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Abstract. We derive a sufficient condition for the validity of the local central limit
theorem for Gibbs processes and their isomorphism with a Bernoulli shift.

1. Introduction

It has been recently realized to the class of d-dimensional discrete
time stationary Markov processes and the class of translation invariant
finite range Gibbs processes are in one-to-one correspondence and define
the same class of random fields [ 1—3] (see below for a precise statement).

To fix the notations we briefly recall the definitions. For simplicity
the space of states will be restricted to be I =[0, 1]: the generalization
to I finite is straightforward.

Definition 1. A stationary Markov process on a J-dimensional
lattice Z° is

i) a translation invariant Borel probability measure u on I endowed
with the product topology (I being considered with the discrete topology);

ii) u has the property that if A C Z° is a finite region then the proba-
bility distribution of the events inside A is independent on the events
outside

Ay={E/EeZ%A,d(E N 4, d(E, A)= distance of ¢ from A}

where 0 < « < o0 and & depends on u but not on A.
Before defining a Gibbs process observe that I%° can be regarded as
the set of subsets X C Z°. If X e I*’ is regarded as a subset of Z° we shall

call its points the “occupied points” and we shall refer to X as to a

“configuration” !.

! Tt would be more appropriate to call such a process a d-Markov process I or a finite
memory process since, if § = 1, it does not reduce to the equal definition of Markov process
(unless « = 1). However it is known that one-dimensional finite memory processes are
Markov processes on a different space of states (see, for istance, [1]).
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Definition 2. A translationally invariant Gibbs process on Z° is

i) a translation invariant Borel probability measure on I%°;

ii) a translationally invariant (real) function @ defined over the sub-
sets of Z° such that

d(X)=0 if diamX> .

This function should allow express the conditional probability f(X/Y)
that a randomly chosen element T e I?° is such that TnA = X under the
condition that T n A = Y, this conditional probability should be given by:

/4X/Y)=N(Y)exp- Y ) ®SUP) (1.1)
6 +ScX PcY

where N(Y) is a normalization constant and Equality (1.1) is to be
understood almost everywhere in the Kolmogorov’s sense [5].

Definition 3. The function @ above is called the potential of the
process and will be thought as a pair &= (u,d’) where u= —o(¢)
(¢ € Z°: one body or chemical potential) and ¢ (many body component
of the potential) is a new potential such that ¢'(X) = @(X) if | X| = (number
of points in X)> 1 and ®'(§)=0if £ € Z°.

Notice that the translation invariance implies that y is a constant.

The notion of Gibbs process has been introduced in probability
theory by Dobrushin [ 1] and in Mathematical Physics by Dobrushin [ 1]
and, independently, Lanford, Ruelle [4]. Of course Definition 2 can be
generalized to the case & = + o0 in this case, in order that (1.1) makes
sense, one has to require [ 1, 4]:

@)= Zé |&'(S)| < + o0 (1.2)
S>3

notice that |@| is ¢-independent for & e Z°.
The following theorem holds?:

Theorem 1. There is one-to-one correspondence between non-singular
(see below) stationary Markov processes and translationally invariant
finite range Gibbs processes. Two corresponding processes are described
by the same probability measure u. Here a non-singular Markov process is
a process p such that:

WAT/TCZ : TAnA=X})>0 VY finite A, YXCA.  (1.3)

It is now relevant to ask wether or when the local central limit theorem
is valid for the above processes.

2 The proof of this theorem has been published in the case = 1,2. It is, however,
a consequence implicit in the proof of the theorem of Griffiths and Ruelle [3]. Notice that
only the direct part of Theorem 1 is not trivial. The case « =1 has been also proved by
Tesei (private communication).
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We shall put the problem in the following form: let A C Z° be a finite
region and put, for X C Z°, |X|=(# points in X). Consider:

plk; A)=p({T/T CZ°|T A =k}) (14

where k=0, 1,2,... is an integer; i.e. p(k; A) is the probability that a
randomly chosen T'eI?° contains exactly k points inside A. Then we
ask wether or when:

plk; A)=

exp { — (k — <k))*/202 |} +0< ! ) (1.5)

)/ 2m07 4| 114l

where (k) is the average value, with respect to (1.4), if the random
variable k and ¢? is a constant dependent only on z and | ®||.

Clearly a result of the type (1.5) is true when 6 = 1 and A is an interval
as a consequence of Kolmogorov’s theorem [5].

However for § > 1 the statement might fail to be true even for square
A’s and is known to be false in some of the simplest cases (i.e. d=1;
known as Ising model). In the known examples the faillure of the local
central limit theorem is connected with what is known in physics as a
phase transition (see Section 5).

In this paper we show how a powerful technique, developed in con-
nection with problems in Statistical Mechanics, can be applied to con-
struct a proof of a number of results which are also known to follow by
the combined use of the theorems proved in [1,7]. We provide some
sufficient criteria on @ for the validity of (1.5). The estimates we give are
certainly not the best since the aim of this paper is to describe how a
technique, well known in Statistical Mechanics of low density [6],
applies to our problem.

As a byproduct we also obtain that, when (1.5) holds, the Gibbs
process is isomorphic, as a é-dimensional dynamical system, to a Ber-
noulli shift with the same entropy: this will follow by combining the
formula () in [15] and the formula (3.9) of Lemma 2.

It is known that similar results have been obtained in the works of
Ryauba [7], Halfina [16], Minlos and Halfina [17]; our technique is,
however, completely different and also allows to obtain stronger results
(like the Bernoullicity of the process).

2. The Main Results

We shall recall that the conditional probability #,(X/Y) given in
(1, 1) is linked with the measure u on (I*°, ) where 2 is the ¢-algebra
generated by the subsets of the form {Y|Y CZ°% YnM = X} for some
finite M C Z°, by the following relations: if A is fixed a probability measure
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on I?°/ can be defined for every X C A, by
[Fdu= Y [F(XUY)pu,X,dY) 2.1
Xca
where F belongs to the g-algebra of cilindrical functions on I?° (i.e. of
continuous functions on I?° such that F(X)= F(X N T) for every X e I*’
and some finite T C Z°), therefore the conditional probability /,(X/Y)

is given by
1a(X,dY)=/4(X,dY) Q4(dY) 22
where Q , is the measure on I2°4 defined as follows
Q4(E)=p({X|XnZ% € E}) (23)

for any E e I?°/4.

Let 4 be now a non singular «-Markov process and @ be the corre-
sponding Gibbs potential with range « (see Theorem 1).

Let #4(X/Y) be the conditional probability functions associated with u
[see (1.1)] and consider, for fixed Y C Z%/A, the quantity

pik; 4/Y)= XZA fAX/Y), (24)
IX|=k

i.e. the conditional probability for finding exactly k occupied points
inside A knowning that the configuration outside A is Y.
Introduce the following notations3:

e,(A)=|4|"1-(# points within & from dA) (2.5)
O(w)=38a for o real if |9|<1 (2.6)
C(®) = 2¢1?l(exp (el - 1) — 1) (2.7)

where § may depend on everything possible (but |3 < 1); ||@|| has been
introduced in (1.2).
The following theorems are our main result:

Theorem 2. Let u be a Gibbs process with range o and let ® = (u, @)
(see Definition 3) be its potential. Assume that:

T 3 @] h? < 2.8)
h=2
then there are functions y=y(e", | ®|), o*=a*(e", ®') such that for all
ACZ°, |Al< oo and all YCZ%/A

1 Ty O(e ()
k;:A)Y)= ——— . p 2%l . 4
plk: 4/Y) |/ 2n0?|A] ¢ 7 /4]

where (k) is the average of the random variable k with respect to (2.4).

2.9)

3 The boundary 84 of A consists in the points of A having a neighbor not in A.
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A consequence of the Y and A independence of ¢* and y as well as
(3.9), that we shall see later, will be the following local central limit
theorem for the distribution (1.7):

Theorem 3. Under the same assumptions and notations of the Theo-
rem 2 the following holds:

L o 00)
|/ 2n0?|A] [/ 14]

where (k) is the average of {k)y with respect to (1.4).

plk; A)= (2.10)

Notice that no assumptions are made on A (except |A] < +00): it
may be of arbitrary shape and even disconnected.

3. Technicalities

In this section we introduce the notations necessary to formulate
Lemmas 1 and 2. These lemmas will be the main tool to be used for the
proof of the Theorems 2 and 3.

Let A be a finite region A C Z° and fix Y C Z%/A and let A(¢) be one
arbitrary complex function defined on Z°.

It will prove usefull to study the quantity

Z(A, =Y, e” YOO TT [24(8)] (3.1)
where Hed e

z=expu
Ux)= ) @

6 +ScX

and

I(X)=IX,Y)= ) &(SuP)
oLpcy 3.2
=y d).

It is clear, after comparison with (1.1), that when A(&)= 1, the function
is the normalization constant N(Y)~ ! in (1.1). Our main problem in this
section is to recast (3.1) into a more handable form and this is achieved
through the following Lemma 1.

We need first some notations.

Let B(A) be a family of sequences {n.} with e A andn,=0,1,2,....
PB(Z°) will be the set of the sequences {n.}, & € Z°s.t. Y n: < co. Obviously

B

we can regard the elements of B(A) as subsets of A with multiplicities:
they will be denoted by capital letters (as before we have denoted the
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subsets of Z: no confusion should however arise). If X € B(4), X will
be denoted the set of points ¢ € A such that n, = 1 (i.e. the set of occupied
points). Furthermore we put

IX|= (% points in X)= Y n,= |X]|
z

X!=[] n! (3.3)
sed
AX)= [T [A&)]™
éeX

clearly |X|= |X] iff X ! = 1.
The following lemma holds:

Lemma 1. If zC(®) <1 then there is a real function ¢%(X) on P(A)
s.t. for all X’s with the property |A(&)] < 1.

i) Z(A,)=exp Y z"”A(X)ﬁQQ—; (3.4)
XePB () X!

ii) if the distance d(X,0A) of X from 0A exceeds & the functions
@%(X) are Y and A independent (i.e. depend only on ®);

T
iii) 5 'L;((ﬁgcw)k—l k=1,2,... (3.5)
HE

iv) there are two functions K(a,z, |®|) and k(z, || ®|) st. for all
real o’s

5 .
Y AP S Kz, @] e ORI (36)
X3¢&,¢& :
XeP(4)

The proof of this lemma is given in Appendix A: it consists essentially
in a rewording of Section 6 of Ref. [8] which, however, contained some
combinatorial errors (although the final results were correct).

Now if A C Z? is a finite region of Z we define the absolute probability
that the only points occupied in A are the ones in Y, as follows

LN =u{T|TCZ: TAA=Y}). 3.7)

Clearly the #,(Y)’s functions have to satisfy the following properties of
consistency

) Y A)=1;

Yca (3.8)
i) Y AXuY)=4(Y) YcTcA

XcA/T XC /1 .

It will be shown in the Appendix B the following lemma.
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Lemma 2. If zC(®)< 1, A, and A, are two finite regions of Z° with
d(Ay,A) =234 and X,CA,, X,CA, the following property for the
Z4(YYs functions holds:

l/Alqu(Xl Y Xz) _/AI(XI)/AZ(XZ)l §/A1(X1)/A2(Xz)e_ad(Al’AZ) (3.9

where d(A,, A,) is the distance between A, and A, and a=o(z, |P|) is a
constant.

Inequality (3.9) can be used to prove that the §-dimensional Markov
processes are Bernoulli shifts under the assumptions of Lemma 2.

4. Proof of the Theorem 2

We prove the Theorem 2 following the Gnedenko’s method for the
proaf of the local central limit theorem for independent variables [97:
therefore we write the characteristic function of random variable k = |X],

XcAa
4]

p(t) = k=20 e*'plk; A/Y)

Z e—U(X)—I(X)Zle ei,thI

z Z(A, e
= X T e U1 - Z(A,1) 0
Xca
T
=exp Y ZMAX)-1) g
XeB(4) X!

where in the last step the Lemma 1 has been applied and we have put
= "Xl = }(X). Therefore
ot

p(k;A/Y)=2—n [ e itky(t)dt. 4.2
We need now a simple expression for w(f) in order to perform the
integral (4.2). Develop the argument of the last exponential in (4.1)
according to the Schldmilch formula of third order in ¢ (¢ appears in
AX) = €'"1X1)

T
P4(X)
Y M0 - 1)

XeB(4)

(4.3)

t? A
—itkyy— 5 ¥ z'X'lez%!)

XeP(4)

2 O s s groin 2400

6 xepia X!
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T
where the identification <k)y= Y zZ¥I|X IM follows, as usual,
XeP(A) X!
by differentiating Lh.s. and r.h.s. of {4.1) with respect to t and setting t = 0.
We now extract the leading contribution (as |4|— c0) to the sums
Y in (4.3). To do so we need to use (i) of Lemma 1: call ¢”(X) the
XeP(4)
translation invariant value of ¢@%(X) when d(X, dA)> & then

T
Y M) 1) "’AO'Q (44a)
XeP(4) X!
T
—ircy -5 3 3 i oA
ted X3¢ X!
XeP(4)
(44b)
(lt lX‘\XP'eit‘ngl (PZ;(X)
éed X3¢ X'
XeP(4)
. t? X o"(X) 1
- _r x40 LT
it<kyy 5 4] Xg,o z X X! 3 A M(z, |@]) e (1)
xRz (440

+ 2|41 My (z, | D)) H(e,(4))

where in (4.4¢) the third term of takes into account the error involved
in our approximation. This error is due to two facts: if in the ¢* term of
(4.4b) the summation Z is replaced by the factor |4| and X runs over
&ed

P(Z°), so we obtain, obviously, a larger number of terms than it was
correct. Furthermore in correspondence with the X’s sets such that
XA, +0 (where A,={¢(|Ee A,d(E,0A)< &}, & =range P), the true
value has been replaced by the corresponding translation invariant
one ¢T(X).

Using ii), iii) of Lemma 1, it is easy to demonstrate that this error is
bounded by a function only dependent on ||@| and z: this explains the
fact that M, in the last expression of (4.4) in a function of ||| and 2.
By the same reasoning it is possible to verify that the ¢ term (of 4.4) it
can be expressed in the form t3|A4| M, (z, | ®|) O (e ,(A)). We shall put now

o2=Y lelﬁ " (X)
X3¢ HXH X!

and notice that (ii) Lemma 1 together with (2.5) imply

o2>z— Y 2C@)F ' h2>0. 4.5)

h=2
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Expression (4.4) turn out be useful for small ¢; for larger £’s we need only
rough estimates: suppose |4|~ 1216 <|f|<# where 5 will be chosen
later. Then

exp Z ZIX'(j.(X) ) (pA(X)
Xe¥i (4.6)

t? X
<exp— — Z z’X||X| (Re nsm) 90/1( )
2 XeP(4)

where we have developed the argument of the exponential with the second
order Schlémilch formula in ¢.

Then
2 X TX
(hs of 46 <expl— i ¥ WL g 22X
2 xae | X X!
XeP(Z2) 4.7

+ 12|A] - My (z, | 9]) O(e4(A))

where the inequality has been derived from (4.6) by extracting its leading
contribution with the same method used for (4.3), (4.4) and M, is a suitable
function.

Notice that since ¢T(X)=1 if |X|=1

y ML XP 9"(X) coslt| 9| X| = z cosn — i h*"G(@)'~ 1. (4.9)

Xa¢ |X| X! - h=2
XeB(4)
Finally suppose n < |t| < n: we find, as for (4.4), (4.6), (4.7)
T
. X
exp Y ZXl(eiIx - 1)%
XeP(4)
_ 1X| (pA( )
=exp— . z¥(1—coslt||X]) 4.9)
XeB(4)
1 —cos|t||X X
—exp{—la) ¥ oLz cosk] ') 20 1AM 18]) Ofe()
i |X] X!
XePB(4)
and notice that
— X T(x &
s (1 —coslt||X]) ¢"(X) > z(1—cosm)— 3 AC@F . (4.10)
Xs¢ 1 X1 X! h=2
XeB(4)

We now choose # so that the Lh.s. of (4.8), (4.10) are both positive: this is
possible because of (2.5).
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It is now easy to evaluate the integral (4.2) using the Gnedenko’s
method. This is most conveniently done by introducing the new variable
t=1t|/|4| and by decomposing the integration interval in three parts:

fl=14lVes Al <kl <n)/lal; n)/|AIS kI Sn)/A].

It follows that the contributions of the last two integrals are exponentially
small as [A]—> oo (i.e. they go to zero as exp—|A[F with O<a<1—13)
provided O(e,(4))—0 (i.e. if A is no too irregular), while the first region
gives the main contribution.

Formula (2.9) is found performing the easy gaussian integrals and
after some little algebraic transformations.

5. Proof of the Theorem 3

To prove Theorem 3 remark that
Ckyy=<k) +6<k>y (5.1)

where (k) is the mean value of random variable k when Y is no fixed and
{k)y is the mean value of k with respect to (2.4).
Of course the average of (k)y over the condition Y is {k) hence

K6<k)y> =0.
If we substitute (5.1) into (2.9) expanding the exponential function
by Schlomilch formula up to the 2-nd order in 6<k)y and taking the

mean value with respect to Y we obtain:
{plk; AJY)y =p(k; A)
(k—<k>)?
_ {e- SRR M4} ., 0 (52
|/ 2na? |4 2624 /4]

—p2 2
e "l4r* =2
where M, = max |—2 Therefore we must now only dem-
—w=sr+ow 20‘

onstrate that {(5<{k)y)*> is the same order as O (e (A)). Since

X1z (X Tx
wim=z 5 #rrga (5 -5

éed EeXeP(A)
A ZeP(A)
{ed (eZeP (53)

(5)-22)

Let A/, be the region defined in Section 4, i.e.
Ay={llleAd N}
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In (5.3) we let £ and { variate only in A/, since all other terms are vanishing;
if we take in to account that the process we are analysing is a «/-Markov
one, the mean value of the ¢%(X) functions depends on those sets of Z°
whose distance from 04 is less or equal to « (i.e. the sets T s.t. TN A, %0,
where A, has been defined in Definition 1 of introduction)

- SIX1+12] X1zl
cedy EeXeP(A) X121
Ledy, (eZeP(A) ,
T X T X T 7 T 7 (53)
. Pa(X) . P 4(X) ¢4(Z) . ?4(Z)
X! X! YA Z
- xi+1z1 XZ]
Cedy (eXeP(A) lXI |Zl
ledy LeZeP(A)
(5.4)

K PA(X) @42 _<¢§(X)><¢§(Z) }
X! Z! X! Z1

_ Jxi+iz) XHZL
cedy eXeP(A) 1X11Z]
LeAdy (eZeP(A)
P4(X) </>T(Z)
» o L a0 = a XD £ (Y]

Yedy Yiedy
Yiedy
where the #, (Y) has been introduced in Lemma 2 and the computation
of the expectation values has been performed on the sets Y, Y;, and Y,.
Now by the previous observation it is possible to find two neighborhoods
Ay and A, of X and Z respectively s.t. 4yCA,; A,C A, and the prob-
ability of X depends only on Y;’s s.t. Y;n4y=+0 and the probability
of Z depends only on Y,’s s.t. Y,nA4,+@. We must now distinguish
between two possibilities:
a) d(dx,4,) >34
b) d(dx,4,)L34.
a) d(dy,4,)>34;

we have:
(Lh.s. of (5.4))
T
- Jxi+iz) 1XZ] e4(X) 042 5.5)
fezAil éexez‘n(m X11Zr y,;,x X! Zz!
LeAdy (eZeP(A) Yacdz

’ (/Aquz(Yl uY,) —/AX(Y1)/AZ(Y2))
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and by Lemma 2
(Lh.s. of (5.5))
X 12| P A(X) rpT<Z)
= Axi+iz XTIZL i y
éezA; éexgnm) X11Z] /=, Xg Fax(Y)-
tedy leZeP(4) Yaedy

./AZ(Yz)e—ad(AxAz)

= X|1z] / eAX)\ / oA2Z)\ _

— Z|X|+]Z| | ad(Ax,4z) . 56

Z, o AN INANA ¢9
ledy leZeP) _

Choosing now d s.t. e is “little enough” and D, = {{|{ e A, d(&, ) < }

and using (iii) of Lemma 2 and (2.5) we have
PaX) l <PA(Z) ~ad
X!

X1z
(Lh.s) of (5.6) < A+ | <
éezA:; «:exgnm) 1X11Z|
leDs (eZeP(A) (5.7)
= M;s - |A4] O(e (A1)
where Mj is a suitable function of (z, || ®||).
b) if d(dy, 4,) <34 we have, putting Df¢={(|{e A}, d(&, ) <34},

YOy oy oy ez X2 0aX) 0i@)

{eAd EeXeP(A) Yedy Yiedy IXI 'ZI X' Z'
ZGD;; {eZeB(A) Yiedy

[/Ad Y) /A,,(Y1)/A,,(Y2)]=

AX) | | 94(2)

< SXI+12] 1X11Z] | ¢al A | Y) (58
&ez/:ld Y;,, LEK;BW [X11Z] X! /aAY)
tcDé {eZeP(4)

X||Z| | 9a(X) (Z)

n xi+iz | Y /o (Y
2 h;d{@%m X112 | X fa 1) falTa)
{eDe Yaedyl (eZeB(A)

Using the same approximations as in (4.4), (4.7), we find ever for this

case b)

{(B<k>y)*> = 4] Mg - O(e /(). (59

6. Concluding Remarks

1) The above technique is very general. Therefore its results should
be far from the best for specific choices of @ (e.g. if d = 1 the local central
limit theorem should hold for all the Gibbs processes with finite range [ 5]).

However the best results obtainaible with the technique of this paper
should be quite near to the best possible that can be obtained with the
same degree of generality.

Of course the results of this paper seem far from being the best
possible the technique can provide.
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2) A great improvement of our results could be obtained if one
could a priori be sure that

T
X
LD x>0 0<t<n 6.1)
OeXeB(4) X!
T
(X
OZ 21X ¢—)('_) [X[>0 (62)
eX .
XeP(A)

since in this case the conditions for the validity of Theorems 2, 3 would
simply reduce to the condition for the validity of Lemma 1, i.e. simply
zC(P)< 1.

Another improvement that it would be interesting to obtain is the
extension of Theorems 2, 3 to a region of (i, ') of the form

T+ olen<t. (6.3)

The reason why it is possible to hope for such a generalization is because
anumber of results are known for Z(A, 1) on a region of the form (6.3)[ 10].
3) It is known that a process yu is ergodic (hence the fluctuations of
k — (k) are O(A)) if u is the only translationally invariant Gibbs process
having the conditional probabilities (1.1) [1, 4]. It is nuclear wether one
also expects the local central limit theorem to hold under this sole
assumption: the answer is probably no, but no-example is known.

4) One can define, as mentioned in Section 1, Gibbs processes with
a potential ¢(X) which does not vanish for diam X large enough.

The technique of this paper extends to cover some of these processes:
the error term will of course become larger and connected both only with
the shape of A and the mode of approach to zero of #(X) as diam X — co;
the theorem will probably fail for too slow rates.

5) There are several @’s for which one can prove that there is just one
Gibbs process associated with the conditional probabilities (1.1). These
cases provide a number of processes for which a local central limit
theorem is expected to hold but is still umproved. Trying to solve this
problem for these particular @’s would probably teach something of
interest.

We give just one “classic” example [11]

»(X)=0 if |X]>2
(X, Y)=—J if X—Y|=1 p+-2J. (6.4)
=0 if [X—Y|*1.

The above @’s give rise to Markov processes known in Physics as
Gibbs states of an Ising model in non zero field. If 2J is large enough
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it is known there are at least two extremal translation invariant processes
with the same conditional probabilities [12]; if J is still large it is known
that there are only two extremal states [13].

Appendix A: Proof of Lemma 1
Let &, be the space of the functions on (A). We call

i={0loeFs00)=0}; Fi={eloeFso@)=1}.

The symbol 1 will denote the element 1 € &, such that {(@) =1, 1(X)=0
if |X|> 1. Clearly Fx={¢'|¢' € F1, ¢' =1+ 0,0 F3}.
We define on &, a commutative convolution*

X!
(@1 @) (X)= (X)) 02(X5) 5+ (A1)
1 P2 Xlu;z=Xq)1 1) P2l A, X, X,
where the sum is over all the possible decompositions of X into an
ordered pair of subsets.

Define for ¢ € &

4

- (A.2)

M8

Expo =

n

where ¢°=1 and ¢"=¢ ¢ - ¢ ... (n times); (A.2) is to be understood

"X ..
as (Expo)(X)= ) (’Drf' ) ; X € P(A) and the series involves only a
n=0 .
finite number of terms if @ € F4. We write also with the same meaning

as for (A.2):

Logl+¢)= ) kin)i~<p”- (A3)

n=1
The operator Dy is defined on &, as
Dx) (Y)=0(X0UY) XeP(A) (A4)
where the union X UY takes, of course, the multiplicities into account.
We find
D.:(@l '(Pz)=(D§(P1)'€02+§01(D§(P2) (A5)
D(Exp@)=D.(¢) - Expp VoeF;. (A.6)

4 Tt is at this point that there is an error in Section 6 of [9]. The error is copied in the
appendix of the paper of Ref. [14] below (with no consequences for the results) and is
corrected with notations in Gallavotti: Commun. math. Phys. 27, 103 (1972) and with
better notations in the second paper of Ref. [14]. A corrent theory of the algebra over &,
has been developed also by Shen: J. Math. Physics 5, 754 (1972).
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Furthermore if y(£) is a complex function on Z° and y(X)= [] [x(¢)]™
éeX

if X={n.} and if p € §} and ¢" =Loge are such that

X
3 i< (A7)
then
s Tl
XeP(4) X!
"X
I S =ep ¥ CEL00. (4

This formula follows from the easily checked formal relation:

(@1 9,) (X)

x(X)=
XePB(A) X!

XeB(4)

) ;M&g{l 2(X)].(A9)

To prove the lemma we are thus naturally led to consider ¢, e &}
[see (3.1)]:

R g

0 if X!>1 (A.10)

(X)) = {
¢ 4(¢) has to be interpreted as 1.

We shall a]so consider ¢%(X) =X 1(X) 0% (X).

Clearly if % = Log¢ 4 then ¢'f(X)= z|X| A(X)o%(X).

Therefore in order to apply (A.8) to deduce statement i) of Lemma 1
we reed only to prove (A.7), for ¢, with y(X)=zX11(X). Since the first
of the two relations (A.7) is trivially true we need only prove the second.

For this purpose consider the functions:

Ax(P)=(@ ' Dxon)(P) PeB(A) (A.11)

for X!=1, X+@; here ¢/, ! is defined by the equation ¢’; ' @, ,=1
(which can be solved easily by recursion since ¢, € ).
The interst of the above functions lies in the fact that, using (A.6)

A:(P)= (¢ ' D:9) (P)= (s ' " D:@'{) (P)
=(p ' (D:0.f) Expel{) (P)

(A.12)
= (¢4 ' (D@ ) 94) (P)
—(D¢<PA (P)= o)y (fUP)-
We can easily write an equation for 4,(P), in fact by definition:
-1
x(P) z ¢4 (P/P,) ¢A(P2UX) (A.13)

picr (P/Py)! p,!
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notice that we can and shall assume P, ! = 1 i.e. P, = P, C P because of the
definition (A.10) of ¢, and furthermore we can assume P,nX =4.
Hence

Ax(P) _ Z @ "(P/P,) @4(XUP,) (A.14)
P! ricp (P/Py)! 1!
PynX=90
1« [(P/Py)
— 2 A(E) e U1 ¢ _(P/P SXDUP (P
(€y) PzZCP PP, ( 2)
PanX=s (A.15)

- r WiX,R)
ce " UXMUP)—IXMDUPy) . e RcPnY

where ¢, is a point &; € X; XW'= X/{&,}, Y is the set outside A (fixed
at the beginning) and

Ui()= ) Q) (A.16)
£1eQCX
Wi(X,R)= Y @(TUR). (A7)
&1eTcX
Now write (for RN X =+ 0):
- I Wix%R
e RePany = [] "*RP_1+)= )Y KX, (A.18)
RCPauY ScPauY
with K,(X,0)=1 and
Ki(X,9=Y Y [JlMm*Ri_y (A.19)
n=z1 R;j..R, i=1
UR;=8S

where the sum runs over all the coverings of S (see [8], p. 276): we find,
taking into account the definition (A.10) of ¢ , (putting P, = P'U(SNP)),

T LD Y W
‘ Prfi=0 SoRos (A.20)
T {(P/Py)
o (XD P,y Pa_(PIP3)
o ( 2) (P/P,)!
=zA(EDe VO Y K (X5 Y (—)T
ScPuy TcPné

. o {(P/P"USUT)
pedisorn P/PTUSUT)!

@ (XVUSNP)UTUP).
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Sincein(A20) Y = ), againasconsequence of the definition
P"CP/SUT P"CP/SUT

of ¢ 4, and since N
(P/P'USUT)=(P/P'U(SNP)UT)

it follows

Afa(f))wz(éoe-”'m y Kx.S 3 (=)' (A2
. gfc\f{i}; TCPn¢éy

“AxiosaporP/TUSAP)/(P/TU(SAP))!

in (A.21) appear terms of the type 4,(Q): these terms are not defined,
however, if one keeps track of them in the definition, one finds that 44(Q)
has to be interpreted as 1(Q).
Put now |45(P)]
I,= sup sup .
h+k=n XeP(A) PCP(A) P!

hz1  |X|=h =
Vo |Pl=k

Using (A.21) and |A| =1 and choosing ¢, =¢ and |P|=k, |X|=h

(A.22)

|4, x(P)l
T
e (A.23)
5(P P
__<_Z€_U(XUO Z Z KI(XUf,S)' Z |AXu(SnP)( /TUESQ ))I
P ScPuy TcPu¢ (P/TU(SF‘P))!
|P|=k
SLze U109 Y K(XUE ).
ScAvY
SnXué=90

The coefficient of I, in (A.23) has been estimated in Ref. [8], p. 276 and
using that estimate and taking the supremum on the Lh.s. of (A.23) one
finds [see (2.4)]:

L., <LzC(®). (A.24)
Since I = [(@); ' D)) (D)= 10 ' (#) - ¢ 4(&)| =z we find
L1 Sz(zC@). (A25)

Formula (3.4) follows by observing that ¢'](X)=z%11(X)¢%(X) and
using (A.12).

The independence and translation invariance of ¢%(X)’s on A4 when
d(X,0A)> & follow from the definition:

@4(X)=[Logo,(X)]

_qyptt
-y 2V

n>1 n X;UX20 - UXp=X

4(Xy) (A.26)
[1-743 } X!

i
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and from the fact that ¢ ,(X)’s are independent and translation invariant
(actually equal to e™Y™ or zero) if d(X, 84)> <. Formulas (3.5), (3.6)
follow from the remark that @%(X)=0 if diam X > |X|«. For details
see [14].

Appendix B

In this appendix we shall prove the statement formulated in Lemma 2.
Let us first remark that it is possible to express the #(Y)’s, introduced
in Lemma 2, trough the ¢%(Y)’s as follows: let M a finite region of Z°
and YCACM, XCM/A; we get

e UX-UM-IX.Y)

— i I XcM/A
falY) = M}llf_{lw XC%M/M(XU Y)= |A141|Too Y e U™

XcM (B.1)
Z ®u,y(X)
= lim e UM X4
|M|- Z (pM(X)
XM

where the notation ¢, y(X) emphasizes the Y-dependence of those
¢ (X)’s which appear in the numerator. Using Lemma 1, (i) we obtain

exp Y. @ y(X)/X!

Y)= lim e UM XePM/A)
alY) = Jm e exp 5 oL(X)X!
XeB(M)
. TX T(X
=A141m e UWexpy— ) 40_1‘;((‘_)_ y %)’((') (B.2)
IM|- o0 XeP(A) . ;{ésﬁ(_A; :

1
+ Y Sy [enX0) - eh(X)].
XePBM/A) .
In order to demonstrate the (3.9) formula we need to calculate
Fi04,(Y1UY,) where A, CM, A, CM, Y, CAy, Y,CA,.

The (B.2) formula yields

/Alqu(},lUYZ)
T T
— ¢ U0 i expd — y ou(X) Pou(X)
- p 1 Z !
M|~ Xep(fioay X! Xep(foay X!
Xn(Arudz)=0

+ Y WXD Loy, or(X)—eu(X)].

XePM/A10 A7)

Since d(A,, A,)>3«, in the hypothesis of Lemma 2, from the Defini-
tion 3.2 it follows I(Y;, Y,) =0; therefore reordering the summations in
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(B.3) and having into account obvious sets properties we have
Fao,(Y10Y))

T T
= VU Jim expd— Y ou(X) B Pu(X)
M~ e xe(ay X! xebiay X!
u(X)
+- P+ T (XY [0, (X ()]
XeB (A1 A2) : XeP(M/A1)
XéP(A1) XA, #0
X¢P(42)
+ > (/XY [oir, v, (X) — @3(X)]
XeB(M/41)
Xn Ald*ﬂ
Xn(A2ud2,)*0
+ > (/X [@g,v,(X) — 93(X)] (B.4)
XeP(M/A2)
XﬁAzd¢0
+ - Y (1/X ) [par, v,(X) — @3(X)]
XePM/A;
Xr\Azd,#‘@
Xr\(AduAu)#@
+ Y (WX Yok v, or(X) — ou(X)]
XeB(M/A10 Ar)
XmA1d4=@
Xndy, #0

where A;,={¢|leA;, d(E 04)< 4} i=1,2, and the hypothesis
d(Ay, A,)>34 has conceeded to put ¢y, ,y,(X)= @ y,(X) [resp.
@t v,0r,(X) = @41 v,(X)] whenever the summation was only extended
over X € P(A,) [resp. X € P(A4,)].

Let now consider the difference |/, 4,(Y1UY,) =74, (Y1) Za,(YD)ls
from (B.4) formula we get ‘

Vaoa(Y1UY)) — /(Y1) £, (Y2)|

. o (X))
< lim £y (V) /4, (Y,) exp g — Z “M—,"“
|M|~ 0 Xep(fioay X!
X¢PB(A1)
T(X)| X¢P(A2)
T I N [ A C R e
X¢P(A1v42) . XeB(M/Ay)
Xnd =+ XnAg,+0
XmA24=g Xm(AuudAl)#@ (BS)
+ - ) (1/X ) [oar, v,(X) — @3(X)]
XePB(M/A2)
XAz, 40
Xr\(Azdqu)¢ﬂ
+ Y (/X ) @3, v, 01, (X) — @3g(X)] .
XePBM/A1U A2)
XnAld-’Fﬂ

XnAz, +0
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If iv) of Lemma 1 is taken into account and the fact that ¢ y, ,y,(X)’s
satisfy the same properties as @7 y (X)’s do, i= 1,2 we obtain

l/A, qu(Y1 uY,) _/Al(Yl)/Az(an §/A1(Yl)/Az(Yz)e_ad(Al’AZ) (B.6)

where o= o(Z, || @) is a suitable constant.
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