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Abstract. It is first shown that a ^-automorphism of a factor is inner if and only if it
is asymptotically equal to the identity automorphism. Then it is shown that a periodic
* -automorphism of a von Neumann algebra ^2 is inner if and only if its fixed point algebra
is a normal subalgebra of ̂ .

1. Introduction

It is often of importance to know whether a ^-automorphism of a
von Neumann algebra is inner or not. In the present paper we shall
study two aspects of this problem. The first results essentially state that a
^-automorphism α of a factor $ is inner if and only if it is asymptotically
equal to the identity automorphism ι. By this we mean that if ε > 0 is
sufficiently small, then there is a type / subfactor m of $ such that
|| (α — ι) I *nc\\ < ε, where mc = mc\&ί. A similar theorem has been obtained
by Lance [7] for UHF-algebras. The second set of results combine
innerness with properties of the fixed point algebra ^α of α. The main
result says that a necessary and sufficient condition for a periodic α
to be inner is that 2ft* is normal in ̂ , i.e. $* = @*cc. The first results are
for simplicity stated for factors while the latter are proved for general
von Neumann algebras.

2. Asymptotic Properties

In this section we prove the asymptotic theorems mentioned in the
introduction. The key result is the following lemma; i will here and later
denote the identity automorphism.

Lemma 2.1. Let & be a factor, α a * -automorphism of $, and
0<ε< 1/1800. Suppose there is a type I subfactor m of 01, such that
|| (α— OI^ΊI < ε- Then α is inner.

Proof. We first show \\m — u(m)\\ ^ 6ε, where ||SI — Sί\ denotes the
distance between two ^-algebras, i.e.

|| 21- JΊ| - sup {δ(A9^\ δ (B,MJ: \\A\\ ^I,4e2l, \\B\\ ^

where δ(A,<%1) = mΐ{\\A-B\\ :BeΛ, \\B\\ ^ 1}, see [5].
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Let Aea(m), \\A\\ :g 1. Let Bern0, Then, since oL~1(A)em9 we have

\\[.A9B ]\\ = \\loi-1 (A)9

In particular, if U is a unitary operator in mc, then

|| UA U-1 -A\\ = || UA -A U\\ ̂  2s .

More generally, if Uk are unitary operators in &tc

9 λk>0, Σλk=i, for
fc = 1, 2, . . . , n, then we have

\\ΣλkUkAUk

1-A\\ ^ΣλJUtAU^-All ^2s. (1)

Suppose we have shown δ(PAP, m^ < 6ε for each finite dimensional
projection Pe^. Then δ(A9^1) ^ 6s. Indeed, let {Py} be an increasing
net of finite dimensional projections in m converging strongly to the
identity /. For each y we can choose By e ml such that \\PyAPy —By\\ < 6ε.
Since the unit ball is weakly compact in m we can choose a subnet {Bβ}
of {By} converging weakly to an operator Bem1. Since {P }̂ is a subnet
of the converging net {Py}, Pβ^I strongly, hence PβAPβ-+A strongly.
Let x and y be vectors in the underlying Hubert space. Then

|p - A) x, y)\ = lim \((Bβ -PβAPβ) x, y)\

£ 6s \\x\\

Thus \\B — A\\ ̂  6ε, and δ(A, m ̂  ̂  6s as asserted.
Let P be a finite dimensional projection in m9 and let {e^}/,^!,...,,,

be a complete set of matrix units in PmP. Since & is generated by m,
and *^c we may write P^4P = Σ eijAij9 where Atj e <mc. By [4, Chapter III,
§5, Lemma 5] there exist complex numbers aij9 unitary operators Uk

in m\ and λk > 0 satisfying Σλk = l9k=i9...9m9 such that

y λkUkAί Uk~
l —di-I < ε/π2 .
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Thus by (1) we have

P A P - Σ < * i j e t j PAP - λkϋkPAPU^

Σ1^^^^ x - Σijk i j

n2(ε/n2)=3ε.

In particular Σ aΐj etj < 1 + 3ε, and PAP — (1 + 3ε) 1 Y α, ;e;; < 6ε.
ij ί

Since Zα^e^e^, we have shown δ(PAP,*nί)<6ε, so
by the above paragraph. By a symmetric argument
for B e m, \\B\\ ^ 1. Thus \\m - u(m)\\ ^ 6ε, as asserted.

By a result of Christensen [2] there is a unitary operator
[7e{*ίuαM}"C^ such that ||/- l/|| < 299 -(6ε) = 1794ε, and such
that U*nU~l = a(m). Let β(A) = U~ίoί(A) U for Ae&. Then β is a
*-automorphism of ̂  such that β(<m) = ̂ , hence β(mc) = *nc. If Ae*nc

is nonzero, we have

Thus \\(β — ή\*Mc\\ < 2, so by a result of Kadison and Ringrose [6]
β\m,cis inner. Let Wbe a unitary operator in mc such that β(A) = WA W~*
for A€<mc. Since j8|^ is a ^-automorphism, and m is a type / factor,
there is a unitary operator F in ̂  such that β(A)= VAV~l for Aem
[4, Chapter III, § 3, Proposition 4]. Now & equals the von Neumann
algebra generated by m and W", and if At<m, Bem,c we have
β(AB) = β(A) β(B) = VA F'1 WB W'1 = VWAB W~l F'1, so β(Q
= VWCW~1V-^ for all Ce^. Let X=UVW. Then X is a unitary
operator in ̂ , and if A e ̂  then

JίylZ"1 = UVWA W~l F'11/'1 = Uβ(A) U'1 = oc(A).

Thus α is implemented by X, and α is inner. The proof is complete.
The converse of the above lemma is practically true. The only

difficulty occurs in the case when ̂  is of type II. Suppose for example α
is implemented by a unitary operator U in ̂  of the form U = E — F9

where E and F are finite projections in ^ such that dimE/dimF is
irrational. Then it is not clear that we can obtain the conditions in the
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lemma. We shall therefore need to approximate those conditions. First,
however, we treat the in this case simple type III situation.

Theorem 2.2. Let $ be a factor of type III, α a *-automorphism of $,
and 0 < ε < 1/1800. Then α is inner if and only if there is a type I subfactor
mof & such that ||(α-z)|^c|| < ε.

Proof. By Lemma 2.1 it remains to show the necessity. Let oc(A)
= UAU'1 for all Ae& with U a unitary operator in J?. By spectral
theory there are spectral projections £ x,..., En for U in $ with sum I
such that < s/2 for some complex numbers λ±,..., λn

k

of modulus 1. Each projection E in & is an orthogonal sum of countably
decomposable projections in 3%. Indeed, we can find a family {ωy} of
vector states of $ with mutually orthogonal supports with sum E.
But the support of a vector state is countably decomposable. We can
therefore decompose the projections Ei9...9En into orthogonal sums
of countably decomposable projections {Fy}. Since all nonzero countably
decomposable projections in & are equivalent [4, Chapter III, § 8,
Corollary 5], we can find a type I subfactor m of & containing all the Fy.
Since the automorphism implemented by Σ λkEk is the identity on mc,
| |(α— ι)\mc\\ ^ 2 17 — Σ λkEk < 2 ε/2 = ε. The proof is complete.

k

From the above proof we have.

Corollary 2.3. Let $ be a countably decomposable factor of type III,
α a *-automorphism of £ft and 0 < ε < 1/1800. Then α is inner if and only
if there is a finite type I subfactor m of $ such that ||(α — i) \mc\\ < ε.

If α is a ^-automorphism of a von Neumann algebra & we denote by
^α the fixed point algebra for α in ,̂ i.e. ̂ α = [A e &: a(A) = A}. If E
is a projection in 0i we denote by 3%E the reduced von Neumann algebra
E&E acting on the Hubert space E J f, where J f is the underlying Hubert
space.

We shall need a lemma, which has been proved independently by
several authors [1, 3,9-11].

Lemma 2.4. Let $be a von Neumann algebra and α a *-automorphism
of $. Suppose E is a projection in Sft* with central carrier I such that
a\&E is inner. Then α is inner.

For completeness we indicate the proof. Let Jf7 be the underlying
Hubert space and V a partial isometry in Jf with support and range

such that a(A)= VAV* for Ae@E. Define the operator U by
AiB'iEx^ Σ(x(Ai)Bf

iVExiforAiE&, £ e^', xteJ^. Since the

central carrier of E is /, U extends to a unitary operator, which is easily
seen to belong to J> and to implement α.
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Theorem 2.5. Let & be a factor and α a * -automorphism of £%. Let
0<ε< 1/1800 and y be a strong neighborhood of I. Then α is inner if
and only if there is a projection E e ^Λr\i^ ana a type I subf actor <m of&E

such that \\(oc—ι)\m'n&E\\<ε.

Proof. By Lemmas 2.1 and 2.4 the conditions are sufficient. Con-
versely assume α is inner. If & is of type III the theorem follows from
Theorem 2.2 with E = J. If & is of type I the theorem is trivial, letting
E = I. Suppose 0Ϊ is of type II and that α is implemented by a unitary
operator U in $. Let si be the abelian von Neumann algebra generated
by 17. Let Jf be a strong neighborhood of 0 such that / + Jf + ̂  C i^.
Let {Py} be the set of atoms (i.e. minimal projections) in <£/, and let
F = I — ΣPγ. The net of finite sums F+ £ Pγ9 K finite, converges

γεK

strongly to /, so we can choose K such that F + £ Pyεl + ΛΛ Re-

stricting attention to this projection we may assume the number of
n

atoms is finite and replace Y by / + J f . Say / = F + £ -P/> where we
•/=1

put Pj = 0 if there are no atoms. By spectral theory we can choose
projections El9...9Emmjtf with sum F and complex numbers λί9...9λm+n

of modulus 1 such that < ε/2. We can now
k j

find an increasing sequence {Qr} of projections in $* converging strongly
to / such that QrEk and QrPj are all of infinite or rational dimension.
Choose Qrel + Jf and restrict attention to $Qr. Then each Ek and Pj

has infinite or rational dimension and can be written as orthogonal sums
of projections of same dimension. Let m be a type I subfactor of $
containing them all. Then as in the proof of Theorem 2.2 we have
||(α — OI^ΊI < ε The proof is complete.

3. Normalcy of ̂ α

In this section, which except for Lemma 2.4 can be read independently
of Section 2, we shall see how innerness of α is related to properties of
its fixed point algebra J?α. It is evident that a necessary condition for
innerness is that ^α is large and normal in .̂ We shall show that if α
is periodic, i.e. there is an integer n such that α" = ι9 then normalcy of ̂ α

is also sufficient for α to be inner.

Theorem 3.1. Let & be a von Neumann algebra and α a periodic
*-automorphism of &. Then α is inner if and only if its fixed point algebra

3ft* is normal in (&.

Proof. We first remark that if ̂  is a factor a simple proof can be
obtained using [3, Corollary 2.3.13 and Theorem 2.4.1]. I am indebted
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to A. Connes for this observation. We shall, however, include another
proof which is more direct and which also takes care of the global case.

Assume first that α is inner, so implemented by a unitary operator U
in &. Let jtf be the von Neumann algebra generated by U. Then ̂ α = $4C,
so J?α is normal (because stfc = s4ccc whenever sf is a von Neumann
subalgebra of &).

Conversely assume ^α is normal. We assert that 3$ac equals the center
of ̂ α. For this let # denote the center of 3$. Since ̂ α is normal the center
of ^?αc equals ^αn^αc, hence it suffices to show that ^αc is abelian.
Replacing ̂  by <^αc we may assume ^α- <g. Let Φ : 3t-+<β be defined by

1 "
Φ(A)= —]Γ αj(/4), where n is the smallest positive integer for which

n 1

a"=ι. Then Φ is a faithful normal α-invariant projection map of $
onto #. Let ω be a pure state on #, and let ρ = ω°Φ. Then ρ is
an α-invariant state of M. Let (πρ, XQ, J ρ̂) be the GNS representation
defined by ρ. Since ρ is α-invariant, πρ is covariant, so α extends to a
^-automorphism α of πQ(3K)" such that π ρ

o α = ά°π ρ . Furthermore
α is implemented by a unitary operator £7 such that Uxe = xβ. If

A = πρ(B) E πβ(#) then - £ <?(Λ) = - % πρ(α'(B)) = πρ(Φ(B)) = ρ(B)I
n i n i

= ω(Φ(B))/, since ρ is pure on #= Φ(^), so that πρ(C) = ρ(C)/ = ω(C)/

for Ce<^. Therefore the normal map !P(X) = — ̂ j(A) on πρ(«)"
n i

maps the dense subalgebra πqψΐ) onto the scalars. Thus Ψ(πe($)") = <CI.
In particular, if AeπQ(£%)" is α-invariant, then A=Ψ(A) is a scalar,
so α is ergodic on πρ ($)". But α is periodic, so its spectrum as an operator
on πρ(&)" is finite. Thus an application of [8, Corollaries 3.3 and 3.6]
shows that πρ(^)" is *-isomorphic to the mxm diagonal matricies
for an integer m. In particular πΰ(3i) is abelian. Thus πωoφ(^?) is abelian
for all pure states ω of <g. But Φ is faithful, so the representation
n = Σφ πωoφ, ω pure on #, is faithful on ̂ . Since π(β) is abelian, so is ̂ ?,
and the assertion is proved, i.e. J>αc C ^?α.

Let E be a maximal projection in # such that α|^£ is inner. Con-
sidering 3i(I-E) we may assume α|^F is outer for each nonzero projection
F in #. We shall then obtain a contradiction.

If /I is an eigenvalue for α acting on the Banach space ̂  we let Mα(Λ,)
denote the set of operators A in ̂  such that α(^4) = λA. Since α"= z,
λn = 1, hence λ is an rcth root of unity. Notice that if λ and μ are eigen-
values and AeM«(λ\ BeM"(μ\ then ,4£eMα(/lμ), a fact which will
be used extensively below. If F is a projection in ^αc we let ocF denote
the restriction α|^F of α to ̂ F. Fix a primitive nth root of unity λ. We
assert that there are an integer m, i^m<n, and a nonzero projection F
in ^αc such that MαG(/lm)Φθ for all nonzero projections G in
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To prove this we first notice that for each nonzero projection E
in ^αc we have M«E(λk) Φ 0 for some 1 ̂  k < n. For if not M*E(λn) = StE,
so α|^£ = i. Thus by Lemma 2.4 OC\^CE is inner, where CE denotes the
central carrier of E. This contradicts our assumption that α|^F is outer
for each nonzero projection F in .̂

Let j0 be the smallest integer, l^j'0<n, such that Mα(/ί/0)Φθ.
Suppose there is a nonzero projection P in ^αc such that MΛp(λjo) = Q.
Then by the preceding paragraph there is j\ such that j0 < ji < n and
MαP(/l7'1)ΦO, and j1 can be chosen smallest possible. Suppose there is a
nonzero projection Q in ^αc with Q<*P such that Mαα(/ljl) = 0. Again
from the preceding paragraph there is j'2 smallest possible such that
h <J2 < n and MaQ(A j2) Φ 0. Since λn = 1 this process can only be per-
formed a finite number of times, hence we obtain a nonzero projection F
in ^αc and 1 rg m < n such that MαG(Am) Φ 0 for all nonzero projections

In order to obtain a contradiction it suffices to restrict attention
to α|^F. We thus assume Mα G(/ίm)Φθ for all nonzero projections G
in^αc.

Let ^4 e Mα(Λw), v4 Φ 0. Then there is a nonzero projection F0 in J>αc

such that E0A(I — F0) Φ 0. Indeed, if this were not the case, then
EA(I - E) = 0 for all projections E e 0t«c. Thus 0 = £.4(7 -£)-(/- E)AE
= EA-AE for all projections Fe^αc, hence ^e^αcc = ̂ α = Mα(l),
contrary to assumption. Thus F0 can be chosen as asserted.

The operator (I -E0)A*E0A(I -E0) belongs to Mα(l) = ̂ α. Let
F0 be its central carrier in ^α, so F0e^αc. Let Fx = F0(/-£0). Then
EQAF±P φ 0 for all nonzero projections Pe¥^c.

Fix ^L1eMα(Am) and mutually orthogonal projections E0 and F^
in ^αc such that Fo^i^PΦO whenever P is a nonzero projection in
¥^c. Apply the above argument to StFl and find BeMαFl(/lw) and a
projection Ei ^Fί in ^?αc such that EίB(Fί -EJΦO. Denote the range
projection of an operator T in ̂  by r(T). Let F2 be the central carrier
of (F! - £x) 5* E! 5 (F! - EJ in ̂ αc and consider E1 B F2 . Then r(E1 B F2)
= r(EίBF2B*Eί)E&«, since E1BF2B^E1e^a. Taking UEίBF2U~^
= F! (75 U'1 F2 for (7 unitary in ^α and then the union of the ranges
r(L/F1BF2L/~1) we obtain the central carrier in ^α of r(E1BF2). Since
Fo^FiPΦO for all nonzero projections P in F^Sl*0 we can thus find
A2 = UBU~1 in Mα(Am) such that F0^l1F1yl2F2Φθ. Now continue
this construction and find mutually orthogonal projections F0, Eί , F2 , . . .
in ^αc and operators Al9A2,... in Mα(Am) such that

However, the operator SπeMα(/lm") = Mα(l) = ̂ α, so
= SΠF0 = 0, a contradiction. The proof is complete.
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