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Abstract. We investigate the rate of convergence of the Haag-Ruelle approximation
Ψ(t) at large times ί for arbitrary collision states Ψ with finite energy. An improved estimate
of the norm distance || Ψ — Ψ{t)\\ is given. In particular for states Ψ with smooth asymptotic
wave functions it turns out that \\Ψ- Ψ(t)\\ approaches 0 almost like ί"3/4.

I. Introduction

The fundamental work of Haag [1] and Ruelle [2] established the
existence of states which can be interpreted as asymptotic particle
configurations within the framework of quantum field theory. Since
this ingenious construction is by now well known it may suffice to
sketch the procedure briefly: given any incoming or outgoing particle
configuration one can construct sequences of vectors Ψ(t) in a Hubert
space 3>f by applying products of suitably chosen almost local one-
particle creation operators at time t to the vacuum vector. These Haag-
Ruelle approximations converge strongly in the limit of large negative
and positive times and the limit vectors Ψin and Ψoui correspond to the
given incoming and outgoing particle configuration respectively.

One might think that one can forget about the approximations
Ψ(t) once one has constructed the collision states Ψin, Ψout since all the
information relevant for physics is contained in matrix elements which
are computable from these vectors. However, for some problems it is
sufficient and much simpler to consider the approximations of a given
collision state instead of the state itself. Several interesting results in
collision theory have been derived from the well known kinematical
properties of the vectors Ψ(t) at finite times t and the convergence
behaviour of the sequences Ψ(t). For example, Araki and Haag showed
that local observables provide a direct interpretation of scattering
states as asymptotic particle configurations [3]. For a detailed summary
of results of more technical nature see the lecture notes of Araki [4]
and Hepp [5].

In all these investigations, the crucial point is to derive an adequate
estimate for the norm distances \\Ψin-Ψ(t)\\ and \\Ψout-Ψ(t)\\ at large
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negative and positive times t respectively. In the papers quoted above
such estimates are given for asymptotic configurations which are well
behaved: technically speaking, the wavefunctions corresponding to the
asymptotic particle configurations are supposed to be elements of the
Schwartz-space £f. Unfortunately, such configurations are not the
only important ones in collision theory. Under the influence of in-
teraction even those states with a smooth incoming wavefunction can
have an outgoing configuration which, in many cases, can no longer be
described by a function from 9*. Thus one is forced to consider wave-
functions which are not continuously differentiable if, for example,
one is interested in the spatio-temporal behaviour of collision states.
For this reason we investigate the convergence behaviour of the Haag-
Ruelle approximations Ψ(t) for arbitrary asymptotic configurations.

In this paper we give an estimate which clarifies the connection
between the degree of singularity of the wavefunctions in momentum
space and the decrease of the norm distances \\Ψin — Ψ(t)\\ and
|| sprout — ιp(£)|| for asymptotic ί. Moreover, for smooth wavefunctions
our estimate is an improvement on previous known ones: it turns out
that | | !P 0 U t-y(ί) | | approaches 0 almost like r 3 / 4 for large t. (An
analogous statement holds for the states Ψm.) This is only a slight
modification of the asymptotic t~1/2 behaviour which was proved by
Haag and Ruelle [1], [2]. Yet we shall show in a forthcoming paper that
our result is the optimal one to be expected within the general framework
of quantum field theory. There should be models compatible with the
basic postulates in which our result can not be improved.

Our methods of proof can easily be carried over to the case of non-
reίativistic potential scattering theory for short range potentials. We
want also to point out that our arguments can be applied in a model-
world of arbitrary spatial dimension. We do not need to assume that
the dimension of space is greater than 2.

II. Assumptions and Definitions

Our arguments do not depend very sensitively on the framework in
which the basic postulates of quantum field theory are expressed.
Since we want to avoid all unnecessary complications we shall formulate
our assumptions in terms of the field-algebra1 instead of the field-
operators (Wightman-fields) themselves. Thus we shall never have to
worry about domain questions etc. Yet at the expense of increased
technicality we could have derived our results in the Wightman-frame-

1 Roughly speaking, the field algebra is generated by all bounded functions of the
selfadjoint components of the fields.
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work [6] as well. For the sake of simplicity we shall furthermore restrict
our attention to a theory with only one kind of particle which we shall
assume to be a massive neutral boson with spin 0.
With these simplifications, the Hubert space ffl of all physical states is a
direct sum of the 1-dimensional space {c Ω} corresponding to the
vacuum, the one particle space Jfx and the space of the collision states.
We assume furthermore that 2tf carries a continuous unitary representa-
tion of the translations x = (t,x)-^U(x) and that the vacuum Ω is the
only vector invariant under the action of U(x). In this paper we neither
make explicitly use of the Lorentz-covariance nor of the local properties
of the field algebras nor of the positivity of the energy. (For a review of the
basic postulates see [4].) But we shall use some properties of a relativistic
quantum theory which are consequences of these fundamental assump-
tions. It is crucial for our argument that there exists a set 0> of almost
local i-particle creation operators with properties specified in the
following theorem [3], [7]:

Theorem. For each compact set KClR3 there exists a bounded
operator A e 0* such that

i) AΩ is a one particle state, AΩe^, and ,4*Ω = 0.
ii) the ί-particle wavefunctίon of AΩ in momentum space is constant

on K, more precisely:

{p,AΩ) = (2π)~3/2 for peK.

iii) the Fourier transform A(p) of A(x)= U(x) AU~ί(x) has compact
support (in the sense of distributions). As a consequence, the derivatives
of A(x) with respect to the translations exist in the norm topology.

iv) A together with its derivatives is almost local. By this we mean
the following: let Al9 ...,An stand for A, a derivative of A or their adjoints.
Then the truncated vacuum expectation value of the translated operators
has the following decrease property:

\(Ω,Aί(xί)...An(xn)Ω)τ\^φ(Σ\Xi-Xj\

φ is a continuous, monotone function which decreases faster than any
inverse power of its argument, lim vNφ(v) = 0 for all N e N.

v-* GO

The set & will be used in the following to construct the collision
states: let Ψf^ be a vector in J f corresponding to an outgoing n-particle
configuration with a momentum distribution/n(Pi ... pn). (Ψfn is defined
analogously.) If fn(pί ... ρn) has compact support in IR3" we can find a
compact set K CIR3 such that supp/ π cK". (Kn is the rc-fold Cartesian
product of K.) Corresponding to K we take an operator A from 9
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with properties listed in the theorem and construct the Haag-Ruelle
approximations of Ψ™\

Ψfβ) = j tl d3xJn(t\xi - xn) A(t,Xl)... A(t,xn)Ω . (1)
1=1

Here we have introduced the configuration space wavefunction at time ί,

/ B ( ί | x 1 ...xn) = (2πΓ3"<2$ Π d3

Pιe-i'ω'+i"""-fn(p1 ...pn) (2)
1=1

using the abbreviation cθι = (opι = (\Pι\2 + μ2)i/2; μ is the mass of the
particle. As we remarked in the introduction, the work of Haag and
Ruelle implies that the sequence Ψfn{ή converges strongly towards
Ψ}* and that | | Ψ } * - Ψfn{t)\\ g>c Γ1/2"for large positive t if the wave-
function fn(pι .../>„) is smooth. For a special class of configurations
which are characterized by smooth wavefunctions fn with "non-over-
lapping momenta"2 Hepp [5] and independently Araki and Haag [3]
could give a much better estimate: for ί > 0 and any NeN

This observation will be the starting point for our work.

ΠI. Approximation of Arbitrary Collision States

We shall show now how the Haag-Ruelle approximation Ψf{t)
converges if / 3 is an arbitrary square-integrable wavefunction with
compact support in momentum space. The underlying idea of proof
is very simple: we split the function / into the sum of a smooth function g
with non-overlapping momenta and the (possibly) singular remainder
Δf = f — g. According to Eq. (1) in the preceding chapter we get then
a decomposition of Ψf(t):Ψf{t) = Ψg(t) + ΨAf(t). Now Ψg(t) converges
very rapidly towards Ψ°ut for large t (see relation (3) above) and ΨAf(ή,
Ψ™/ both have small norms if g is a reasonable approximation of /.
So one has only to find an appropriate decomposition of/ at each time t
in order to get a good estimate for the rate of convergence of || Ψ}nt — Ψf(t) ||.

For a quantitative result we need an estimate of the asymptotic
behaviour of Ψg(t) which is better than the one given by inequality (3).
We have to control how the constant cN in this relation depends on the
properties of the function g. For this purpose we introduce a set of

2 The function fn is said to have "non-overlapping momenta" if the support of

fn(Pi ••• Pn) n a s a finite distance from the planes Pi — Pj = 0, iΦy in 1R3", n^2.
3 Here we have omitted the index n of / since we shall consider throughout this

chapter only w-particle states and their approximations.
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norms on the linear subspace 6f(R3n) of C9*(1R3M) which is spanned by the
functions with non-overlapping momenta.

Definition. Let g be an element of ^°(IR3"). Then for each NeN
we define a norm \\g\\N of g by

111= Σ Σ
3N

1=1

1 "N+i

rm Jrml

Here we have introduced the multi-index (j)=jι J3« l/i = Σ Jι
1 = 1

Besides the norms \\g\\N we shall also consider the norm ||gr|| of g in

L20R3"),

1=1

With this notation we are now able to state our main result:

Theorem. Let f be an element of L2(lR3n) with support in a given
compact region K n of momentum space4. Then the following inequality
holds for arbitrary elements gs 5^(lR3n) and N e N , N > 1:

||*Fy u t - Ψf(t)\\ ^cN \\g\\N t~N + 1 + c | | / —#11 for ί > 0 . (4)

The constants cN and c neither depend on f nor on g but they may depend
on the size and location of K. (An analogous result holds for Ψ'f.)

Before we start to prove this theorem let us discuss some conse-
quences. It is obvious from the theorem and from the definition of the
norms || . Ĥ  that there are two independent sources for a slow decrease
of the norm distance \\ΨfUi — Ψf{f)\\ for large t: a bad momentum space
behaviour and possible threshold contributions (at the points Pi = Pj,
iφj) of the wavefunction /. Corresponding to this fact one splits up the
function / into a singular and a non-singular part and then decomposes
the non-singular part into a threshold contribution and a function
with non-overlapping momenta. The last term can then be taken as a
suitable approximation of/.

The first step of this procedure may be performed by a convolution
of/with smooth approximations of the ^-function: let φ be any element

4 We do not need to mention explicitly that f(ρ1 ... ρn) must be totally symmetric in
Pi ... pn since it is an asymptotic wavefunction.
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of ^(1R3") with compact support in momentum space and satisfying
n

the normalisation condition j f ] d3pιφ(p1 ... pn)=ί. Then the functions
1 = 1

= ί ft < * V s'Wsfo-qJ ... s[/»n-«„])• / ( g i ... qn)

are elements of ^(1R3") with support within a fixed compact region
of momentum space. It is easy to verify that the norms of the derivatives
Άj)(Pi ••• Pn) in L20R3") have the bounds \\fs

u)\\ £cm (1 +slj) and that
Wf-fsW approaches 0 if s becomes large. We divide the wavefunctions
/ into classes with the same degree of singularity in momentum space
by looking at the rate of convergence of \\f — fs\\.

Definition. The linear space Mα(lR3n), α > 0 is generated by the
wavefunctions / (with compact support in momentum space) for which
one can find an approximating sequence fs,s^ί5 with the properties:

i) fs(Pi ••• Pn) has (for all s^tί) its support within a fixed compact
region oflR3".

ii) Il/Pll Scm(i + s | j |) for all multi-indizes (j).
iii) | | / - / J ^ c s-α.

The set of those functions which are not contained in any of the spaces
Ma0R3M), α > 0 will be denoted by M0(lR3/ί)6.

The second step is to remove the threshold contributions from fs.
To this end we take a function &e^°°(IR3); h(u) = 0 for | u | ^ l and
h(u) = 1 for |u| ̂ 2 . This function will be used to construct the smooth
approximations frs with non-overlapping momenta:

frJPi -Pn)- Π kr[pm-JV]) fs(Pi -Pn), r ^ 1.
m>m'

It follows from the support properties of (1 — h) and the smoothness of

fs and h in momentum space that | | / —/ r ,J ^ H/ — / J + c l —

c being independent of r and s. A straightforward calculation also shows
that \\fr,s\\NScN'rN -{r + s)N for r, s ^ l ; the constant cN again does
not depend on r and s.

Now we replace g in relation (4) by the 2-parameter family frs.
The following inequality which holds for arbitrary N e N, N > 1 is

5 The explicit construction of fs given above need not be optimal.
6 To illustrate this somewhat technical characterisation of the wavefunctions let us

give an example: / is an element of Mα(lR3n) if the configuration space integral

exists.

s χ 3 / 2
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then a consequence of the estimates just given:

for t > 0

with constants cN, c, c' not depending on r, s or t. It is easy to minimize
the right hand side of this inequality with respect to r and s and one
obtains:

Corollary, i) Let f be an element of Mα(lR3"), α > 0 . Then for any

3α

6~+4α
positive y < ^ ι Λ— there exists a constant cy such that

\\Ψo

f

ut-Ψf(t)\\Scy Γy for ί > 0 .

ii) For fe Mo0R3") and y<\we get the estimate

\\Ψ^-Ψf(t)\\Scy'd(ty) for large t.

(Here we have introduced the distance function d(s)= H/ — /J.)
Loosely speaking, || Ψ}nt - Ψf{t)\\ approaches 0 almost like r 3 α / ( 6 + 4 α )

for α < oo and like t~3/4 for α = oo. It is the threshold contributions that
prevent the norm distances \\ΨfUt — Ψf(t)\\ from decreasing faster than
ί~3/4, even for smooth wavefunctions /. For wavefunctions vanishing
at the thresholds Pi = Pj, i=¥j one can get better estimates (depending
on the order of the zeros and α) for the rate of convergence of the Haag-
Ruelle approximations Ψf(t). Since the argument is the same as above
we leave the details to the reader.

Now we come to the postponed proof of the theorem. We start
with a trivial lemma clarifying the connection between the difference
of the momenta (p — q) and the difference of the corresponding velocities

2
op ω

Lemma 1. i) The 3 x 3-matrix R(p, q) defined by

ωp + ωq

i, k= 1, 2,

transforms ) into (p — q).
ωq

p q

ii) The components of this matrix are arbitrarily often differen-
tiable with respect to p and q and the derivatives are bounded for all
(/) according to

\RiJ)(
(The proof of this statement is trivial and can be omitted.) We need the
matrix R(p,q) to construct some operators which will occur later in
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our estimates. These operators are defined on the functions ge
let α φ b be any two elements of the index set {1 ... n}, then

tG) (/>! Pn) = R(Pa> A) ,, ,2 SiPl -Pn)
(Pa ~ Pb) ~,

\Pa~Pb\
2

and

It is obvious that the function (Tabg) and the components of the vector-
valued function (Sabg) are again elements of y(IR3"). Since the definition
of the norms || . \\N has been adjusted to the properties of the operators
Sab and Tab one can easily verify the following proposition:

o

Lemma 2. Let g be an element of £f(βrn). Then there exist for all
N e {0, N } certain constants cN and c'N (not depending on g) such that

\\(Sabg)ι\\N^cN'\\g\\N + 1 for Z= 1,2,3 and \\(Tabg)\\N£c'N \\g\\N + 1.

(Here || . | | 0 stands for the L2(lR3n) norm || . ||.)

In the next lemma an important estimate is given for the asymptotic
behaviour of the configuration-space wavefunction g{t\xί ... xn)

7 at
large times t

Lemma 3. Let g be an element of ^(IR3"). Then for two arbitrary
elements aή=b from the index set {1 ... n} and any N e {0, N} the following
inequality holds:

\fNrt(f I γ Y Ή < ί1 -I- I Y Y lV̂  π (x Y \

The function gNj(Xί ... xn) is square-integrable and

\\gN,t\\£cN'\\g\\N

with a constant cN not depending on g and t.
Proof. Since

{Va-Vb)e "•- <0' = (- i t)
ωb

one gets immediately after partial integration:

1=1

Here we have introduced the function

7 See relation (2) of the preceding chapter.
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It follows from the definition of the operators Sab and Tab that

(TabeXίmmmXn g)(p1 ... jpπ) = i{xa - xb) (β X l . . . X n Sα b#) (p x ... pn)

+ (eχι...xn'Tabg)(p1...pJ

and therefore

Now we can prove the lemma by induction. Since

n

v \\2 _ | | Λ i | 2

the statement is true for N = 0. Let us therefore assume that the lemma
holds for JV. It follows from relation (a) that

According to our assumption we get

\tN(Sί nλ it I v r \\ < (\ -J- I v v \Ψ n ίx \ \
\l \yabdh \ l \ X l ••• Xn)\ = U r \ X a ~ Xb\) 9l,N,άXl ''' Xn)

with ||ftfiv,tll ^c N - H^^lljv
and

\t^ίT ύ\ it I x x 1̂ "̂  (1 -4- \x JIT ϊ)^ π (x x 1

with \\gNft\\ S cN' \\(Tabg)\\N.

But we know from L e m m a 2 that \\(Sabg)ι\\N^c'N \\g\\N + 1 and \\Tabg\\N

ύcn' IÎ IIN + I a n d this proves our statement.
Finally, some additional remarks about the 1-particle creation

operators are necessary: if A is an element from the set & one can define
another almost local operator j by

j = (2πΓ2 μ4pi(po-ωp)A(p).

Since A creates a 1-particle state from the vacuum it is obvious that
jΩ = 0. From the fact that A(p) has compact support it follows that j
is a bounded operator. Thus one can easily deduce from the decrease
properties of the truncated vacuum expectation values of the operators
A and j the following lemma:

Lemma 4. Let A be any operator from the set 0> and j the operator
defined above. If f is an arbitrary element from L2(IR3"), then

$f\d3xιf(x1...xn)A(xί)...A(xn)Ω
1=1
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and

, ... xn) A{Xl) ...

Σ ίf[d3xι(ί + \χa-χb\Γ2N-\f(χ1...χn)
b=a+ί 1=1

2

for all N G N . Tfte constants c and cN in these inequalities do not depend
on f.

Now we are almost finished: let / be any wavefunction with compact
support in momentum space and g an element of ^0R3w). Then one gets
for the norm distance || Ψf{t") - Ψf{t')\\, t" ^ ί' > 0 the estimate:

II φf(t") - ψf(f)\\ SII ΨgΨ) - W l l + II Ψf-β(n\\ + I

It follows from the definition of the Haag-Ruelle approximations and
Lemma4that \\Ψf-β{t")\\ύc \\f-g\\ and 11^(011 ^c||/-^||.Clearly,

ί"

\\Ψg(t")- Ψg(f)\\ S j dt\\dtψg(t)\\ and therefore one has only to consider

the state dt Ψg(ή. It is standard to prove the relation

W ) = Σ Sl\d3xιg(t\x1...xJA(t9x1)...j(t,xJ...A(t9xJΩ,
α = l / = 1

j being the operator defined above. Because of the translation invariance
of the vacuum and Lemma 4 one concludes that for all N e N

\\dtΨg(t)\\2^c^ X Σ $fld3xι(ί + \xa-xb\y2N\g(t\x1...xn)\2.
a=ίb=a+l 1=1

Applying Lemma 3 to the right hand side of this inequality one gets

\\dtΨg(t)\\^c'N \\g\\N-t-N

with a constant cf

N not depending on g. This shows (after integration)
that

for all N e N, N > 1. If one now puts t" = oo and ί; = ί it follows

and this, finally, proves the theorem.
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