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Abstract. The convergence of the integrals defining BPH renormalized Feynman
amplitudes is derived from the known additive structure of analytic renormalization.

In this paper we derive the convergence of BPH renormalization
[1—3] from the known additive structure of analytic renormalization [4],
providing an alternate and perhaps simpler route to this important
result. We adopt without further remark the notation of [1, 4].

Suppose that f(4) is meromorphic in €L, with at most simple poles
on varieties A(y)=0, +1, +2,..., where for yC{i,...L}, A(y
= Y (A4, —1). For k e C%, let ¥"" be the analytic evaluator of [4; 3.4 (b)],

ley
but defined with center x: choosing 0 <R; <:-- <R, <1 to satisfy
Y. R, <R, and defining C] as the contour |u;—x;| =R

i<j
(ni)~ L fw
— du ... d
I % f f f M = 20) - (e — 20)

whenever |4, — x| <R,. ¥ "f is analytic at .

Now let G be a Feynman graph with vertices V}, ... V,, and lines
{1,... L}. If & is a set of vertex parts for G, U={V] ... V/} a generalized
Vertex and Q={U,,... U} a partition of U, J, z(V]... V) is the

amplitude defined for Re/,; >0 by T, (V] ... V)= [[Z(U) [] 4.
1

conn

V(A=

Theorem 1. If k € CL satisfies

> =
hen Rex, =1, I=1,..L, ()

V" T0:Vi, . V)= L Trg0e(Vi - V), 2
R

where the &’s are new vertex parts, and the sum is over partitions R of
{Vi...V/} at least as coarse as Q. Note in particular that if Q={U},
ZQE)V{... V)=V (V] ... V).

Proof. Asin [4,§4]. The change of center to x and the extension to a
generalized graph introduce only a notational difference in the proof.
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Condition (1) guarantees that the vertex parts Z (W) have degree less
than or equal to the superficial divergence of W.

Theorem 2. Let % be the standard BPH renormalization operator [1].
Then there are vertex parts & such that, for any {V{, ... V/},

RT Vi, ... V)= 2.V " T 5(Vi,... V), ©)
)

the sum taken over partitions Q of {V{ ... V/}.

Proof. This is the standard equivalence of two additive renormaliza-
tions; we adapt the proof of [5]. Define Z'(V{, ... V") inductively by

AWV, V=Y TQ.E)YV, ... VY+EVY, ... V), (4)
Q

where % is the vertex part for # and X' is over partitions Q of {V7, ... V{'}
into at least two sets. Assume inductively that for s<r, Z(V{,... V)
=¥""ZW/,... V), so that (4) is

AWV, V=Y QL) VY, ... V). (5)
Q

Inserting (5) [and (4) if s=r] into 27 = £ J, 4, rearranging, and
using (2), we have
RT Vi, ... V)= V"Ty 5V, ... VY+ZWVY, ... V). (6)
0
Now apply the BPH M-operator to (6), using MZ =0, My =v"M,
and MZ =4, to find

TV, V==V MY Ty s(Vi,... V).
Q

Since (¥ ) =v"", v T = ; this verifies the induction assumption
and, when inserted into (6), yields (3).

Corollary 1. 27 (Vy, ... V,,)) is holomorphic in
Q={A|Rel;>1—1/L, forall I}.

Proof. Any possible pole of 27 in Q has the form A(y) =k, with
k=0, and hence contains a point k satisfying (1). But from (3), 27
cannot be singular at x; this completes the proof.

There remains only to show that this analyticity comes from the
convergence of the corresponding integral. The model for the following
proof is this: if f(¢)is C* on [0,1], and | t*~' f(¢) dt is analytic at z=0,
then necessarily f(0)=0 [7], f(t)=tg(¢) with g(t) C* on [0,1], and
{771 f(t) dt converges for z> —1.
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Theorem 3. Let
RT Vys... V)= 1ir(1)1 [ f (Hoc TleTem daq) fl(e, p) (7
g 0

be the usual Feynman-payametric representation, known to exist and con-
verge for Rel, sufficiently large. Then this integral converges absolutely
for e Q.

Proof. f(a, p) in (7) is an entire function of « divided by a product
of Symanzik d-functions for various sub and quotient graphs. For any
ordering [, <--- < of {4,... L}, let y;={l,, ... I;}, and introduce in the
region o, < --- <oy, scaling variables {t, }, defined by o, = [ ] t,;- Under

Jjzi
this scaling, each d function factors as a product of ¢,’s times a function
non-zero in t, 20, so that 2.7 is the e—~0" limit of a sum of terms

o9}

1
[diy, J.. EIImnﬂt““JWgam ®)
0 0 0 i<L

with g analytic in the integration region. We choose each j(y;) as small
as possible, and will show that then j(y;) <0; from (8), this will complete
the proof.

[The scaling transformation is the local form of a global desingulariza-
tion of the integration space (see e.g. [6]) and j(y,) is related to the
degree of the pole of f on a certain analytic variety. From this it follows
that j(y,;) actually depends only on y;, not on the original ordering.]

Suppose that j(y) >0 for some y, and choose y, to be a minimal
subset for which j(y,) > 0. Changing variables to o, =uf};, [ € x,, with
Y Bi=1,(7) becomes the ¢— 0 limit of

X0 © 0
[ Jutoriedy T A=t dp, [T e~ doyhy(, Bou, p). (9)
zp0=1 0 lexo I¢xo
Xo '

The residue of (9) on the pole A(xo) =j(xo) — 1, which vanishes by Corol-
lary 1, is ([7])
0= [ .. <n ocl’“‘ldoc,) (ﬂ ﬁl’“‘ld/}l)
0 0 \l¢xo lexo
/‘(E pr=1
By choice of y,. (10) converges absolutely if Reld,>1—1/L, l € y,, and
Rel, >k, for some k,;, I ¢ y, (change back to ¢ variables). We now claim

that
‘ (. .0, p) =0 ; (11)

this establishes the theorem by contradiction, since then h, =uh,, with
h, analytic, so that j(x,) was not as small as possible.

hs(a’p’O’p)'
A(xo)=jxo)— 1 (10)
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To prove (11), choose [, € y,, and change variables in (10) to y, =1na«,,
l¢ %o, »i1= ln(ﬂz/ﬁzo)’ l€ o~ 1{lo}. Then (10) becomes

0= [ ...f JT e* D dy B ™~ h (e 8,0, Y o(y)  (12)

RL-! [EITY

with g(y) the Jacobean of the variable change. Taking A4,=1+icw,
leyo—{lp}, and A4, =14k, +iw,, I¢y,, (12) states that the Fourier
transform of the continuous L, function

(L) =" o 0. i

1¢xo0

vanishes. Since g is strictly positive, hA(a, B, 0, p)=0, q.ed.
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