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Abstract. It is shown that every continuous linear functional on the field algebra can
be defined by a vector in the Hubert space of some representation of the algebra. The func-
tionals which can be written as a difference of positive ones are characterized. By an example
it is shown that a positive functional on a subalgebra does not always have an extension to a
positive functional on the whole algebra.

1. Introduction

The formulation of the reconstruction theorem of Wightman [1]
in terms of positive functionals on the tensor algebra over a space of test
functions [2] provides a natural framework for a study of the nonlinear
restrictions on the Wightman distributions. This is the reason why the
properties of this algebra are of interest and have been the subject of
several investigations [2-7]. This is also the motivation for the present
paper, although we shall here ignore the linear conditions of field theory
and be concerned with the positive linear functionals in general. As a
space of test functions we take Schwartz space £f and we denote the
algebra by y. It is shown that there exist so many positive functionals
that the corresponding Hubert norms define a topology on y which is
identical to the usual one. This topology, however, is not well adapted
to the order structure on ̂  in the sense that continuous linear func-
tionals need not be of the form (7\ - T2) + z(Γ3 - Γ4) with positive func-
tionals T). This is connected with the fact that the multiplication on the
algebra is not continuous in both variables jointly. Let τ denote the usual
topology on ¥ and Jf the strongest convex topology such that the
multiplication is a jointly continuous bilinear map ¥ [τ] x ^[τj-
It is shown that functionals of the above form are exactly the
tinuous functionals.

Finally we consider the problem of extending a positive functional
from a subalgebra of ̂  to a positive functional on the whole algebra.
In some cases this is shown to be possible, but an example is also given
where no extension is a linear combination of positive functionals.
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2. Notations and Basic Properties of the Field Algebra

The basic properties of & and its connection with Wightman field
theory are discussed in [2,3,5,6]. We shall therefore only review the
notation briefly and state some additional properties which are mainly
a consequence of the fact that ̂  is a nuclear space. oo

The field algebra is the locally convex direct sum ί£ = (f) £fn where

^0=<C and ^n = ^(Rd'n) is Schwartz space of C°° -functions IRd "-»C
of rapid decrease. We denote the direct sum topology on ¥ by τ, for its

oo

properties see [3, 5]. The dual space is the product £f'=Y[ £ζ, usually
n = 0

equipped with the strong topology. The elements oίίf are thus sequences

/ = (/<>./!,.. .,/„,<>,...)

where all but a finite number of /v e ̂ v are equal to zero, whereas 9"
consists of arbitrary sequences

with T ve ̂ . As an algebra ££ is the completion of the tensor algebra
over £fγ , the multiplication is defined by

with the unit element 1 = (1, 0, 0, . . .). An involution * is defined by

The multiplication is continuous in each variable separately, it is jointly
N N 2N

continuous as a bilinear map © £fnx (f) ^-»(f) ̂  for ΛΓ< oo. The
n = 0 n=0 « = 0

involution is an anti-isomorphism, there is a basis of continuous norms
p with p ( f * ) = p(f). The Hermitean part of <?

is a real vector space with the cone of positive elements

¥+ defines an order relation on ̂  '-/^β i f f^— /e^+. A linear func-
tional which is positive on <$f+ is automatically continuous [6]. It has
to be noted, however, that positivity on ̂ + is a stronger condition than
positivity on squares /* x/ if no continuity is assumed, because ^ +

contains infinite sums of squares.



Algebra of Test Functions 317

The dual space of ̂  is identical to the space of Hermitean or real
functionals on ^\

T= T*}, where Γ*(/):= T(/*).

Every element can be decomposed into its real and imaginary parts, so

ά? = Ά + ίάfh, 2" = Ή + i2ί.

Positive functionals are Hermitean because

¥h = ¥+-¥+ (1)
They form the dual cone

¥ + ' = {Te¥f\T(/)^0 for all /e^ + }

That ίf + ' is in fact a cone and not merely a wedge, i.e.

follows from (1) by duality. According to [7], ¥ + ' -£f + ' is dense in ίft.
This follows also from the stronger result that <9^+ is a closed cone [4]
or from Theorem 5 below.

In the proof of Theorem 1 we shall make use of the fact that the spaces
£fn are nuclear. The topology of a nuclear space can always be defined
by Hubert seminorms [9, 10], i.e. seminorms which derive from a scalar
product. For £fn we can even find Hubert norms [11]. Let hμ, hv be
Hubert norms on ίfμ, ^v respectively, and denote by </,#>μ, </,#/
the corresponding scalar products. On the tensor product ^μ (x) ̂ v one
can define many different norms hμ®hv with the property

The biggest one is the trace norm

because every norm with the above property satisfies

^®^v(Σ/wk Σ^®^v(/wΉ Σ
\ i / i i

In particular, hμ®πh
v is greater than the Hubert- Schmidt norm

which on the other hand dominates the usual operator norm 1

1 One can think of the tensor product of two Hubert spaces ^(g)^ as the set of
linear operators ̂  -> jj?2 with finite dimensional range. Hence the names for these three
products. The products (χ)π and ®ε can of course be defined for arbitrary seminorms
[9, 10].
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Now the y^ ̂  are nuclear spaces, and this implies that it makes no
difference which of these products one uses [9, 10] : For fixed hμ, hv they
are not equal:

but there are always other continuous norms /cμ, kv such that

hμ ®π h
v ̂  kμ ®ε k

v ̂  kμ ®σ k
v .

The families {fc£®eJ$}, {h»®σh
v

β}, and {h£®πh
v

β} define therefore all the
same topology on <9^®^v if {/*£}, {hv

β} is a basis of continuous Hubert
norms for the topology of ίf^ £fv respectively. The completion £fμ®ίfv

is isomorphic to 5^+ v [10]. In particular, one can define the topology of
^ by a system of Hubert norms of the form

with Hubert norms h1 on ̂ .
The topology of £f is defined as the locally convex direct sum of the

£fn topologies, i.e. it is given by the norms

P(/)= Σ *"(/„)
n = Q

where the hn run through a basis of continuous Hubert norms on £fn,
multiplied with arbitrary coefficients. It is, however, not difficult to see
that we get an equivalent family of norms if we take the Hubert direct sum

l/2

Although this is probably well known we give a proof:

( oo \ 2 oo

Σ Xμ) = Σ Cvrf

ju, ι*n, JUKI,*, o^MiM* vj i wι twiiuKio ^vί.
 μ = ° ' V = °

Proof. Let aμv= — 1 for μφv, aμμ = c2

μ — i. We have to choose cj
such that ^ Xμβμv X v ^ O F°r this it is sufficient that the determinant

μ,v

of every submatrix An = (aμ^μ^^n is greater than zero. We define c2; by
induction: Choose CQ > 1 and assume then that det^4M_ x >0. We have

where Rn_ 1 does not contain ann. So det^4n > 0 if
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We conclude this section with a few remarks on representations of !?.
By representation we shall in the following mean weakly continuous
^representation, i.e. a mapping of ££ on linear operators A(f) with a
common dense domain of definition D in some Hubert space Jfsuch that

(i) A(/)DCD for all /e^.

(ii) A

on D.

(iiϊ) <</>, A(f) ipy is continuous in / for all φ,ψeD.

li^D.A is a representation, then T(f) = (φ,A(f)φy is a positive
functional on £f for all φ e D, and conversely, a positive functional T
defines by the GNS-construction a cyclic representation with cyclic
vector ί2, domain of definition D0 = {^(/)Ω|/e£9

5?) and ||^(/)Ω||
= Γ(/*x/)1/2.

Although the multiplication on & is not jointly continuous, it is
jointly continuous as a map ̂  x ί^n^^2n and this is sufficient for

Lemma 2. A weakly continuous *-representation of if is strongly
continuous, i.e.JΊ-* \\A(f)φ\\ is continuous for all φe D.Asa consequence,
h(J) = T(f* x j f ) 1 1 2 is a continuous seminorm on £f for all Te ̂  + /.

Proof. \\A(J)φ\\ =

By weak continuity there are continuous norms p2n on ̂ 2n

 sucn tnat

<φ, A(f* x /„) φ> ̂  p2n(f* x /„). Since ^2n = £fn®π &>„ we can choose
P2n~cln®π(ln witn continuous norms qn on £fn and we can take qn such

that qn(f*) = qn(fj. Hence \\Atf) φ\\£ Σ 9ι,(/J s« M(/)ΦII is con-
ιι = 0

tinuous. The last statement follows immediately because a positive T
defines a representation with \\A(J) φ\\ =h(f).

3. A Class of Positive Function als

If T is a positive functional, then h(f) = T(f* x/)1/2 is a continuous
Hubert seminorm on £f by Lemma 2. The collection of all such semi-
norms defines a topology on 5? which is in any case weaker than τ. It is in
fact identical to τ as we are now going to show. The method is a gener-
alization of a construction used in [13] to show that every sequence of real
numbers is a difference of two sequences of positive type (cf. also Lemma 2
in [7]).

Theorem 1. For every continuous seminorm p on if there is a positive
functional T such that

x/) for all Jεg .
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Proof. The Hubert norms

M/)=f Σ ϊ(i+\χ\2r

form a basis of norms for the topology of 5^ [11]. We can also write

where </, #>0 is the usual scalar product in L2 and

Mk= Σ (-l) |α |£α(l + M2)κ£α

\Λ\,κ^k

is a continuous operator ̂  ->> ,9̂  , positive with respect to the L2 scalar
product. We denote </, Mkgyo by </, 0>k. On 5^ we have the basis of
Hubert norms

fcϊ = Λ f c®σ ®Λ

with the corresponding scalar products

where M£ = Mk® - ® Mk.
After these preliminary remarks we begin the construction of T by

defining T2 v + 1 =0 for all v = 0, 1, ... . We are then going to define by
induction Hubert norms qn = cn- hln and distributions T2ne ̂ '̂  where
cn > 0 and hn

kn is of the above form, such that the following three con-
ditions are satisfied:

/ n \ l / 2

(i) «(/) ̂  P(/) for all / = (/0, . . ., /„), q(J)=(Σ

(ii) There is an εn > 0 such that T(f* x/) ̂  (1 + επ) - (?(/)2.

(iii) There exist continuous seminorms qμ+ v v on 5 v̂ for 0 ̂  μ < v ̂  2n,
μ + v ̂  2n, such that

|7;+v(/μ*x^v)l^^(Λ) ^+v,v^v) for all / μ €^,gve^v .

We begin at n = 0 : pQ is a continuous seminorm on C so there is a c0 > 0
with Po(a)^c0\a\ = :q0(a). Define T0 = 2cl and ε0 = l. The conditions
above are all satisfied. Assume now that they are valid with n — 1 in place
of n. Choose qn = cn- \ι\n such that

«Λ^ max {ΛS,p w ,0 Π f W , &,+ !,„, ...,^2(»-i),J (2)

This is possible because every finite set of continuous norms is dominated
by some norm of the type hn

k. By Lemma 1 we may suppose that the given
norm p is the Hubert direct sum of the norms pn so (i) is satisfied. Now
define a linear functional on 5̂  (x) 5̂  :

T /V f ^ v π Λ — 1 . r2 V / f ** /7*V
^ 2 w LL ./w X ^M — Λ 2 W Cn L \/n ' ^w/kn
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with a constant λ2n to be fixed shortly. We have

for fe yn®yn, so T2n defines a continuous functional on y2n

 = ^n
Tocheck(ii)let/ = (/0,...,/n_1),/ = (/o,. ..,/„) = (/,/„). Then

T(f* x /) = T(/* x /) + 2Re T(/* x /„) + T(/Π* x /„) .

The mixed term can be estimated by (iii) and (2):

|T(/* X /J ̂  Σ I WΛ* X Λ)l ̂  "
μ = 0 μ =

^ ΓΣ «μ(Λ)) 9»(/-)^»l/

\μ = 0 /

By (ii), T(/* x /) ̂  (1 + επ_ ,) 9(/)2 with εα_ j > 0. Let εn = l/2εn_ t .
Since T(f*xfn)=λ2nqn(fn)

2 and q(J)2 = q(J}2 + qn(fn? by definition,
we have

^ - (1 + εj - qn(fn)
2

if A2^n ε;1 + l + ε M .

It remains to verify (iii). For μ + v^2(n — 1) it is valid by assumption
and for μ + v = 2n—i because T 2 n _ 1 =0. One has therefore to find
continuous seminorms q2n>v for v = n + 1, ..., 2n such that

for μ + v = 2n, v as above. By definition

T2n(fn X On) =

and thus by Cauchy-Schwarz

where rn(g) = const hn

Q(M£ng) is a continuous seminorm on 5 .̂ This
implies

Now let μ = 2n — v ̂  n — 1. We have

Z," _ l,μ /ςx l7«~Aί <" I,μ /ON Z,«~
"0 ~~ ^0 ^9σ "0 = ̂ 0 ^>π "0
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and thus

IT I < (IjV ^ lιn~ll\(Q\ vn _ hi* fa ίlιn~ V fa vn\<n fa n
\12n\=(nθ^πnθ ) ̂ π Γ ~ ̂ 0 ^π(nθ Wπ ? )^ qμ Q9π<?2π,v

and q2riίV : = ^S~μ ®πr" *s a continuous seminorm on 5 .̂

As an immediate corollary we have

Theorem 2. For eυery continuous linear functional Se^' there is a
cyclic representation Jtf^ A, Ω of ££ and a vector φ e Jήf such that

Proof. By the previous theorem there is a Γe ¥ + ' with

The proposition is thus a consequence of the Riesz lemma: T defines a
cyclic representation J%A,Ω of if with cyclic vector Ώ and ||yl(/)Ω||
= T(f* x/)1/2 On the dense set D0 = {A(f)Ω\/e ¥}, S defines a con-
tinuous linear functional

and is therefore given by a vector φ e 3? .

4. Decomposition of Linear Functional

Positive functionals on ££ are continuous in the direct sum topology
τ as mentioned in Section 2. They have in fact a stronger continuity
property which follows from Lemma 2 and is not shared by all func-
tionals in ££' :

Lemma 3. For every Te ¥ + f there is a continuous norm p on £f such
that for all f,ge¥

(3)

i.e. T defines a jointly continuous sesquilinear form on

T(/*x£).

Proof. The statement is just Lemma 2 combined with the Cauchy-
Schwarz inequality.

If 7i and T2 are positive functionals, then Lemma 3 is also true for
T1-T2 because |7\ - T2\ ^[TJ + |Γ2|. The following example shows
that (3) is not valid for all Te«9^. For simplicity of notation we take
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Example. Define T = (Tθ9 7\, . . .) as follows : T0 = i,Tn= δ(n}® - - - ®δ(n}.
(Derivative of the ^-function in each variable.) Let / = (0,/1),
£ = (0,0,...,0,0N). We have

in/*x£)IHTN + 1(/f x^H/^

If the last factor is =f= 0, then (3) would imply

with a continuous seminorm p1 on 5^ and

This is not possible for all ΛΓ because a single continuous seminorm on
y can only dominate derivatives up to some finite order.

Thus, although ̂  + / - ^+/ is dense in 5ft we have

Lemma 4. 5^+1 -.̂  + 'φ5ft, and

Lemma 5. 77ιe product J xβ is not jointly continuous.

Proof. Otherwise (f,β)t-*T(f* xg) would be jointly continuous
for all Te 5? as a composition of continuous mappings.

Notation. By Jf we denote the strongest locally convex topology on
y such that the multiplication on ̂  is a jointly continuous bilinear

Since m is surjective (5? has a unit element) this topology exists. An
absolutely convex set U C ¥ is an ^-neighbourhood of zero if and only
if m~ 1(C7) is a neighbourhood of zero in 5^[τ] x«S^[τ]. The bilinear
mapping m is by definition continuous and defines therefore a con-
tinuous linear mapping of the tensor product

and Jf is also the strongest convex topology such that M is continuous.
is therefore isomorphic to the quotient space

^ ¥ [τ] ®π y [τ]/Ker M . (4)

can be defined explicitly by the norms

where {pα} is a basis of norms for τ. It makes no difference whether the
infίmum is taken over the decompositions of/ into a finite or an infinite
number of products because

Σ ^'x
Λ Γ + l
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and the last term becomes arbitrarily small for N -> oo if the sum con-
verges. Jf is weaker than τ because

(6)

If p is a seminorm with p(f*) = p(f) then \T(f)\<>p(f) for all /e ̂  if
and only if | T(/* x g)\ ^ p(/) - p(g) for all /,_g e <9 .̂ Positive functionals
and their linear combinations are therefore yK-continuous. The con-
verse follows from Theorem 1 as we are now going to show. In fact a
little more can be proven: An ,yΓ-equicontinuous set of Hermitean
functionals can be expressed as the set of differences of positive func-
tionals in some yΓ-equicontinuous set. (A set C is equicontinuous if there
is a continuous seminorm p with |T| ̂  p for all Te C.) Such a connection
between order and topology has a name [12]:

Definition. A cone K in a topological vector space is normal if there
is a basis of neighbourhoods of zero U with (U + K)n(U — K) = U.

Theorem 3. (Schaefer). Let E be a real topological vector space with a
cone K and dual cone K' C E'. K is normal if and only if every equicon-
tinuous set CcE' is of the form C1 — C1 with an equicontinuous set C± C K'.

Proof. See [12], Proposition 1.22, p. 73.

We now have the following corollary of Theorem 1 :

Theorem 4. ̂ + is a normal cone in «5

Proof. Let Cc^D/K] be equicontinuous. There is then a τ-norm
p such that \ S \ £ p for all Se C. By Theorem 1 there is a Te^ + / with
7X/*x/)^P(/)2 and by Lemma 2 a q such that \T\^q. We write
S = (S + T) - T. (S + T) is positive because (S + T) (/* x /) ̂  T(f* x /)
-|^(/*x/)I^P(/)2-p(/)2^0, and both T and (S+T) are con-
tinuous with respect to the norm p + q.

The functionals in ̂  + f — ̂  + f can now be characterized:

Theorem 5. The following are equivalent for a Hermitean linear
functional S on ̂  :

(i) Se¥ + '-¥ + '
(ii) S is ^-continuous.

(in) (J,g)t-*S(f* Xβ) is a jointly continuous sesquilinear form.

(iv) There is a cyclic representation $?, A,Ω of ¥ and a bounded

Hermitean operator B on 2f, commuting weakly with the representation2

such that

for all φ,ψeD0 = {A(f)Ω\Je
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Proof, (i) implies (iii) by Lemma 3 and (i) follows from (ii) by Theo-
rem 4. Equivalence of (ii) and (iii) follows immediately from the defini-
tion of Jf and the fact that * is an antiisomorphism. (iv) implies (iii):

l = \<BΩ,A{J* x_g)Ω>| = \<A(J)Ω,BA(g) β>| ̂  \\A(J) Ω\\ \\B\\
| g \\B\\ίl2p(f). HB||1 / 2p(g) by Lemma 2. Finally,(iii) implies (iv):

Let |S(/*x^)|^p(/) p(g). By Theorem 1 there is a Te^+' with
p(f)2^ T(f* xj) and S defines a bounded sequilinear form on the
Hubert space of the corresponding representation. It is therefore given
by a bounded operator by the Riesz lemma, which is Hermitean since
S is, and commutes weakly with the representation because S(f* x(c[xh))
= S((g*x/)*xΛ).

The topology N has the advantage of being better adapted to the
order structure and the positive functional than τ. We collect its basic
properties :

Theorem 6. (i) &\JΓ\ is a Hausdorff locally convex space with dual
space ¥tΛΊf = (¥ + r-¥ + Ί + i(¥ + '-ίf+') There is a basis of con-
tinuous norms M such that 0 g/ ^_g implies n(J) ^*e(g).

(ii) Jf is strictly weaker than τ, but both topologies are identical when
N

restricted to @ ̂  for JV < oo.
v = 0

(iii) Let Qx be the projection QN(f) = ( f 0 , . . . 9 f N , Q 9 . . . ) . If J( Cg
has the property QNJtf aM for all N < oo, then the closure of M is the
same in both topologies.

(iv) The bounded sets are the same in [̂.-/K] and £f[τ~].

(v) ^\_^~\ is nuclear and complete, but neither bornological nor
barrelled.

For the verification of these properties it is convenient to have a more
explicit description of the ^-continuous norms :

Lemma 6. Let p(f) = £ pn(fn) be a τ-norm and p the corresponding

(5). Then

where
pn(fn) = mί Σ Pμ®*Pv(fμJ\ Σ

μ+v=n μ+v=n

Furthermore,

is ^-continuous for all sequences cn ̂  0.

Proof. Consider the latter statement first. Let {dn} be a sequence such

π^ min {dμ- dv}. (Construct it by induction: Take d0 = max {cj/2,l}
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and suppose then one has constructed d0, ...,dn_ί with dv>Q and
cμ+ v = dμ dv for all μ, v g n — 1 . Define

dn = max {1, cn - d^\ . .., c 2 π_ ^ - <C-ι> ^ii2}-)
Now

Σ ^x

so pω is ^K-continuous. If dn = cn= 1 and /= £_gl x_fo l, we also have
i

by taking the infimum over decompositions of/ that Σpn(/M)

Conversely, since 5^(§)π^v — ̂ +v we have by the definition of p (5)
^p^® π p v (/ μ v)foral l/ μ v 6^ + v ? soif/ n - £ /μv, then

« H μ + v = n « μ+v=n

and thus

Proo/ o/ Theorem 6. (i) By Lemma 6 there exist yΓ-continuous norms
so ^[yK] is Hausdorff. The dual space is generated by the positive func-
tionals according to Theorem 5 which says just this for the real and
imaginary part of ^[yΓ]'. The last part of the statement follows from
Theorem 4 and Proposition 1 .5, p. 63, in [12]. The norms ̂  have the form
^(/)-sup{|Γ(/)||Γe^ + /, |T|^4} where q is some ,yΓ-norm.

(ii) Jf is strictly weaker than τ by (6) and Lemma 4. If pn = p 1 ®π - - - ®πp
 1 ,

then pμ®κp
v =pμ + v for all μ and v, so p" = pn in Lemma 6. Thus £ pn(fn)

n
N

is ^K-continuous, but these norms form a basis for the topology ofφ 5 .̂
« = o

(iii) Since τ is finer than .yK the τ-closure J£ is in any case contained
in the J^-closure M* '. Let / = (/0, . . . , fN) φ Jlτ. There is then a τ-neigh-
bourhood of 0, U, such that (/ -f U)r\Jί = 0. We can choose U such that
QNUCU [e.g. the unit ball of a norm q(f) = Σ<f (/„)]. By (ii) there is an
yΓ-neighbourhood of 0, F, with QNVcQNUcU. Therefore,
QN((! + V)^Jί] C (QNJ + QNV)nQNJt C(J + U)πJΐ = 0 because
QNJ=J and QNJίcJt by assumption. So (/ + F)n^=0 and

/^^^.
(iv) Since the sequence {cn} in Lemma 6 can grow arbitrarily fast,

N

an yΓ-bounded set must lie in (J) 5̂  for some N and so be τ-bounded
by (ii). » = °

(v) ί^[«yΓ] is nuclear because it is isomorphic to the quotient of the
nuclear space ¥[τ~\®π¥[τ~\ and the closed subspace kerM (4). (KerM



Algebra of Test Functions 327

is closed since ̂  is Hausdorff.) A τ-continuous linear functional is
bounded on the τ-bounded sets and thus on the ,yK-bounded sets by (iv).
Since τ-continuity does not imply .yΓ-continuity^[.yΓ] is not bornological.
Let p - 0 p" be a τ-norm. The unit ball Up = { f \ ρ ( f ) ^ 1} is yF-closed

n

by (in) and thus a barrel in «$?[yΓ]. It is not an ,/K-neighbourhood of 0
if p is not Jf -continuous. Completeness of ££\JΓ\ can be proven in a
similar way as for a direct sum of complete spaces (cf. [8], p. 215) using
Lemma 6.

At the end of this section two remarks :

1. The ordered vector space ̂  + > — ¥ + r is not a vector lattice, i.e.
for a S<=¥ + '-¥ + ' there is in general no smallest T ̂  0 with S + T ̂  0.
This can be seen as follows :

Let S = (0, S l 50, ...) with a real S^£f[. By Theorems 6(ii) and 5,
S£¥+'-¥+f so there is a T^O such that T + S^O. Let λ be a real
number >Q,uλT = (T(),λT1,λ

2T2, ...). This is also positive because
x/) = T(αJ * x αA/)^0, and so yΓ^T^O and A'

which implies FQ=Q and therefore F = 0 by Cauchy-Schwarz, so sup {£, 0}
does not exist.

2. The order topology on ίf is by definition the finest convex
topology with the property that every order interval [/,_g] = {h\J ^h ^_g}
is bounded (cf. [12], p. 1 18). This topology is here identical to the Mackey
topology τ. (Proposition 1.29, p. 77 and Proposition 1.16, p. 123 in [12].)

5. On the Extension of Positive Functionals

In this section we consider the problem of extending a positive func-
tional from a subspace to the whole oΐ£f. For applications in field theory
two types of subspaces are particularly of interest, subalgebras and the

N

spaces φ ̂ . We shall here only consider the former case and even
n = 0

restrict ourselfs to special subalgebras. As for the latter case we only
mention that the extension problem does not always have a solution:

2N

Consider for instance T = (0, ...,0, T2N) on φ £fn. This is positive on
2N \ n = 0

φ ̂  if onty ^2N is positive on ̂ 2N
Π^^ F°r functional in

v« = o /
^ + /, however, Γ0 = 0 implies T = 0.

If ̂  is a *-subalgebra of ̂  we define
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It is not true in general that &+ = &n£f + . For instance, if

=0 for l^

then (0, ...,0,/N)* x(0, ...,0,/Λr) is in ̂ n^+ but not in J)+. We shall,
however, be concerned with subalgebras which are tensor algebras over
closed, *-invariant subspaces ̂  C &Ί, i.e. algebras of the type

where j/0 = C and $in = s4γ ® ® j^1 . For this case we have

Lemma?. //Σ/*x/e^ wΐίfe fetf, then fe^ for all ί. In
particular

(i) j/+ =j/n¥ +

(ii) /,£ e ̂ +, / +£ e ̂  ίmp/iβs /,£ e ̂ +.

Proof. Since j/! is closed we have j^ = (^/i1)1, where j/^ C ^/ is the
annihilator of j/t . More generally

-0 for all ίe^1

1,r'l6^μ

/,sv6^v

/,μ + v+ 1 =n} .

2N

Suppose /= X/^x/'e^/. For some AT, /e @ 5^n. Consider the

2AΓ-component /^ - ̂  f$ x fl

N e j/2jv. For all ί 6 j/f1, rμ e ̂ ', 5V e £η

with μ + v + l ^ Λ 7 ^ we have (rμ®ί®sv)*®(rμ®ί®5v)e^2]v and thus

00

/2 iv= Σ \(

so (rμ® ί®sv) fff = 0 for all i and thus f^^N f°r a^ *• Suppose now it
has been proven for m ̂  n + 1 that /j, e stfm and therefore also f% e j/m

for all i. We have

/2.= Σ Σ /Γχ/J= £/»*></»+ Σ Σ /ΓxΛ'

The functional (rμ®ί®5v)*®(rμ®ί®5v) with te^ and /ι + v + 1 =n
annihilate f2n and also all /j* x /κ

f with A or κ;^n+ 1 by assumption.
Hence

i= 1

and therefore fl

n e stfn. We have thus proven that/' 6 ̂  for all z. (i) and (ii)
follow immediately.

For C*-algebras the extension of a positive functional from a sub-
algebra with unit to the whole algebra causes no problems [14]. The
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proof depends on the fact that the unit element is an interior point of
the cone of positive elements. On the other hand it is not difficult to see
that ̂ + has no interior points at all [6]. Moreover, Lemma 6(ii) means
that ̂ + is an extremal surface of ¥+ and this makes some other con-
venient criteria useless (e.g. [12], p. 83). The necessary and sufficient con-
ditions e.g. in [12], [15] or [6] are not very handy in the present case.
We are going to see that this question has no equally simple answer as
for C*-algebras (which is not so surprising because the structures are
quite different). A related question which will also be treated is the follow-
ing: Is the finest convex topology JΓ^ on j/, with the property that

x άl\τ\-* &l\JfjJ\ is jointly continuous, identical to the restriction

Theorem 7. // ^/ί has a topological complement in ̂  then every
positive functional on dj has an extension in^ + l and Jf^ = N\&1.

Proof. Let π t be a continuous projection of &Ί on j^. If πx(/*)
+ πι(/)*> we can find a real projection by taking Re π x = i/2(πί -f πf)
which is a projection on j^t because ̂  = j/f . So we may assume that

00

π1(/*) = π1(/)*. Define π0=id\<C and πn = π1® ®π1. π= (J) πn is
n = 0

then a continuous *-algebra homomorphism ^— >j/ with π\j/ = id.
If T is positive on ̂ , then T° π is a positive extension to £f.

Let U be an .^-neighbourhood of 0 in ̂  . By definition, there is a
τ-neighbourhood Vc^ such that m(V x V)cU and since π is con-
tinuous, there is a τ-neighbourhood Wc£f with πWcV. Thus,
m(W x W) n ̂  - π(m(P^ x PF)) - m(πFΓ x πFF) C m(F x 7) C (7, and
m(]/F x W) is an yΓ-neighbourhood of 0 so Jf\dl is finer than .Λ^^. The
inverse is trivial.

Theorem 8. Let stf^ C&Ί be a closed ^-invariant subspace and T
a positive linear functional on stf . If there exists a continuous norm p1

on &Ί and constants cn such that \Tn\ ^cn p1(x)π ®πp
1, then T has an

extension to a positive functional on &*•

Proof. Let h1 be a continuous Hubert norm on ̂  with p1 ^h1 and
hi(f^) = h l ( f } . This norm defines a topology on J2/15 let ̂  be the com-

00

pletion and ̂  = @ £/ί®π- ®π<$/1 the corresponding tensor algebra
n = 0 _

with the topology of a locally convex direct sum. &l is dense in j/ and we
can extend * to a continuous involution on j/. Furthermore, the multi-
plication is jointly continuous on j/: By definition the topology on j/
is given by the norms h{Cn](f) = Σcnh

n(fn) where hn = hl®n- ®nh
l and

cn > 0. As in the proof of Lemma 6 we can find dn such that
cn^mmn{dμ dv}9 and show that hM(f x$)^ h{dn}(J)' h(dn](a_). The
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positive cone ^+ = {Σ/1* x/Ί/'e^} is therefore contained in the
closure of ̂ + in ̂ . Every linear functional T on j/ with |7 |̂ ̂  CM hn

defines a continuous functional on at which is positive on &?+ if it is
on ^+. Let π! be the projection ^-^^ with respect to the Hubert
norm ft1. As in Theorem 7, the corresponding *-algebra homomorphism
π : ̂ ->^ defines the extension Γ° π.

The following counterexample shows that Theorem 7 is not true for
arbitrary subspaces j^ίc^1. For simplicity of notation we consider
functions of one variable, i.e. 5̂  = ^(IR1). For j^ί we take the subspace

y ° - {/ e ̂  I dnf/dxn(0) = 0 for all n] .

° has no topological complement in

Theorem 9. There are positive functional^ on ^° which have no
extension in ̂  + f-^ + f. In particular, ̂ O

Remark. The restriction of ̂  + / to ̂ ° is strongly dense in (̂ °) + /.
This follows simply from ^0+ =^°n^+ by duality and the fact that
strong and weak closure of a convex set in 5^0/ is the same thing. (This
because 5 °̂ is reflexive and the strong topology on 6f°f therefore com-
patible with the duality between ¥° and 5^0/.) But if there exists one
positive functional R on 5 °̂ which has no extension in <¥> + ' — <¥) + ',
then such functional are also dense: If T has an extension in ̂  + f — ̂  + /

then T + εR cannot have an extension for any ε > 0.

Proof of Theorem 9. The notation becomes simpler if we use the
fact that ^(IR1) is isomorphic to the space t̂°°[- 1, 1] of C°° -function
on 1R with compact support in the closed interval [ — 1 , 1] (cf. [10], p. 529).
This isomorphism is given by the transformation of variables

x = ( l- t)~ 1 -( l+ί)~ 1 e[-l , l ] for fe [- 00,00],

and the topology on ĉ°° by the Hubert norms

/ k 1 \ l / 2

M/)= Σ ί I/ ( K )WI2

\κ = 0 - 1

with the scalar product

y° is isomorphic to {/eίC[- 1, l]|/(n)(0)-0for alln}. By abuse of
notation, we shall in the following write feίf and mean the correspond-
ing function in <£?[- 1, 1].
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Let θ be the step function : θ(t) = 0 for t < 0 and 1 otherwise. Functions
in y ° have a zero of infinite order at 0, so cutting with θ defines a con-
tinuous *-algebra homomorphism aθ:£f°-+¥0:

If T is a positive functional on ίf, then R = T°aθ is positive on ̂ °. In
the proof of Theorem 1 we considered functional of the form T0 = 1,
Γ2 ϊ l-ι=0, T2n(f®g) = c2n.(f*,gyn

kn, and it was shown that
T = (TQ, Tl5 ...) is a positive functional on ¥ if the sequences {c2n} and
{/cj grow sufficiently fast for n->oo. We claim that R = T°uθ has no
extension in ̂  + l — 9?*' if the sequence {fcn} is not bounded. As a first
step towards a proof of this we consider the following functionals on

5fe is real and symmetric in / and g. Any two extensions of sk to a linear
functional on ϊf®^ differ at most by terms with support in {0} xIR1

ulR1 x {0}, so the symmetric, continuous extensions have the form

Sk(f®9)= Σ ί f(κ)(x)θ(x)g™(x)dx+ I (/(λ)(0)^ω + ^(/)^(A)(0))(7)
κ = 0 - 1 λ = 0

with t\ G ̂ '.

Lemma 7. Lβί {kM} be a sequence of natural numbers and skn of the
form (7). // there exist continuous seminorms q and qn such that

(8)

for all /, g 6 ίf and all feπ, ί/z^/7 {/cn} 1*5 bounded.

Proof of the Lemma. There is a Hubert norm

\ l / 2

M/)= Σ

with q^hM. Suppose {kn} is not bounded. Then for some n,kn = N^
and

| g «(/) ^ω g Λ N _ !(/) «N(flf) . (9)

Partial integration in (7) yields

N-l

$ f(v}(χ)θ(x)g(v}(x)dx-$f(N~1}(x)θ(x)g(N+1}(x)dx
v = 0 '



332 J. Yngvason

For the first two terms an estimate of the form (9) is valid (eventually with
another qN). We have therefore also

L
Σ (/U)(0) tλ(g) + tλ(f) 0< (10)

with some continuous seminorm qN. Let g e ̂  and /(A)(0) = 0 with the
exception of λ — N — 1 and λ = N respectively. In these cases (10) reduces to

and

Now f(N υ(0) and /(Λ°(0) are n°t dominated by the norm hN_ 1 because
derivatives of order ^ N can be arbitrarily large at one point while the

/ Λ Γ - l \ l / 2

integral /ι#-ι(/)= I Σ f l/(κ)(χ)l2 ^x) remains bounded. Therefore
\κ = θ ' /

tN-ι(9) = tN(y) — Q> so ί jv-i and ίjv must have support in {0}. Let g(λ\Q)
= /(λ>(0) = 0 with the exception of λ = N - 1 and λ = N. Then (10) takes
the form

Σ*mπ/ ( W )(0)0 ( l l )(0)-.,
m,n

with constants amn which are symmetric in m and n because the sum over
λ in (10) is symmetric in / and g. This inequality can only be true if the
last term on the left side is compensated by %_1 > J V/ ( Λ Γ~1 )(0)gf ( Λ Γ )(0),
i.e. %_ ltN = 1. But in that case %,N- i = 1 and /(N)(0) ̂ (N~ 1}(0) can even

less be estimated by fyv-ι(/) ^N(Θ) so (9) cannot be true and we have a
contradiction to the assumption that {kn} is unbounded.

We now bring the proof of our theorem to an end. Consider any
Hermitean extension of the functional R. For /2, ...,/π fixed the func-
tional

is an extension of const < θf, θg^kn and is therefore of the form (7). If
Re¥ + / — ¥ + Ί then R is .yK-continuous and there is a continuous norm
q^ (not depending on n) and continuous norms q2n-1 such that

But this would imply (8) which is not possible if {&„} is unbounded. So
there is no extension in ̂  + r — 6? + l and R is not yF-continuous. It is
in any case J^o-continuous, so ._Λ^0 is strictly finer than
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