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Abstract. We derive a sufficient condition for the validity of the local central limit
theorem for Gibbs processes and their isomorphism with a Bernoulli shift.

1. Introduction

It has been recently realized to the class of ^-dimensional discrete
time stationary Markov processes and the class of translation invariant
finite range Gibbs processes are in one-to-one correspondence and define
the same class of random fields [1-3] (see below for a precise statement).

To fix the notations we briefly recall the definitions. For simplicity
the space of states will be restricted to be / = [0,1]: the generalization
to / finite is straightforward.

Definition 1. A stationary Markov process on a <S-dimensional
lattice Zδ is

i) a translation invariant Borel probability measure μ on / endowed
with the product topology (/ being considered with the discrete topology);

ii) μ has the property that if A C Zδ is a finite region then the proba-
bility distribution of the events inside A is independent on the events
outside

Ad = {ξ/ξe Zδ/A, d(ξ, A) ^ d, d(ξ, A) = distance of ξ from A}

where 0 ^ d < oo and d depends on μ but not on A.
Before defining a Gibbs process observe that Izδ can be regarded as

the set of subsets X C Zδ. If X e lz& is regarded as a subset of Zδ we shall
call its points the "occupied points" and we shall refer to X as to a
"configuration"1.

1 It would be more appropriate to call such a process a <i-Markov process / or a finite
memory process since, if δ = 1, it does not reduce to the equal definition of Markov process
(unless d = 1). However it is known that one-dimensional finite memory processes are
Markov processes on a different space of states (see, for istance, [1]).
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Definition 2. A translationally invariant Gibbs process on Zδ is
i) a translation invariant Borel probability measure on Izό;

ii) a translationally invariant (real) function Φ defined over the sub-
sets of Zδ such that

Φ ( I ) Ξ O if

This function should allow express the conditional probability f(X/Y)
that a randomly chosen element Te Izό is such that TnΛ = X under the
condition that TnΛ=Y, this conditional probability should be given by:

P) (1.1)
0+ScX PCY

where N(Y) is a normalization constant and Equality (1.1) is to be
understood almost everywhere in the Kolmogorov's sense [5],

Definition 3. The function Φ above is called the potential of the
process and will be thought as a pair Φ = (μ,Φ') where μ = — Φ(ξ)
(ξeZδ: one body or chemical potential) and Φ' (many body component
of the potential) is a new potential such that Φ'(X) = Φ(X) if \X\ = (number
of points in X) > 1 and Φ\ξ) = 0iΐξeZδ.

Notice that the translation invariance implies that μ is a constant.
The notion of Gibbs process has been introduced in probability

theory by Dobrushin [1] and in Mathematical Physics by Dobrushin [1]
and, independently, Lanford, Ruelle [4]. Of course Definition 2 can be
generalized to the case d= +oo: in this case, in order that (1.1) makes
sense, one has to require [1,4]:

11*11 = Σ |Φ ;(S)|<+αo (1.2)

notice that ||Φ|| is ^-independent for ξeZδ.
The following theorem holds 2 :

Theorem 1. There is one-to-one correspondence between non-singular
(see below) stationary Markov processes and translationally invariant
finite range Gibbs processes. Two corresponding processes are described
by the same probability measure μ. Here a non-singular Markov process is
a process μ such that:

μ{{T/TcZδ\TnΛ = X})>0 Vfinite A, \/XcΛ. (1.3)

It is now relevant to ask wether or when the local central limit theorem
is valid for the above processes.

2 The proof of this theorem has been published in the case d— 1,2. It is, however,
a consequence implicit in the proof of the theorem of Griffiths and Ruelle [3]. Notice that
only the direct part of Theorem 1 is not trivial. The case d — 1 has been also proved by
Tesei (private communication).
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We shall put the problem in the following form: let A C Zδ be a finite
region and put, for XCZδ, \X\ = ( # points in X). Consider:

p(k;Λ) = μ({T/TcZ\\TnΛ\ = k}) (1.4)

where k = 0,1,2,... is an integer; i.e. p(k;Λ) is the probability that a
randomly chosen Telzδ contains exactly k points inside A. Then we
ask wether or when:

where <fc> is the average value, with respect to (1.4), if the random
variable k and σ2 is a constant dependent only on z and | |Φ| | .

Clearly a result of the type (1.5) is true when δ = 1 and A is an interval
as a consequence of Kolmogorov's theorem [5].

However for δ > 1 the statement might fail to be true even for square
/Γs and is known to be false in some of the simplest cases (i.e. d = 1
known as Ising model). In the known examples the faillure of the local
central limit theorem is connected with what is known in physics as a
phase transition (see Section 5).

In this paper we show how a powerful technique, developed in con-
nection with problems in Statistical Mechanics, can be applied to con-
struct a proof of a number of results which are also known to follow by
the combined use of the theorems proved in [1,7]. We provide some
sufficient criteria on Φ for the validity of (1.5). The estimates we give are
certainly not the best since the aim of this paper is to describe how a
technique, well known in Statistical Mechanics of low density [6],
applies to our problem.

As a byproduct we also obtain that, when (1.5) holds, the Gibbs
process is isomorphic, as a ^-dimensional dynamical system, to a Ber-
noulli shift with the same entropy: this will follow by combining the
formula ( ) in [15] and the formula (3.9) of Lemma 2.

It is known that similar results have been obtained in the works of
Ryauba [7], Halfma [16], Minlos and Halfina [17]; our technique is,
however, completely different and also allows to obtain stronger results
(like the Bernoullicity of the process).

2. The Main Results

We shall recall that the conditional probability /Λ(X/Y) given in
(1, 1) is linked with the measure μ on (J2<5, 2ί) where 21 is the σ-algebra
generated by the subsets of the form {Y\ Y CZδ, Yc\M = X) for some
finite M C Zδ, by the following relations: if A is fixed a probability measure
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on Izό/Λ can be defined for every X C A, by

JFdμ= Σ ΪF(XvY)μΛ(X,dY) (2.1)
XCΛ

where F belongs to the σ-algebra of cilindrical functions on Izδ (i.e. of
continuous functions on Izό such that F(X) = F(Xn T) for every X e Izό

and some finite TcZδ), therefore the conditional probability /Λ(X/Y)
is given by

μA(X,dY)=/Λ(X,dY)QΛ(dY) (2.2)

where QΛ is the measure on Izό/Λ defined as follows

QΛ(E) = μ{{X\XnZδ'ΛeE}) (2.3)
for any Eelza/Λ.

Let μ be now a non singular ^-Markov process and Φ be the corre-
sponding Gibbs potential with range d (see Theorem 1).

Let/Λ(X/Y) be the conditional probability functions associated with μ
[see (1.1)] and consider, for fixed YcZδ/Λ, the quantity

p(k;Λ/Y)= Σ /ΛWY), (2.4)
XCΛ

\X\=k

i.e. the conditional probability for finding exactly k occupied points
inside A knowning that the configuration outside A is Y.

Introduce the following notations 3:

εd(Λ) = \Λ\~x ( # points within d from dΛ) (2.5)

O(α) = Sa for α real if |θ| ̂  1 (2.6)

C(Φ) = 2e l | φ»(exp(e»φ | 1- 1 ) - 1) (2.7)

where & may depend on everything possible (but | 9 | ^ 1); | |Φ|| has been
introduced in (1.2).

The following theorems are our main result:

Theorem 2. Let μ be a Gibbs process with range d and let Φ = (μ, Φ')
(see Definition 3) be its potential. Assume that:

00

Σ l iyC(Φ)]*- x f t 2 <1 (2.8)
h=2

then there are functions y = y(eμ, \\Φ\\), σ2 = σ2(eμ,Φ') such that for all
AQZσ, \A\<oo and all YcZδ/A

P(k;A/Y)= . \ .eτ^'*-™» + r0(*M)) {29)

where </c> is the average of the random variable k with respect to (2.4).
3 The boundary dΛ of A consists in the points of A having a neighbor not in A.
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A consequence of the Y and A independence of σ2 and γ as well as
(3.9), that we shall see later, will be the following local central limit
theorem for the distribution (1.7):

Theorem 3. Under the same assumptions and notations of the Theo-
rem 2 the following holds:

]/2πσz

where </c> is the average of </c>y with respect to (1.4).

Notice that no assumptions are made on A (except \Λ\< +00): it
may be of arbitrary shape and even disconnected.

3. Technicalities

In this section we introduce the notations necessary to formulate
Lemmas 1 and 2. These lemmas will be the main tool to be used for the
proof of the Theorems 2 and 3.

Let A be a finite region AcZδ and fix Y C Zδ/A and let λ(ξ) be one
arbitrary complex function defined on Zδ.

It will prove usefull to study the quantity

Z(Λ,λ)= X e-
U{x)-IiX) Π \βλ{ξ)\ (3.1)

XCΛ ξeX

where
z = exp μ

and
U(X)= X Φ'(S)

= I(X,Y) =

Φ = (μ,Φf).

It is clear, after comparison with (1.1), that when λ(ξ)= 1, the function
is the normalization constant N(Y)~* in (1.1). Our main problem in this
section is to recast (3.1) into a more handable form and this is achieved
through the following Lemma 1.

We need first some notations.
Let ?β(A) be a family of sequences {nξ} with ξeA and nξ = 0,1,2,... .

ψ{Zδ) will be the set of the sequences {nξ}, ξeZδ s.t. £ nξ < oo. Obviously
ξ

we can regard the elements of ?β(A) as subsets of A with multiplicities:
they will be denoted by capital letters (as before we have denoted the
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subsets of Z: no confusion should however arise). If XeSβ(Λ), X will
be denoted the set of points ξ e A such that nξ ̂  1 (i.e. the set of occupied
points). Furthermore we put

\χ\ = (# points in X) = £ n ξ ^ \X\

X\=\\nξ\ (3.3)
ξeΛ

ξeX

c l e a r l y \X\=\X\ iff X\=ί.
The following lemma holds:

Lemma 1. // zC(Φ) < 1 then there is a real function φτ

Λ{X) on ψ(A)
s.t. for all λ's with the property \λ(ξ)\ ^ 1.

ii) if the distance d(X, dΛ) of X from dA exceeds d the functions
φτ

Λ{X) are Y and A independent (i.e. depend only on Φ)

in) Σ ^ — ^ ( Φ r 1 k=l ,2, . . . ; (3.5)
XBξ

\X\=k

iv) there are two functions K(ot,z,\\Φ\\) and k(z,\\Φ\\) s.t. for all

real as
l φy -diξ'ξ')kiz^K (3.6)

The proof of this lemma is given in Appendix A: it consists essentially
in a rewording of Section 6 of Ref. [8] which, however, contained some
combinatorial errors (although the final results were correct).

Now if A C Zδ is a finite region of Z we define the absolute probability
that the only points occupied in A are the ones in Y, as follows

/Λ(Y) = μ({T\TcZδ:TnA=Y}). (3.7)

Clearly the/^(7)'s functions have to satisfy the following properties of
consistency

i) ΣΛW=i;
YCΛ (3.8)

ii) Σ /Λ(XVY)=/T(Y) YCTCΛ
XCΛIT XCΛ.

It will be shown in the Appendix B the following lemma.
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Lemma 2. // zC(Φ) < 1, Λί and Λ2 are two finite regions of Zδ with
and X1CΛl9 X2CΛ2 the following property for the

fA(Y)'s functions holds:

-/^^)/^^)!^/^^)/^^)^^^1 '^ (3.9)

where d(Λί,Λ2) is the distance between A1 and A2 and oc=oc(z, \\Φ\\) is a
constant.

Inequality (3.9) can be used to prove that the ^-dimensional Markov
processes are Bernoulli shifts under the assumptions of Lemma 2.

4. Proof of the Theorem 2

We prove the Theorem 2 following the Gnedenko's method for the
proof of the local central limit theorem for independent variables [9]:
therefore we write the characteristic function of random variable k = \X\,
XCΛ

Ml
ψ(ή= Σ eiktp(k;Λ/Y)

k = 0

y -u(X)-κx) \x\ i,t\x\

X?Λ Z(Λ,e") ( 4 1 )
r m Z(Λ,

XCΛ

= exp Σ
Xeψ(Λ) Λ '

where in the last step the Lemma 1 has been applied and we have put
= euW = λ{X). Therefore

^- {e-itkxp{t)dt. (4.2)
2π i

We need now a simple expression for ψ(t) in order to perform the
integral (4.2). Develop the argument of the last exponential in (4.1)
according to the Schlδmilch formula of third order in t (t appears in
λ(X) ίtW)

Xeφ(Λ)

Xeφ(Λ)
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where the identification </c>y= £ z | x | |X | ^ follows, as usual,

by differentiating l.h.s. and r.h.s. of (4.1) with respect to t and setting t = 0.
We now extract the leading contribution (as |Λ.|->ΌO) to the sums

£ in (4.3). To do so we need to use (ii) of Lemma 1: call φτ(X) the
XeSβ(Λ)

translation invariant value of φτ

A{X) when d(X, dλ) > d then

(4.4 a)

y
6 ξeΛ Xsξ

(4.4b)

Σ

where in (4.4 c) the third term of takes into account the error involved
in our approximation. This error is due to two facts: if in the t2 term of
(4.4b) the summation £ is replaced by the factor \A\ and X runs over

ξeΛ

?β(Zδ), so we obtain, obviously, a larger number of terms than it was
correct. Furthermore in correspondence with the X's sets such that
XnA'jφθ (where Λ^={ξ\ξeA,d(ξ,dA)^d}9 d = range Φ), the true
value has been replaced by the corresponding translation invariant
one φτ{X).

Using ii), iii) of Lemma 1, it is easy to demonstrate that this error is
bounded by a function only dependent on ||Φ|| and z: this explains the
fact that M, in the last expression of (4.4) in a function of | |Φ|| and 2.
By the same reasoning it is possible to verify that the ί3 term (of 4.4) it
can be expressed in the form t3\A\Mx(z9 \\Φ\\) O(εd{A)). We shall put now

_2 V̂  _,X, I * ! ' ΨT(X)

and notice that (ii) Lemma 1 together with (2.5) imply

σ 2 > z - £ zhC(Φ)h-ίh2>0. (4.5)
h = 2



Local Central Limit Theorem 149

Expression (4.4) turn out be useful for small ί; for larger ί's we need only
rough estimates: suppose \Λ\~1/2+1/6^ \t\^η where η will be chosen
later. Then

exp z l * l ( A ( A ) - l ) - ^

(4.6)

^ 4?
2 Xeφ(Λ) X

where we have developed the argument of the exponential with the second
order Schlomilch formula in t.

Then

+ t2\Λ\ M2(z,\\Φ\\)O(εM))

where the inequality has been derived from (4.6) by extracting its leading
contribution with the same method used for (4.3), (4.4) and M 2 is a suitable
function.

Notice that since φτ(X)= 1 if \X\= 1

Σ z W ^

Xeφ(Λ)
h = 2

Finally suppose η ^ |ί| ^ π : we find, as for (4.4), (4.6), (4.7)

exp Σ z'
Xeφ(Λ)

Ξ e x p - Σ

and notice that

Xsξ
Xeφ(Λ)

h=2

(4.9)

We now choose η so that the l.h.s. of (4.8), (4.10) are both positive: this is
possible because of (2.5).
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It is now easy to evaluate the integral (4.2) using the Gnedenko's
method. This is most conveniently done by introducing the new variable
τ = tγ\Λ\ and by decomposing the integration interval in three parts:

It follows that the contributions of the last two integrals are exponentially
small as |Λ|->oo (i.e. they go to zero as exp— \Λ\a with 0 < α < l — | )
provided O(ε^(Λ))->0 (i.e. iϊ Λ is no too irregular), while the first region
gives the main contribution.

Formula (2.9) is found performing the easy gaussian integrals and
after some little algebraic transformations.

5. Proof of the Theorem 3

To prove Theorem 3 remark that

(5.1)

where </c> is the mean value of random variable k when Y is no fixed and
is the mean value of k with respect to (2.4).

Of course the average of </c>y over the condition Y is </c> hence

If we substitute (5.1) into (2.9) expanding the exponential function
by Schlomilch formula up to the 2-nd order in δ(kyγ and taking the
mean value with respect to Y we obtain:

|/WUi Γ ' 2σ2\Λ\ — * ) + y - y\A\

e~r2\Ar2-2\

~°° =r= + 0 0 2(7

onstrate that <(<5</c>y)
2> ̂ s t n e same order as O(ε^(yl)). Since

where M 4 = max -^—^ Therefore we must now only dem-

Σ Σ
ξeΛ ξeXeV(Λ)
ζeΛ i e ψT(Z)\ φτ(ZΓl/φT

Λ(Z)\

\\ Z! /

Let Λ'd be the region defined in Section 4, i.e.
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In (5.3) we let ξ and ζ variate only in A'd since all other terms are vanishing;
if we take in to account that the process we are analysing is a ^/-Markov
one, the mean value of the φτ

A{X) functions depends on those sets of Zδ

whose distance from dΛ is less or equal to d (i.e. the sets T s.t. TnΛ^ + 0,
where Ad has been defined in Definition 1 of introduction)

= y y J M v\
ξeΛ'd ξeXeφ(Λ)
ζeΛ'd ζe

./(/ψTΛ(χ)\_ <PTΛW\(/ΨTΛ(Z)\_ <ή

\ XI J X\ )[\ Z! / Z! )

= Σ Σ
ξeΛ'd ξeXeφ
ζeΛ'd ζeZeψ(Λ)

7\X\ + \Z\ 1^1 1^1

φτ

Λ(Z)\ /φ

τ

Λ(X)\/φτ

Λ(Z)Y

-ΎΓ) ~\-χΓ/ \-zΓ/

y y z

m+m ~
ξeΛd ξeXeφ(Λ) Î M
ζeΛ'd ζe

Σ

where ^ / ^ ^ ( y ) has been introduced in Lemma 2 and the computation
of the expectation values has been performed on the sets Y, Y1? and Y2.
Now by the previous observation it is possible to find two neighborhoods
Δx and Λz of X and Z respectively s.t. ΔxCΛd\ ΔzCΛd and the prob-
ability of X depends only on Y^s s.t. YιnΔx + β and the probability
of Z depends only on Y2'

s s t ^ 2 n ^ z + 0 ^ e must now distinguish
between two possibilities:

a) d{Δx,Δz)>3d
b) d{Δx,Δz)^d.
a) d(Δx,Δz)>3d;

we have:

(l.h.s. of (5.4))

ζeZeSβ(Λ)

UAZ(YI v Y2) ~
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and by Lemma 2

(l.h.s. of (5.5))

= Σ Σ z | x | + | z | \x\ \z\
XI Z!

( 5 6 )

Choosing now Js.t. e~ J is "little enough" and Dξ = {ζ \ ζ e A!d, d(ξ, ζ) ̂  J]
and using (iii) of Lemma 2 and (2.5) we have

(l.h.s.)of(5.6)g
ξsΛ'd

ΨTΛ(X)

X\

ΨTΛ(Z)

Z!
ζeZeψ(Λ)

\ e-a2

(5.7)

where M 5 is a suitable function of (z, ||Φ||).
b) if d{Λx,Δz)^d we have, putting Dί={ζ\ζeΛ'd9

Σ Σ Σ Σ
YeΛd YιeΛ

^ Σ Σ
ξeΛ'd YeΛd

i

+ Σ Σ

Σ *'X\ + \Z\

\x\ \Ά Z!
(5-8)

Z ! Z!

Using the same approximations as in (4.4), (4.7), we find ever for this
case b)

6. Concluding Remarks

1) The above technique is very general. Therefore its results should
be far from the best for specific choices of Φ (e.g. if δ = 1 the local central
limit theorem should hold for all the Gibbs processes with finite range [5]).

However the best results obtainaible with the technique of this paper
should be quite near to the best possible that can be obtained with the
same degree of generality.

Of course the results of this paper seem far from being the best
possible the technique can provide.
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2) A great improvement of our results could be obtained if one
could a priori be sure that

£ ZW Ψ (*) (i-cosί |Xl)>0 O ^ ί ^ π (6.1)
OeXeφ(Λ) ^ '

Σ z'"-^|*|>0 (6.2)
Xeφ(Λ)

since in this case the conditions for the validity of Theorems 2, 3 would
simply reduce to the condition for the validity of Lemma 1, i.e. simply

z C ( Φ ' ) < l .
Another improvement that it would be interesting to obtain is the

extension of Theorems 2, 3 to a region of (μ, Φ') of the form

T ^ J 1 . (6.3)

The reason why it is possible to hope for such a generalization is because
a number of results are known for Z(Λ, 1) on a region of the form (6.3) [10].

3) It is known that a process μ is ergodic (hence the fluctuations of
k - <fc> are O(Λ)) if μ is the only translationally invariant Gibbs process
having the conditional probabilities (1.1) [1,4]. It is nuclear wether one
also expects the local central limit theorem to hold under this sole
assumption: the answer is probably no, but no-example is known.

4) One can define, as mentioned in Section 1, Gibbs processes with
a potential Φ(X) which does not vanish for diamX large enough.

The technique of this paper extends to cover some of these processes:
the error term will of course become larger and connected both only with
the shape of A and the mode of approach to zero of Φ(X) as diamX-* oo
the theorem will probably fail for too slow rates.

5) There are several Φ's for which one can prove that there is just one
Gibbs process associated with the conditional probabilities (1.1). These
cases provide a number of processes for which a local central limit
theorem is expected to hold but is still umproved. Trying to solve this
problem for these particular Φ's would probably teach something of
interest.

We give just one "classic" example [11]

Φ'(X) = 0 if | X | > 2

Φ'(X,Y)=-J if \X-Y\=ί μ+-2J. (6.4)

- 0 if | X - 7 | φ l .

The above Φ's give rise to Markov processes known in Physics as
Gibbs states of an Ising model in non zero field. If 2 J is large enough
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it is known there are at least two extremal translation invariant processes
with the same conditional probabilities [12]; if J is still large it is known
that there are only two extremal states [13].

Appendix A: Proof of Lemma 1

Let %A be the space of the functions on ^β(Λ). We call

The symbol i will denote the element ie%Λ such that 1(0) = 1, _1(X) = 0
if |X |>1 . Clearly %Λ = {φf\φf e%Λ, φ'=ί +φ,φe%°Λ}.

We define on ^A a commutative convolution4

(φi'φ2)(X)= Σ <Pi(*i)<?2(*2) y f ' , (A.I)

where the sum is over all the possible decompositions of X into an
ordered pair of subsets.

Define for φ e 5°

ΣΓ ()
n=0 n

where φ° = l and φn = φ φ- φ ... (n times); (A.2) is to be understood

as (Expφ)(X)= Σ j—'•> ^e^S(yl) and the series involves only a

finite number of terms if φ e ^A. We write also with the same meaning
as for (A.2):

oo / A \n + 1

Σ " " <P"' ( A 3 )
= l "

The operator Dx is defined on %Λ as

(Dxφ) (Y) = φ(XvY) Xe φ{Λ) (A.4)

where the union X\JY takes, of course, the multiplicities into account.
We find

Dξ(ψι φ2) = (PξΨi)' Ψi + ΨiiβξΨi) ( A 5)

Dξ(Exp φ) = Dξ(φ) Exp φ V φ e %°Λ . (A.6)

4 It is at this point that there is an error in Section 6 of [9]. The error is copied in the
appendix of the paper of Ref. [14] below (with no consequences for the results) and is
corrected with notations in Gallavotti: Commun. math. Phys. 27, 103 (1972) and with
better notations in the second paper of Ref. [14]. A corrent theory of the algebra over ζΛ

has been developed also by Shen: J. Math. Physics 5, 754 (1972).
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Furthermore if χ(ξ) is a complex function on Zδ and χ(X)=
ξeX

if X= {nξ} and if φ e $Λ and φτ = Logφ are such that

Σ - ^ I z W K o o (A.7)

then

Σ

Xeφ(vl) A

Σ ^ z W = exp Σ ^ ? X W . (A.8)

This formula follows from the easily checked formal relation:

Σ Σ •(A.9)

To prove the lemma we are thus naturally led to consider φΛ e ^\
[see (3.1)]:

-vm-nx) if χι=ί

if i . > i ( A J 0 1

φΛ(φ) has to be interpreted asj..
We shall also consider φτ

Λ{X) = z^λ{X)φτ

Λ{X\
Clearly \ϊφτ

Λ=
1LogφΛ then φ'J{X) = z^λ{X)φτ

Λ{X).
Therefore in order to apply (A.8) to deduce statement i) of Lemma 1

we reed only to prove (A.7), for φΛ with χ(X) = z^λ(X). Since the first
of the two relations (A.7) is trivially true we need only prove the second.

For this purpose consider the functions:

ΛX{P) = WA λ DXΨΛ) (P) P e Ψ(Λ) (A.I 1)

for X\=\, X φ 0 ; here φΛ~
ι is defined by the equation φ'χγ '(pΛ=l

(which can be solved easily by recursion since φΛ e g^).
The interst of the above functions lies in the fact that, using (A.6)

ΔξiP) = WA X D

ξψΆ) (P) = (Ψ'Λ ' * Dξφ'J) (P)

= (φ'Λ-
 1 iDξφ'J) -

We can easily write an equation for AX(P), in fact by definition:

Δχ(P) = y Ψ'Λ\
y

PiCP (P/PlV
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notice that we can and shall assume P2 ! = 1 i.e. P2 = P2CP because of the
definition (A. 10) of φΛ and furthermore we can assume P 2 n X = 0.
Hence

ΔX{P) _ v <P7HP/P2) Ψ

ri? (PIP2V.
P2nX=0

P2CP
P2nX=

Σ Wi(X,R)
RCP2nY

where ^ is a point ^ e X\ X{1)= X/{ξί], Y is the set outside A (fixed
at the beginning) and

UΛX)= Σ Φ'(Q) ( A 1 6 )
ξieQcX

W1(X,R)= Σ Φ'(ΓuR). (A.17)

Now write (for R n l φ 0 ) :

;1(X,0)=l and

KΛX,S)= Σ Σ Π ^ - ^ ^ ^ - l ) (A.19)
n^l Rι...Rn ί=l

uRi = S

where the sum runs over all the coverings of S (see [8], p. 276): we find,
taking into account the definition (A. 10) of φΛ (putting P2 = P'u(SnP)),

ΔX(P)
= zλ(ξ1)e-VίW Σ Σ Kι(X,S)

(A.20)

Σ Σ
ScPul" TCPn

(P/P"uSuΓ)!
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Since in (A.20) Σ = Σ ' a § a i n a s consequence of the definition
P"CP/SuΓ P"CP/S<JT

of φΛ, and since

(P/P'uSu T) = (P/P'u(SnP)u T)

it follows
AX{P) _Ui(χ) τ

P] ScPuΓ TcPnξi
SnX=0

'Aχ^VnP)uτ(P/Tv(SnP))/(P/Tv(SnP))l

in (A.21) appear terms of the type ΔΦ(Q): these terms are not defined,
however, if one keeps track of them in the definition, one finds that ΔΦ(Q)
has to be interpreted as i(g) .

Put now \ΔX{P)\ ,Λ _
L = sup sup ) . (A.22)

h + k = n Xsψ(Λ) ^

Using (A.21) and \λ\^ 1 and choosing ξγ = ξ and \P\ = k, \X\ = h

Σ \A^x(P)\

\Pl=k

 P l (A.23)

Sze-u(xuξ) Σ ^ K^Xuξ^)-

\P\=k

SInZe-uaxuξ) Y \Kx(Xuξ9S)\.
SCΛKJY

The coefficient of In in (A.23) has been estimated in Ref. [8], p. 276 and
using that estimate and taking the supremum on the l.h.s. of (A.23) one
finds [see (2.4)]:

/w + 1 ^ 7 n z C ( Φ ) . (A.24)

Since I1 = \(φ'^1 Dξφ'Λ) (φ)\ = \φfA1(φ) φΛ(ζ)\= z w e fin<^

(A.25)

Formula (3.4) follows by observing that φ'J{X) = z^λ{X)φτ

Λ{X) and
using (A. 12).

The independence and translation invariance of φτ

Λ(Xy$ on A when
d(X, dλ)>d follow from the definition:

π x\
(A.26)
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and from the fact that φΛ(Xys are independent and translation invariant
(actually equal to e~U{X) or zero) if d(X,dΛ)>d. Formulas (3.5), (3.6)
follow from the remark that φ^(X) = 0 if d i a m X > | X | ^ . For details
see [14].

Appendix B

In this appendix we shall prove the statement formulated in Lemma 2.
Let us first remark that it is possible to express the/(Y)'s, introduced
in Lemma 2, trough the φΎ

Λ(Yy$ as follows: let M a finite region of Zδ

and YC A CM, XCM/Λ; we get

/Λ(Y)= Km Σ /*(XuY)= Km

y e
-u(X)-u(Y)-i(x,γ)

XcM/Λ |M|̂ α> 2, e

XCM (B.I)

Σ

XCM

where the notation ψMY(X) emphasizes the Y-dependence of those
φM(X)τs which appear in the numerator. Using Lemma 1, (i) we obtain

exp Σ
Λ(F)= lim e- *

exp Σ ΨM(X)IX]-

- Σ ^ ~ Σ
Λ ' XΦV(Λ)

β XnΛ=0

+ Σ 4γίφL,r(X
Xeφ(MM) Λ

In order to demonstrate the (3.9) formula we need to calculate
/ΛluΛl(YivY2)wheκΛ1CM,Λ

The (B.2) formula yields

lim expί-

Since d(Λ1,Λ2)>3d, in the hypothesis of Lemma 2, from the Defini-
tion 3.2 it follows I(Yl9 Y2) = 0; therefore reordering the summations in
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(B.3) and having into account obvious sets properties we have

(VX<)lφT

M,γ2(X)-φτ

M(XK (B.4)

where Λid={ξ\ξe Λu d(ξ, dΛt) ^d] i = 1, 2, and the hypothesis
d(Λi,Λ2)>3d has conceeded to put <PM,ylUy2(^) = ΦM,YiW C r e sP
^ M YIUY2(^) = (PM y 2 W ] whenever the summation was only extended
over X e ^(Ax) [resp. X e φ(Λ 2)].

Let now consider the difference K^u
from (B.4) formula we get
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If iv) of Lemma 1 is taken into account and the fact that <PM,Y I U Y 2 WS
satisfy the same properties as φΎ

M Yi(X)'s do, i — 1,2 we obtain

where α = α(Z, ||Φ||) is a suitable constant.
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