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Abstract. We assume the existence of a conserved current which generates locally
gauge transformations of first kind. We are working in a local quantum Field Theory,
where the fields are defined on a vector space where indefinite metric is allowed.

We show that the Maxwell equations are not consistent with the above assumptions
and the vectors obtained by applying local charged operators on the vacuum cannot
describe physical states.

Moreover we show that, if charged fields have non-trivial expectation value on the
physical states, the vector space must contain vectors with negative norm.

We discuss the relation between the local formulation of QED and a formulation in
terms of physical states. As an example we study the transition from Gupta-Bleuler free
QED to the Coulomb-gauge formulation.

1. Introduction

The aim of the present note is to discuss locality in quantum electro-
dynamics (QED) and in particular to analyze the restrictions imposed
by this property on the structure of the theory. A way to get information
about the formal structure of the theory is to use perturbation theory.
In that way, the general properties like locality and covariance are
essentially dictated by the free field case and one is essentially led to the
standard formulations (the local and manifestly covariant Gupta-
Bleuler formulation [1] or the non local and non manifestly covariant
Coulomb gauge formulation [2]). However, since very little is known
about the convergence of the renormalized perturbation expansion, it
is of some interest to discuss some general features of the theory, in
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particular locality, in the framework of Wightman theory [3], with no
reference to the lagrangian formalism. In this way one may get informa-
tion about formulations which may be more general than that of the
usual lagrangian approach. The main point of this note is to show that
actually the characteristic features of the standard (Gupta-Bleuler and
Coulomb gauge) formulations are much more general than one might
think and are strongly connected with the property of locality. As we
will show, one cannot hope to formulate QED in term of F μ v , j μ and
local charged fields without essentially going to the Gupta-Bleuler for-
mulation. Fields describing charged particles can be defined as local
fields only in a Hubert space equipped with an indefinite metric and
only if the Maxwell's equations are abandoned as operator equations.
This result will be obtained without ever introducing the electro-
magnetic potential Aμ, and therefore no reference is made to particular
gauge conditions. As a consequence of the above result we will see that
in any formulation of the Gupta-Bleuler type, the algebra M of local
operators leaving the subspace H' invariant, commutes with the auto-
morphism induced by the electromagnetic current and therefore it can-
not contain charged field operators. (For a more detailed and precise
discussion see Section 3.)

In this note we are explicitly concerned with interacting QED and
the present results can be considered as the analogous for the inter-
acting case of the already established results in free QED [4].

2. Locality and Maxwell's Equations

In this section we will discuss the property of locality in connection
with the Maxwell's equations. Since no reference is made to the lagrangian
formulation one has to specify some of the basic properties of j μ and
Fμv in order to properly pose the problem. We therefore assume that
the fields jμ(x) and Fμv(x) can be defined as operator valued distribu-
tions in a Hubert space G. Since we want to identify jμ with the electro-
magnetic current, we have to specify some other property of this field.
For example if j μ = m2 Aμ, the equations dμF

μv =jv would describe a free
massive vector field Aμ, with no connection to QED.

A necessary condition to be satisfied by j μ in order to be a candidate
for the electromagnetic current is that dμj

μ(x) = 0 and that the integral
of the zero-th component of j μ is associated to the electric charge. The
above statement may be made precise in the following way.

Let us define

QR>d Ξ J/>(χ, xo)fR(x)fd(xo) d3xdx0 (1)
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where
Λ(x)=l for \x\<R,

fR(x) = 0 for \x\>R + ε,

/d(*o) = 0 for |xo | > d,

+ 00

f fd(x0)dxo=ί.
— oo

Then for any local field φ(x) and for any test function / of compact
support the lim [QR, φ{f)~] exists1. We may therefore define

Λ->oo

Definition. A field φ(x\ local relative to jμ(x) is said to have charge q
if for any/ s@{R4)

lim ίQR9φ(f)l =~qφ(f). (2)
R~+oo

Up to now the definitions were quite general and they do apply to any
conserved current j μ . The basic assumption which allow us to identify
j μ with the electromagnetic current is that the "charge" occurring in
Definition 1 is the electric charge, in the sense that it generates locally
the group of automorphisms (7(1) corresponding to gauge transforma-
tions of the first kind.

Lemma 12. Ifjμ(x) is a local current of the formjμ(x) = dvFvμ(x\ where
Fμv(x)= — Fvμ(x) is a local field, then for any field φ(x) local relative to
j μ and Fμv one has

lim [ β s , </»(/)] = 0.
R-+CO

Proof We consider the commutator

lQR,Φ(f)l-

The current j ^ is conserved since Fμv is antisymmetric:

Then, according to well known arguments [5], the above commutator
is independent of fR and fd provided that supp/ is contained in the
dependence domain of the surface { x e R 4 : xo = 0, \x\ <R-d}. As a
matter of fact in this case the only points in the integral iffRfdd^x,
which contribute to the commutator, are those with |x| < R — d.

1 From now on we will omit the subscript d in QRd, since the conservation of j μ

implies that [QRd, φ{f)~] is independent of fd for R sufficiently large.
2 After this work was completed we were informed by Professor R. Haag that a

similar statement was made by J. Swieca (unpublished).
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Therefore, from the hypotheses, one has

[β«, Φ(f)l = J/* °

/ = 1 , 2 , 3 .

But /R(X) is constant for |JC| ^K, i.e. on the region of points which can
contribute to the above commutator. Hence one has

[β
JR-*oo

Theorem 1. In any local quantum field theory in which j μ generates
non-trivial automorphism on the local algebra the Maxwell equations

i =dvF
Jμ u 1 vμ

cannot be valid.
This follows from Lemma 1.

Remarks, a) No assumption has been made about the existence of
a field Λμ(x) such that Fμv = dμΛv — dvAμ. The conclusion of the above
theorem applies also to formulations in which Aμ is never introduced.

b) As a consequence of the above theorem one cannot hope to for-
mulate QED in terms of only FμvJμ and the charged fields, if these are
local fields3. An unphysical local field s3?v(x) = dμF

μv(x)—f(x) must
necessarily be introduced. In the standard Gupta-Bleuler formulation
one has stfv{x) = — dvdμΛ

μ(x), Λμ being the vector potential.
c) Theorem 1 shows that in any theory in which dμF

μv=jv, like in
the Coulomb gauge formulation of QED, the charged fields cannot be
defined as local fields. This result, known for the Coulomb gauge, is thus
shown to have a general validity.

3. Properties of a Local Formulation of QED

In order to get further insight on the structure of a possible local
formulation of QED we need some notations and definitions. We start
by stating the basic assumptions which give a precise definition of a
local formulation of QED.

3 Here and in the following we discuss only the case of local fields. The results of
Theorem 1 and most of the results of this note remain true for quasi local fields.
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1) The fields are defined as operator valued distributions of type Sf1

or 2ι in a Hubert space G. G is equipped with a sesquilinear hermitean
form η = η* (* denotes the Hubert space adjoint), in terms of which all
the physically meaningful quantities like transition probabilities, vacuum
expectation values, etc. are computed and the representation at the
Poincare group is unitary. That means that besides the ordinary scalar
product ( , ) in G, one has the following "product"

We do not make any assumption about η (it could even turn out that
one may choose η=ί), except that η is non degenerate, i.e. that there
is no subspace GOCG such that

ηψ = θ, \/ΨEG0.

2) The algebra of local and covariant fields in G is denoted by J.
As usual, we assume that J> contains enough fields so that J> is irre-
ducible in G.

3) The basic assumption on j μ , given in Section 2, may be now stated
more precisely: j μ generates the weakly continuous group 1/(1) of auto-
morphisms of the gauge transformations of the first kind on the local
fields. These transformations commute with Poincare's transformations.

As a consequence of Theorem 1 one cannot assume dμF
μv =jv in G,

if J contains charged fields as expected. Moreover J> must contain
unphysical fields like srfv(x). Clearly in order to have contact with
physics one has to give a criterium to select those vectors of G which
are candidate to describe physical states. For them, Maxwell's equations
should hold as mean values and they should have non zero ^-norm.
A more precise statement about the properties of those vectors is given
by the following definition

Definition. Hf is a linear manifold in G such that
i) The domain D c F o n which the smeared fields Fμv(f)Jμ(f) can

be defined and such that Fμv(f)DcD,jβ(f)DcD is dense in if.
ii) Maxwell's equations hold as mean values on Hr:

<Ψ,sμvQσd
vFe°(f)Φ)=0, V Ϊ Έ ί Γ , VΦeZ). (6)

iii) <<F, «F>^0, \/ΨeHf.

It is not difficult to recover the physical motivations for expecting
that properties i), ii), iii) should hold for vectors of G which are candi-
dates to describe physical states.
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Theorem 2. Unless all the charged fields of J have zero expectation
values between vectors of H'

a) Maxwell's equations do not hold as operator equations on D and
there are vectors of H' with zero η-norm and

b) η cannot be semidefinite in G, i.e. there must be vectors Ψ in G of
negative η-norm: (Ψ, Ψ} < 0 .

Proof. The proof simplifies if one makes the technical assumption
that for the smeared charged fields φ(f), the bilinear form

is defined for any Ψ,Φe D. (For a more general proof see Appendix.)
One first notices that, by Lemma 1, stfR = \ <stf°(x) fR(x) fd(xo) d3x dx0

and QR induce the same automorphism on the fields of J>. Then, VΨ,ΦeD
and for any charged field φq e </, carrying charge q, one has

lim <Ψ,ls/R,φq(f)] Φ>=-q<Ψ,Φq(f)Φ>.
R-* oo

Hence, if stf\f) D = 0 one gets

q<Ψ,φq(f)Φ>=0, (7)

i.e. either q = 0 or <<F, φ(f) Φ> = 0 .
This proves that a situation where charged fields have non-trivial

expectation value on D rules out the possibility that Maxwell's equations
are valid in a subspace H'cG, i.e. J / V ( / ) Φ = 0 for any ΦeD. It is
a direct consequence of property (ii) that if Ψ = srfv(f) Φ Φ 0 then

i.e. the vector space H"cff of vectors with zero 77-norm is not empty.
To prove b), let us suppose η semipositive on G. Then, one may show

that a vector of vanishing 77-norm has zero ^-products with any vector
of G. This is in contrast with η not being degenerate.

Remarks. The non-existence of H' or the vanishing of the expectation
values of all the charged fields between vectors of D would mean that
one cannot hope to have a reasonable local formulation of QED. There-
fore, we will confine our attention to theories in which Hf is not empty
and some of the charged fields of J have non-vanishing expectation
values on H'. In this case the main conclusion to be drawn from Theo-
rem 2 is that one cannot hope to select physically relevant vectors of G
as in the Definition without necessarily picking up unphysical vectors
of zero norm and without abandoning Maxwell's equations as operator
equations on D. It may be worthwhile to remark that the possibility of
having the Maxwell's equations satisfied in D is not ruled out by
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Theorem 1 only, since the charged fields are not assumed to leave D
invariant (in fact they don't, see later).

In conclusion, in order to have local fields which do not commute
with the automorphism induced by QR one must define the theory in
a Hubert space equipped with indefinite metric, introduce unphysical
fields (J/V(X)), unphysical vectors and vectors of negative f/-norm. Thus,
any local formulation of QED must share all the characteristic features
of the Gupta-Bleuler formulation.

As it is well known [6], in the Gupta-Bleuler formulation of free
QED the indefinite metric is introduced following different reasons
than those stated in Theorem 2. Here it is crucial to assume that not all
charged fields have zero expectation value on H'. This difference is
clearly seen in our framework. If no physically relevant charged fields
were present, our treatment would suit equally well Gupta-Bleuler or
Coulomb formulation of QED, since FμvJμ and neutral fields can be
relatively local and allow the validity of Maxwell equations (see Theo-
rem 1). Then there is no need of indefinite metric as in Coulomb for-
mulation.

Corollary 1. Let φq{f) be a charged field with fe&(R4). Denote by
DcHf the domain on which the bilinear form (Ψ, \_srfR, φq{f)~\ Φ} (R suf-
ficiently large, Ψ,ΦeD) can be defined, then

q ' (9)

unless q(Ψ, φq(f) Φ> = 0, VΨ, Φ e D.

Proof Let Ψ,ΦeD, then if φq(f)DcH' one has -q<Ψ,φq(f)Φ>
= {Ψ, [J/R, φq(f)~\ Φ} for R large enough. But srfμ has zero expectation
value between vectors of H' and therefore q(Ψ, φq(f) Φ} = 0.

It is important to stress that in the results obtained up to now the
existence of a vacuum state (a non-trivial assumption in a theory with
massless particles) and the spectral condition were not assumed. The
content of Corollary 1 may be slightly strenghened under the assump-
tion that there is a vacuum state Ψo, cyclic with respect to «/. In this case
if 3& denotes the algebra of local operators which leave H' invariant,
one may consider the subspace Do of local states of Hf :D0= {set of
vectors of i f obtained by applying elements of 0t to the vacuum}. Then
Corollary 1 can be reformulated in the form

Corollary 2. Let A be any element of M, then either
a) A has zero charge or
b) for any ΦeH\ΨsD0

(Φ,AΨ) = 0

and therefore A Ψ e H".
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Proof. One may show4 that M is generated by elements of definite
charge Aq. Then Corollary 1 can be applied straightforwardly.

4. Physical Interpretation of the Local Theory

In order to get a physical interpretation out of the theory discussed
above one has to give prescriptions as how to get rid of all the unphysical
features such as unphysical fields, states of negative norm and states of
zero norm. This may be done by introducing the quotient space
H = H'/H" in which one has positive definite scalar product and in
which Maxwell's equations hold as operator equations [7].

A question which has to be discussed is in which way operators in G
give rise to operators in H. To be more precise, if 0 is a bounded
operator defined in G, how may one define an operator 0 which acts
on H and may be interpreted as the operator corresponding to O? To
discuss this problem we introduce the following notation: if Ψ is a vector
of//', Ψ will denote the equivalence class of Ψ with respect to H". There-
fore Ψ may be regarded as a vector of H5.

A mapping 0 -> 0 may be defined in the following way. One chooses
an orthonormal basis Ψi in H 6, and for each equivalence class one picks
up a vector Ψt of if', Ψ^Ψ^

4 We give a brief sketch of the proof. Let α be an element of the group ϊ/(l) introduced
in assumption 3), B an element of J and Ψ a vector in the domain of B. By assumption 3)
the automorphism α: B^Ba is weakly continuous in the group parameter α and com-
mutes with Poincare. Moreover it is locally generated by a conserved current:

It is easy to see that VΦ eG,(Φ, Ba Ψ} is continuously differentiable in α and, by assump -
tion, periodic with period 2π. From well known results on the Fourier series

1 2π

(Φ,BnΨ} = $dae-in«(Φ,BaΨ>
2π 0

exists and

It is not difficult to show that, since Ba is a local field, Bn is also local. Bn is a field of definite
charge.

5 Here and in the following Ψ will both denote the equivalence class and the vector

inH.
6 Here and in the following we assume that H is separable.
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The set of vectors Ψt are clearly orthonormal, by definition of scalar
product in H:

The Ψt will span a linear manifold ££ in H', whose closure L = «5f is
a Hubert space with positive definite metric. Clearly the subspace LcH1

is isomorphic to H = H'/H".
The definition 0 is now trivial. Given an operator 0 in G one firstly

defines 0 on the orthonormal basis Ψt in the following way:

and then one extends 6 by linearity to the whole H. Needless to say,
different choices of vectors in the equivalence classes will give rise to
different subspaces L, and to different definitions of 0. One should more
pedantically write OL to remind that the definition of 6 depends on L,
in general. For an arbitrary operator 0 in G the mapping O-+O is not
uniquely determined.

In general the mapping Λ will not preserve many of the properties
of 0. For example, in general one will have (TφO".

It is possible to extend the mapping " to an arbitrary vector Ψ e G,
by defining Ψ->Ψ, where V ^ e L

(Ψhψ)=(ψhψ>. (11)
One has ^ - . „ „

OΨ^OΨi. (12)

Lemma 2. For a bounded operator 0 defined in G, such that

OH'CH' and 0 + H'cH' (13)

( + denotes the adjoint with respect to <•,•», the mapping / x is uniquely
defined and one has

fr=0\ 0^=0* (14)
where * is the adjoint in H.

Proof. One firstly shows that OH'CH' implies OH"CH". In fact,
for any vector Φ e H" one has

since O+ OΦeHf. To complete the proof one notes

<ψi9 o(ψj+Φ)y = <ψi9oψj> + <ψi90Φ>

VίPf, ΨjeH\ ΦEH'\ i.e. 0 is defined univocally. Equation (14) follows
straightforwardly from (12) and (15).
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The above lemma naturally leads to consider the local * algebra
f C / such that 0ίH' C H\ (Clearly 01 contains the algebra generated by
Fμv and jy.) The elements of 01 are good candidates to represent local
observables with a physical interpretation. This is shown in the following

Theorem 3. The operator algebra $, defined in H is a local and
covariant algebra.

Proof. If O l 5 O2 and Of, O\ leave H' invariant, for any Ψi9 ΨJGH'
one has

(ψi9 o^2 ψj) = (ψh o, o2 ψj} = <o? ψh o2 ψj>

O^O 2 = 0,0 2 . (16)

Therefore one has [Au A2~\ = \_AU A2\ ΊAX, A2e0ί and locality is pre-
served by the mapping A-*A.

Covariance follows from the fact that H' is Poincare invariant

U(a,A)H'cHf

and therefore by Eq. (16) and Lemma 2 one has

ϋϋ ϋυ JU ί
and Λ „ (17)

[7*17 = 1

so that U are unitary operators. Finally for any Ae0t, using (16) and
(17), one has ^ ^ ^ ^

U U?- = UAU+ ,

i.e. A has the same covariance properties as A.
Now we discuss the crucial point connected with the Λ mapping

from G to H, that is the reduction of the automorphism generated by
the electromagnetic current to the operators on H. It is tempting to
define the mapping O-^Oa by

α(O) = (OJ (18)

however we face the objection that, in general,

We have proved the validity of Eq. (16) only for operators leaving
invariant H' (with their conjugate). Moreover we cannot hope to generate
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locally the automorphism using a conserved current because in general
the operator 0 on H will not be local and there is no natural choice of
such a current (e.g. s/μ = 0 but j μ φ 0, while in G sίμ and j μ generate the
same transformation on J>).

It seems that the only automorphisms which can be induced in W
are those restrictions to subalgebras of J> which are Λ mapped into local
algebras on H. We have already considered an example provided by Sk.
From Corollary 2 we know that the elements of 01 either have zero
charge or they map H' into H". Going to the quotient only the elements
with zero charge survive. We can then state the following theorem.

Theorem 4. If the algebra M is irreducible in H the automorphism of
gauge transformations of the first kind is the identity and all states of H
have zero electric charge.

5. Relation Between Gupta-Bleuler's
and Coulomb Gauge Formulations of QED

As discussed in the previous pages, the two formulations of QED,
namely the Gupta-Bleuler's and Coulomb gauge formulations, have
very different properties. The former is essentially the only way of
getting a local and covariant theory of QED, whereas the latter is both
non local and non covariant. From the point of view of quantum field
theory they give rise to very different theories: the Wightman functions
have very different mathematical properties in the two cases.

The relation between the two formulations seem, therefore, far from
obvious in contrast with the statements given in the literature, where
one may find "gauge transformations" leading from one theory to the
other. They are formal transformations, whose mathematical meaning
is not transparent. One has to recall that these transformations should
destroy Lorentz covariance, locality and most likely the temperedness
of the fields in Gupta-Bleuler formulation.

Here we will show that a simple way of relating the two formulations
may be obtained by means of the correspondence 0->0 discussed in
the previous pages. As we have shown this correspondence preserves
locality and covariance for the operators which leave H' invariant [like
Fμv(x)Jv(x) etc.] but will likely destroy both locality and covariance of
the operators which lead out of H' [like Λμ(x) or the charged fields].

We will confine ourselves to the free field case. For the interacting
case it can be easily seen that the Gupta-Bleuler formulation cannot be
reduced to the Coulomb formulation by any Λ mapping. In fact the
condition dμAμ = Q between vectors of H' is not compatible with
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Theorem 5. Let Aμ(x) denote the electromagnetic potential in the
Gupta-Bleulef s formulation, i.e. Aμ{x) is defined as an operator valued
distribution in G, satisfying the Wightman axioms and let Λc

μ(x) be the
electromagnetic potential in the Coulomb gauge defined in a Hilbert
space H with positive definite metric, then, there exists a choice of L
(see above) such that the theories defined by Aμ(x) and Λc

μ(x) are unitarily
equivalent, i.e. all their Wightman functions coincide.

Proof. The vectors of L are chosen in such a way that in the one
particle subspace the wave functions fμ(p) corresponding to them satisfy

/O(P) = O. (19)

This is easily achieved, since if Φμ(p) is a wave function describing a one

particle state, Φ'μ(p) = Φμ(p) Φ0(p) lies in the same equivalence
Po

class as Φμ and satisfies condition (19)7.
With this choice, it is not difficult to see8 that

Ψ e L, Ψ being a one particle state.
00

Now, since G = φ (H1)®n one easily proves that
n = 0

(Φ,Ao{x)Ψ> = 0, \JΦ,ΨeL

and therefore, with the above choice of L, one has

Ao(x) = 0. (20)

One has in addition

dμ(Ψ, Aμ(x) Φ} = 0, \JΦ,ΨeH!

and therefore

dμA»(x) = 0.
Equation (20) thus yields

In a similar way, after some lengthy algebra one proves that A^x) satisfy
the commutation relations of the Coulomb gauge potential. Thus all the
Wightman functions coincide and the two theories are unitarily
equivalent.

7 Note that fμ(p) are zero in a neighborhood of pμ = 0. See Ref. [7].
8 For the details one has simply to use the representation of Λμ(x) discussed by

A. S. Wightman and L. Garding [7],
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Appendix

In this appendix we will sketch a different proof of point (a) of
Theorem 2, i.e. that s/RH' + 0 otherwise all the vector of H' have zero
charge.

Lemma 1. If «*/(/) Ψ0=Q for any test function fμ9 then the auto-
morphism a induced by j μ is implementable in G.

Proof One first notices that stfμ and j μ generate the same automor-
phism on */ so that one can consider the action of s/μ. Then for any
φeJ one has

lim (Ψo, ls/R, φ] Ψo> = lim [ < ^ Ψ09φΨ0}

The irreducibility of J yields the implementability of α, by standard
arguments.

Lemma 2. // sί(f) Ψo = 0, any vector Ψ such that st(f)Ψ = Q, for
any test function f has zero charge.

Proof Let φqe/, b e a charged field of charge q. Then

q<Φ9Ψo,Ψ>= lim

= lim
R —• oo

Thus, !F has vanishing matrix elements with the set of charged states.
The proof of point (a) of Theorem 2, follows easily from the above

lemma.
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