p/)) = exp(-4 Σ *ιPί-*ί
is the uniform closure of the * -algebra of the finite linear combinations
of Weyl operators δ(XtP). The interest of this algebra is that it has a large
number of states; namely, any normalized linear positive function on
the linear combinations of Weyl operators extends to a (unique) state of

Translations by g in the phase space G are represented by a *-
automorphism τg of A (G, ξ) which is inner:

τΛ' = δ « W = *(0»«')2δ,, g,9'eG.

Let H be a subgroup of G and let W be the set of elements g of G
such that ξ(g,h)2 = ί for any heH. Then the invariant states ω of
A (G, ξ) with respect to the τh(h e H) are those states for which ω(δg) = 0
if gφH' [Proposition (2.13)]; conversely, let ω be a state of Δ(H'9ξ')
where ξ is the restriction of ξ to W x H'\ then there exists an invariant
extension ω of ω to A (G, ξ) which is given by ω(δg) = 0 if g φ H' [Proposi-
tion (2.14)]. Moreover if Δ(H',ξ') is abelian and if ω is pure, ω is the
unique (hence pure) extension of ω to A (G, ξ) if and only if A (H\ ξ')
is maximal abelian [Proposition (2.18)].
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In Section 3, we specialize zl(IR2, ξ), and show that we only need
consider closed subgroups of phase space as invariance subgroups
[Lemma (2.11)]. Hence except for the trivial cases which are easy to
handle, and up to isomorphisms there are three possible cases for ξ
abelian subgroups (i.e. for which HcH')\

i) The subgroup of 1R2 is 1R x {0}; invariant pure states ω of J(1R2, ξ)
for which x-*ω(δXtP) is continuous are of the form

ωpo(δxj = 0 if pΦO

ωP0(
δχJ = e x P('Po*) Po

These states are vector states of a representation of A (IR2, ξ) in a non
separable Hubert space [Theorem (3.6)]. These are the analogues of
plane waves of the usual formalism.

ii) The subgroup of R2 is Έax {0} where Έ is the group of integers,
a e R Invariant pure states of A (R2, ξ) for which x-+ω(δx p) is continuous
are of the form

ω(δxJ=0 if p Φ — —

iπtnx 2iπnx

fel2(Έ)

[Bloch theorem (3.13)]. These states are vector states of the previous
representation.

iii) The subgroup of IR2 is TLa x Έ , a e R Invariant pure states ω

of A (IR2, ξ) are of the form

ί\ e ί \ J_ / i 2πm\= 0 if (x,p)+ [nλ,—r—
\ Λ /

They are vector states of a unique representation within a non-separable
Hubert space; this representation is disjoint from the previous one
[Proposition (3.23)].

Finally we study the action of the group of linear non singular
transformations of phase space on the above states and give the conditions
of implementation of these transformations [Proposition (3.27)].
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§ II. Definitions and Elementary Results

Most of the results of this section are slight generalizations of the
corresponding results of Ref. [3] hence they are in general given without
proofs (see also [4]).

The bicharacters we shall define now are of central importance in
what follows:

Definition (2.1). Let G be an abelian group: a bicharacter ξ is a
function ξ.GxG^T (the group of complex numbers of modulus one)
such that:

ξ(9,9') = ξ¥J) V j , j ' e G (2.2)

ξ(9,0i + 9i) = ξ(9, 9i) ξ(9, 9i) V #, 0 l 9 # 2 e G . (2.3)

A similar procedure to that in [3] can be used to construct a *-algebra
A (G, ξ) for ξ a bicharacter.

Definition (2.4). A (G, ξ) where G is an abelian group and ξ is a bi-
character is the set of finite linear combinations1:

endowed with the following product and ^-operation:

SΛ = tUl,h)δ,+h (2.5)

δ* = ξ{g,g)δ.β. (2.6)

As shown in [3] there exists on A (G, ξ) a completely regular norm
(i.e. one satisfying ||α*α|| = | |α| | 2)

Iα|| = sup |/ω(α*α) aeΔ{G, ξ) (2.7)
ωeξG

where ξG is the set of positive normalized forms on A (G, ζ).
Moreover it is the unique completely regular norm on A (G, ξ) when

ξ is non-degenerate (see below for definition).
We denote by Δ (G, ξ) the completion of A (G, ξ) with respect to this

norm.
Any positive linear form (resp. ^-representation) of A (G, ζ) extends

to a positive linear form (resp. ^-representation) of Δ(G9ξ) ([3], 3.4).
Let us mention the following lemma:

Lemma (2.8). Let G be an abelian group, H a subgroup, ξ a bicharacter
on G; denote also by ξ the restriction of ξ to HxH; then

Δ(H,ξ)QΔ(G,ξ).

Moreover ifH^G, then A (tf, ξ)%Δ (G, ξ).
1 Notice that the unitary elements δg are linearly independent (see [2], 2.2.2).
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We shall need in the sequel of the notion of commutant of a subgroup
of G. So we define

Definition (2.9). Let H be a subgroup of G. We define H\ the com-
mutant of H, as

H will be ^-abelian if and only if H Q W and maximal ξ-abelian if and
only if H = if'.

We shall say that ξ is non-degenerate if and only if G = {0}.

One can easily verify the following properties of the commutant
operation:

Lemma (2.10). Lei G be an abelian group; ξ a bicharacter, H, JF/j and
H2 subgroups of G. Then:

i. H' is a subgroup.
ii. HQE".

iii. H =H".
iv. H^fy^H^QHi.
The next lemma will be of some importance in the last section.

Lemma (2.11). Let G be an abelian topological group; let ξ be a bi-
character such that the function g-^>ξ(g,(Γ) is continuous V g' e G.

Then if H is a subgroup of G, W = (H)' where H denotes the closure
ofH.

Finally we denoted by τ the canonical injection of the group G into
the inner ^-automorphisms of A (G, ξ)

τβiδh) = ξ{g,h)2δh. (2.12)

An easy generalization of the previous results can be made for a general
group (non-abelian), but in view of the applications of the last section
and of the simplification of the notations we just mention it.

Now we shall give some easy results about extensions of states on
subalgebras. Proofs are standard or even simplified by the topology
(viz. the discrete topology chosen on G) so in general they are not given.

Lemma (2.13). Let G be an abelian group, ξ a bicharacter, H a subgroup
of G, τ the canonical injection of H into the ^-automorphisms group of
Δ(G,ξ); then if ω is a state of A (G, ξ)9

ω°τ f t = ω VΛe Jϊ

The next result ensures the existence of an invariant state.
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Theorem (2.14). Let G be an abelian group, ξ a bicharacter, H a
subgroup of G; let ωbea positive linear form on A (H, ξ); then ώ defined as

ω(δh) = ω(δh) VheH

ω(δg) = 0 VgφH

gives a positive linear form on A (G, ξ).

Using the remark before Lemma (2.8) one has the following corollary.

Corollary (2.15). Any state ω of the subalgebra A {H, ξ) of A (G, ξ)
can be extended to a state ω of A (G, ξ) in the following way

ω(a) = ω(a) if aeA(H,ξ)

ω(δg) = 0 if gφH.

The next theorem gives an explicit realization of the representation
associated to the extension ω.

Theorem (2.16). Let G be an abelian group, ξ a bicharacter and H
a subgroup of G. Let ωbea state of A (H, ξ\ (Jtίfω9 Ωω, π j the corresponding
Gelfand-Naimark-Segal (G.N.S.) triplet. Let ώ be the extension of ω
to A (G, ξ) previously described. Let S be an application of G into G such
that

VgeG, VheH

g-S(g)=T{g)eH V ^ G G .

Let tfπ be the Hilbert space 12(G/H)®3fω, [#] the function of 12(G/H)
which is one on the class of g and zero otherwise.

Then π defined as the linear transformation such that

n(δk) lS(g)®πω(δTig)) Ωω = Ξ(k, g) [S(g + ft)]®πjδng+k)) Ωω

where
Ξ(fc, g) = ξ(k, g)ξ(S(g), T(g)) ξ(S(g + k), T{g + k))

extends to a ^-representation of Δ(G,ξ) in Ϊ1(G/H)®^?

ω with cyclic
vector [O](g)Ωω; and it is unitarily equivalent to the representation
constructed from ω by the usual G.N.S. procedure.

First notice that lS(g)]®πω{δJΩω = lS(g')']®πω{δT{β'))Ωω where
S ( ) h G h H

Hence π(δk) is defined over a dense set of vectors; moreover π is
well-defined since if

( λίπω(δh)\Ωω =
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then

π(δk) Φ = Ξ(k, S(g)) lS(g + m®πω(δnsiβ) + k)) 11 ^π ω (δ Λ l ) j Ωω

- 0 ;

the representation character of π follows from an easy but tedious
calculation.

Corollary (2.17). π is reducible if π ω is reducible.

The restriction of π to A (H, ξ) is given as one can easily compute by

π(δh) lS(g)]®πω(δT{β)) Ωω = ξ{h, S(g))2 [S(^)]®πω(δh) πω(δT{g)) Ωω

for heH.
The next results are connected with the uniqueness and irreducibility

of ω.

Theorem (2.18). Let G be an abelian group and ξ a bicharacter. Let
Hbea subgroup of G such that H CHf then if ω is a pure state of A (H, ξ),
ω is the unique extension of ω to A (G, ξ) if and only if H = H\ and con-
sequently is pure.

Proof Since A (H, ξ) is abelian, ω is a character, hence

\ω(δh)\ = ί.

Moreover letω be an extension of ω to A(G, ξ) [see Corollary (2.15)]
then:

ω(δgδhδ*) = ξ(g,h)2ω{δh).

Let (Ω, π, 3tf) be the G.N.S. triplet associated to ω; then from the previous
relation

π(δh) π{δ*g) Ω = ξ(g, h)2 ω(h) π(δ*g) Ω,

hence
ω(δg) = (Ω\π(δg)Ω)

= ω{h){Ω\π(δg)π{δJΩ)

= ξ(g,h)2(Ω\JΪ(δg)Ω);

hence the result. Notice that from ([6], 2.10.2) there exists at least one
pure extension of a pure state.

From the previous construction we have the following result:

Corollary (2.19). The representation space corresponding to ω is
separable if and only if Jήfω is separable and G/H is at most countable.
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§ III. Applications: Invariant States of the C.C.R. of a Finite Number
of Degrees of Freedom with Respect to a ξ-Abelian Subgroup

of the Phase Space

In the following we shall be interested in G = ]R2N considered as
JRNxIRN; a typical element of 1R2N will be written as

X = {xu...,xN9pl9...,pN) x

Moreover we shall deal with the following bicharacter on 1R2N

\ ( i
= exp - — (X\JXf) =exp - —

\ L \ Z

where (X\Xf) denotes the euclidean scalar product on IR2iV and σ and J
have obvious definitions:

This bicharacter is continuous with respect to the natural topology of
ΊR2N hence by (2.11) we only shall consider closed subgroups of ΊR2N.

For the sake of physical applications we have in mind, we shall
consider only ξ-abelian subgroups of 1R2N; moreover we shall treat
only the case N = 1 the general case can be dealt with by the following
lemma which uncouples the different degrees of freedom.

Lemma (3.3). Let Γ he a lattice in 1R2N and Γ its reciprocal lattice,
viz. Γ is of the form

N

aeΓoa— ^ m^ mteΈ
ί = l

N

a'eΓ'oa' = Σ niai nteΈ
i = l

with

σ(ah aj) = σ{och (Xj} = 0 ViJ=l...N

defines the most general ξ-abelian discrete subgroup of 1R2N).
Then there exists a linear non-singular transformation M such that

σ(MX,MY) = σ(X, Y) X, Ye1R2N

(Mα W O , . . . 1,...O, ^^0
\ i-th place N times

αί) = f0 L ; ; i 0,0,. . .2π,. . .0V
N times i-th place
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The existence of M is ensured by the isomorphism of symplectic
spaces of the same finite dimension. For the sake of practical applications
it is worth while to give an explicit form of M

if i>N

if ίύ

(3.4)

Classification of closed subgroups of 1R2 is well-known; the next table
give the ones for which the restriction of ξ is + 1 , except for the trivial
subgroup.

Subgroup ξ-commutant Interpretation Property of H' Corresponding
of H invariant state

IRx{0}

Έx{0}

ΈxΈ

H =H" = l Translations

Discrete
translations

Max-abelian

Contains 1R x {0}
which is max-abelian

Max-abelian

Plane waves

Bloch waves

Zak waves

We shall study these three cases separately.

1st Case: Plane Waves

Proposition (3.5). Let {τa\ αeIR} be the group of ^-automorphisms of
A (1R2, ξ) such that

r δ^=e~iapδr „ VαelR.

Every pure state ω of A (ΪR2, ξ) such that

x->ω(δxp) is continuous

and invariant with respect to τfl(VαelR) is a state ωpo defined by

ωpo(δxj = 0 if pΦO

= eipox if p = 0.

The proof is obvious and we shall give in the next proposition the
structure of the representation.

Proposition (3.6). Let ωpo be a state defined as

ωpo(δxj = 0 if P Φ 0

= eipox if p = 0 .
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Let J ^ o , π p o , and Ωpo be the canonical Hubert space, representation and
cyclic vector constructed via the G.N.S. theorem. Then

i. j f pQ = I2 (1R) is not separable.
ii. πpo is irreducible.

iii. V p' 61R ωp> is a vector state of π p o .
iv. πpo is disjoint from any Weyl state.

Proof, i. Is obvious from Theorem (2.16); ii. is clear from (2.18); to
prove iii., let us consider \q)el2(lR) such that \q)(x) = 0 if x φ q and
\q) (x) = i if x = q. Then let S and Γ be:

Consequently according to Theorem (2.16)

. (3.7)

Hence
ωP'{

δχ,P)-(\Vo-V')®Ωpo\πPQ{δxJ\po-p')®Ωpo). (3.8)

Moreover ωpo is disjoint from any Weyl state; indeed if it is not disjoint
it is unitarily equivalent to any Weyl pure state, since it is pure, but the
usual Schrodinger representation acts within a separable Hubert space.

Proposition (3.9). Let ωpo be as previously.
I. τα(VαelR) is unitarily implemented within πpo by πP o(δβ f O) which is

strongly continuous in a; its spectrum is purely discrete and is the set
{exp (ί p' a) p' e 1R}.

II. Let {αr}ίe]R be the group of ^-automorphisms of zl(ίR2, ξ) such that

octδXΌ = δ t m > 0 , ί e R ;

ωpo is at invariant; <xt is unitarily implemented within πpo by a strongly
continuous group of unitaries whose infinitesimal generator has a discrete

spectrum from — —^- to GO.
2m

Proof. I. Is obvious. In order to prove II we have that

- 0 if P l φ _ p 2 (3.10)

-exp i(x 1 +x 2 ) Po+ ^
\ \ L j m

which shows that {Ut, ίelR} the group of unitary operators which
implements oct is continuous; moreover that its spectrum extends from

P°-tooo.
2m
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2nd Case: Bloch Waves

In this case we shall deal with discrete translations; the in variance
group Γ is generated by a ^-automorphism τa such that

Hence
Γ={(na,0);neΈ}. (3.11)

A classical theorem [7], due to Bloch, states that if the hamiltonian of
one particle is invariant by discrete translations of the type na, neTL,
one can find eigen-solutions of the Schrodinger equation as

ψ(x) = eiqx%(x) (3.12)

where q e 0, and °Uq (x + a) = °Uq (x). Let us state the same result in

our formalism.

Theorem (Bloch) (3.13). Any pure state ω of Zl(lR2, ξ), invariant with
respect to Γ and such that x ->ω(δXtP) is continuous at x = 0 is of the form

ω{δxJ = O if P + ^ p 1 , meZ
ίπmx 2ίπnx

2πm\ = ei^e~Γ~ X / i ) ^ / ( n + m)
x>

where q e
•2π

and f is in 12(Έ) with
2 =

We shall prove the necessity of the previous formula through a
number of lemmas. The sufficiency will be much easier to prove.

Lemma (3.14). Let ω be a pure state of A (IR2, ξ) invariant with respect
to Γ; ω|\ its restriction to Δ(Γ\ ξ), is still a pure state.

According to Lemma (2.13)

ω(δxJ = 0 if (x,p)φΓ.

Moreover if ω t̂  is not pure it has a non-trivial decomposition

ω[ = α ρ 1 + ( l - α ) ρ2

and ω — ω ^ has a similar decomposition

ω = ocQi + (1 — α)ρ 2

since the invariant extension of ωh is given by Lemma (2.15).
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Lemma (3.15). Let ω be a pure state of A (Γf, ξ). Then there exists

qs\θ9-£\ such that ρίδ 2πm)= e~
2iqyωίδ 2πm) for any y e [ O , α [

is a pure state of the algebra A(TxΈ,ζ) with ρ(<5α>0)=l. Here

TxΈ = < y, ]/e[0,α[,meZl is the abelian group of the torus

multiplied by integers (with its natural topology) and

ζ:{TxΈ)x{TxΈ)~^T
defined by

II 2πm\ I , 2πm'\\ I 2iπ ,
ζ[[y,——)Λy,——)\=exp[--—{my-my)

a I \ a

is continuous bicharacter of ΎxTL.
Conversely, if ρ is a (pure) state of the algebra A(TxΈ,ζ) with

ρίδa ) = Uthenω(δ 2πm)= ei9yρίδy 2πm\is a (pure) state of Δ{Γ~ξ).

This lemma is of central importance in the proof of Theorem (3.13).
Let us define q. Since ω is pure, it is a character when restricted to the
center of Δ(Γ\ ξ) which is generated by the δna>0, neΈ.

Hence there exists q e lπ0, —\ such that
a

ίp(—iqna) neΈ. (3.16)

According to [3], Proposition (3.4) we have only to prove the ζ-positivity
of ρ given λt e <C, yt e [0, α[, mi e Έ i = 1 ... Λf

i N3 v T U i \ δi = ° i f yi = °
Uiλj Σ λiλjQ\d-yi + aδi,-^rnι Oyj> Inn^j _

-2(yτ- yj -aδι +aδij) ,^{rΠj~ mι)J

using (3.16) the previous expression is reduced to

λιAje exp i [nijyt — mtyβ

ω(δ

by positivity of ω.
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By a similar computation, it is easy to prove that if ρ is a state of
A(TxΈ, ζ) with ρ(δa0) = 1, then ω is a state of A(Γ', ξ). Then it follows
that ρ is pure if and only if ω is pure.

Lemma (3.17). Let ω be a pure state of A(Γ\ξ); then ρ, defined in
Lemma (3.15\ is continuous with respect to the natural topology of TxΈ
if and only if x-+ωίδ 2 π m \ Z5 continuous at x = 0.

The proof is obvious.

Lemma (3.18). Let ρ be a pure state of zl(ΓxlR, ζ) continuous with
respect to the natural topology of TxΈ and such that ρ(δa_0) = 1; then
there exists fe /2(Z), Il/L = 1 such that

2iτtmy 4-ίnny

oίδ ->„„]= e a 7 f(ή)e a

V ~~ά~l neΈ

This lemma follows from Theorem 1 of [9] (also see [8,10]). Collecting
these results one can see that the formula in Theorem (3.13) is a necessary
condition; the sufficiency is almost obvious.

The correspondence of our result to the usual one is obvious; the
f(n) in Theorem (3.13) are nothing but the Fourier coefficients of %(x)
in (3.12).

The states we have defined in Proposition (3.5) are invariant with
respect to any translation, hence by Γ; actually we have the following
result:

Proposition (3.19). Let ω be a pure state of A (R2, ξ) invariant with
respect to Γ and such that x -> ω(δx p) is continuous at x = 0; it is a vector
state of npo defined in Proposition (3.6). More precisely

ω(δxJ = (Φ\πpo(δxJΦ)
where

The proof requires an obvious calculation.

3rd Case: Zak Waves

As we saw previously there is a third type of closed ξ-abelian sub-
groups of (1R2, ξ); namely those isomorphic to Z 2 ; the corresponding
lattice is generated by two vectors a = (al9 a2) and α = (oq, α2), and the
abelianness of the generated group implies that

aί α2 — a2 αx = 2π . (3.20)
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According to Lemma (3.3) we shall restrict ourselves to the case where

a = (λ, 0)
V (3.21)

Definition (3.22). A Zak wave is a state ωβy of C.C.R. such that

a>βγ(δχ,P) = 0 if (x,p)+\nλ, — ^ - 1
\ λ /

2π

Proposition (3.23). Let πβv tfβv Ωβy be the G.N.S. triplet associated to

1) ωβy is pure; πβy is irreducible.
2) J^βy is non-separable.
3) V/?' and y', ωβΎ is a vector state of πβy.
4) ωβy is disjoint from any Weyl state and any plane wave.

Proof. 1) is obvious from theorem (2.18) and the maximality of the
subgroup.

2) Is a consequence of Corollary (2.19).
3) Let (x, p), (x\ p') e 1R2 one has the following obvious calculation:

(Ωβy\πβy{δXtP)πβy{δx.9p.)πβy(δ-Xt-p)Ωβy)

= Qxp(-i(xp'-px'))(Ωβy\πβy(δx,)p/)Ωβy)

= 0 if ( x , p ) φ [riλ,
λ

I I 2πm' Λ n . 2πmf

= exp — i x — pn λ\ + iβn λ + iy— h ίnm n

\ \ * I
if (x , p) = in λ,

λ

= exp jin//l(^ + /7) + ί—-— (y — x) + iπm'n'\.

Hence the result.
Let us remark that there is an orthonormal basis of #Cβy which is

indexed by the points in the rectangle Aλ

2π\
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Let us denote by \x,p)βy, (x,p)eAλ, this basis; one has

4) Since the π/?y's are irreducible it is enough to prove the non-
unitary equivalence of π 0 0 to the usual representation and to the pre-
sentation induced by the plane waves. This is achieved if one remarks
that unitary equivalence conserves the continuity properties of

λ->π(δλ{XtP))

for the usual representation

for the plane waves.
The \x,p)βy diagonalize the πβγ(δXtP) for

(x,p)= [nλ,—— , (rc,m)eZ2,
\ λ I

in the following sense.

Lemma (3.24). Within the representation πβy one has

I .1 *„ 2πm Λ \ 1.1 η o , 2 π m , \ \ ι - ^
= e x p — ilnλp — x e x p h I n λ β H — γ + πmn\\ \x,p)βy.

\ \ λ I) \ \ λ ii
Zak waves have the same relationship to the Zak k q representation

[11] that the plane waves have to the usual p representation; that is the
reason for which we choose the terminology. In what we have done we
have considered special closed subgroups of (1R2, ξ), namely those whose
generators are parallel to the axis or rectangular lattices parallel to the
axis. As far as the existence and uniqueness, or the general features of
invariant states with respect to closed abelian subgroups of (1R2, ξ) are
concerned, this is sufficient to treat the general case as a result of the
Lemma (3.3) and the trivial:

Lemma (3.25). Let ω be a state of Δ(]R2N, ξ) (resp. pure state) in-
variant with respect to some closed ξ-abelian subgroup of (1R2N, ξ) Γ.
Let M be a symplectic transformation of (IR2N, ξ) and τM the corresponding
*-automorphism of Δ(1R2N, ξ), then ω°τM is an invariant state (resp.
invariant pure state) with respect to the ξ-abelian subgroup of (1R2JV, ξ)
M-χΓ= {M^a aeΓ}.

Because of the uniqueness theorem of Stone-von-Neumann [8]
such a *-automorphism is automatically implemented within the usual
Schrodinger representation: it does not change the continuity property
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of the state. This is no longer the case for the representation we have
considered in this section as we shall see. Firstly let us give an obvious
result.

Lemma (3.26). The group of symplectic transformations on (IR2, ξ) is
isomorphic to the group of real two by two matrices of determinant one.

We can give now the following proposition.

Proposition (3.27). Let π be the representation of Zl (IR2, ί) induced
by a pure plane wave (or a Bloch state) let τM be the ^-automorphism of
Λ(\R2, ξ) corresponding to a symplectic transformation M of (IR2, ξ);
the necessary and sufficient condition for τM to be unitarily implemented
within π is that M leaves the axis (x, 0) invariant or equivalently that M
is of the form

, , _ / α β \ a,βsJR

Proof The sufficiency of the previous condition is clear. Indeed let ω
be a pure Bloch state defined by the fact that it is invariant with respect
to some subgroup Γa = {(na,0); neΈ}. It is pure and x->co(δXiP) is
continuous [cf. Theorem (3.13)]; thus from Lemma (3.25) ω ° τ M is pure
and ω ° τM is invariant with respect to

Moreover ωoχM(δxp) = ω{δax+βPt0C-ip) and the function x-*ω°τM(<5x>p)
is still continuous; then, from Theorem (3.13) and Proposition (3.19),
ω ° τ M is a vector state of π 0 [cf. Proposition (3.6)]; hence (cf. [6], 2.4.6.)
τM is unitarily implemented within π 0 .

On the other hand assume that M does not leave the axis (x, 0)
invariant

M(x, 0) = (αx, yx)

and moreover that it is unitarily implemented within π 0 so that there
exists an unitary operator U on J^o such that

Let us restrict ourselves to p = 0

The left hand side is (weakly) continuous for every x but the right hand
side has a discontinuity at x = 0 which is a contradiction.

One has already encountered this fact in Proposition (3.9) for the
group of x-automorphisms associated to the group of symplectric
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transformations

«-(ί T) Lfo-
Finally we are left with the study of relations between the Zak waves

corresponding to different lattices. We shall not treat the general case
but only the case of a rectangular lattice. The next result shows how the
equivalence classes of the representations depend in a non-smooth
manner on the shape of the lattice, which is a serious drawback for the
physical interpretation of the theory.

Proposition (3.29). Let ω± and ω2 be two Zak waves corresponding to
two different rectangular lattices along the axis of basis a{ respectively;
let Xi the corresponding characters, let πi9 J^Ί, Ωt the corresponding G.N.S.
triplets; then %1 is unitarily equivalent to π2 if and only if the ratio aL/a2 is
rational

Proof According to Proposition (3.23) we can restrict ourselves

to the case where xAnah ] = (— l)m n for m,neΈ. Then the nesessary

and sufficient condition for the equivalence of πγ and π 2 is the existence
of a vector ΦeJ^ such that

' = ( - l ) " m Φ n , m e Z (3.30)

(see [6], 2.4.6.) since by Theorem (2.18) the vector state ωφ is equal

t o ω 2 .
As we noticed previously, Φ can be written

m,n

with £ |/(rc,m)|2<oo and (xn,pm)eAai and the π1(δ5intPn)Ω1 linearly
m,n

independent.

Up to a trivial phase factor, the πt \δnaz,
 2 π m ) permute the set of

π i (δχn,pn) ̂ i ' hence in view of the in variance of Φ and the normalizability
of Φ the sum (3.31) has to be finite and given 5cf there exist p and q integers
such that

hence the result

0i/«2 = Vl<l - (3 3 2 )

Consequently we have proved the necessity of (3.32). In order to
prove the sufficiency, let us consider the case where q = ί since the
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general case can be dealt by a repeated application of this reasoning;
the vector Φ which satisfies (3.30) is easy to construct

l - ) Ω " (333)
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