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Abstract. It is shown that every continuous linear functional on the field algebra can
be defined by a vector in the Hilbert space of some representation of the algebra. The func-
tionals which can be written as a difference of positive ones are characterized. By an example
it is shown that a positive functional on a subalgebra does not always have an extension toa
positive functional on the whole algebra.

1. Introduction

The formulation of the reconstruction theorem of Wightman [1]
in terms of positive functionals on the tensor algebra over a space of test
functions [2] provides a natural framework for a study of the nonlinear
restrictions on the Wightman distributions. This is the reason why the
properties of this algebra are of interest and have been the subject of
several investigations [2—7]. This is also the motivation for the present
paper, although we shall here ignore the linear conditions of field theory
and be concerned with the positive linear functionals in general. As a
space of test functions we take Schwartz space % and we denote the
algebra by &. It is shown that there exist so many positive functionals
that the corresponding Hilbert norms define a topology on & which is
identical to the usual one. This topology, however, is not well adapted
to the order structure on & in the sense that continuous linear.func-
tionals need not be of the form (T, — T;) + i(T5 — T,) with positive func-
tionals T;. This is connected with the fact that the multiplication on the
algebra is not continuous in both variables jointly. Let 7 denote the usual
topology on & and A" the strongest convex topology such that the
multiplicationisa jointly continuous bilinear map & [t] X #[t]> &L [A].
It is shown that functionals of the above form are exactly the .4#"-con-
tinuous functionals.

Finally we consider the problem of extending a positive functional
from a subalgebra of & to a positive functional on the whole algebra.
In some cases this is shown to be possible, but an example is also given
where no extension is a linear combination of positive functionals.
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2. Notations and Basic Properties of the Field Algebra

The basic properties of & and its connection with Wightman field
theory are discussed in [2, 3,5, 6]. We shall therefore only review the
notation briefly and state some additional properties which are mainly
a consequence of the fact that & is a nuclear space.

The field algebra is the locally convex direct sum & = @ &, where

n=0
% =C and ¥, =S(R"") is Schwartz space of C®-functions RY"—C
of rapid decrease. We denote the direct sum topology on .? by 7, for its

properties see [3, 5]. The dual space is the product &' = l_[ 7, usually

n=0
equipped with the strong topology. The elements of & are thus sequences

_f fO fl*" fm s

where all but a finite number of f, € &, are equal to zero, whereas &’
consists of arbitrary sequences

T=(Ty, Ty, ...)

with T,e %,. As an algebra &% is the completion of the tensor algebra
over ¢, the multiplication is defined by

(fx_g)n(xl""’xn)= Z fu(xl"",xu)gv(xu+1>"'9xn)a

ptv=n

with the unit element 1 =(1, 0,0, ...). An involution = is defined by

(f*)n(xl’ "‘ﬂxn)zfn(xm ""xl)‘

The multiplication is continuous in each variable separately, it is jointly

2N
continuous as a bilinear map @ S x (—B I — (—B &, for N <co. The
n=0 =0

involution is an anti- 1somorphlsm, there is a bas1s of continuous norms
p with p(f*)=p(f). The Hermitean part of &

=L f*=[}

is a real vector space with the cone of positive elements

=lregis= § prxpipes).

& * defines an order relation on & : f=giff g— fe £, A linear func-
tional which is positive on & is automatically continuous [6]. It has
to be noted, however, that positivity on & is a stronger condition than
positivity on squares f* x f if no continuity is assumed, because &~
contains infinite sums of squares.
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The dual space of 4 is identical to the space of Hermitean or real
functionals on &:

F={TeS'|T=T*}, where T*(f):=T(").
Every element can be decomposed into its real and imaginary parts, so
L=fH+ish, L=LH+id.
Positive functionals are Hermitean because
_y h= g T _y . (1)
They form the dual cone
ST ={TeSL'|T(f)=0 forall feF"}CH.
That &' is in fact a cone and not merely a wedge, i.c.
L= ={0}

follows from (1) by duality. According to [7], 7' — & *’ is dense in .
This follows also from the stronger result that & is a closed cone [4]
or from Theorem 5 below.

In the proof of Theorem 1 we shall make use of the fact that the spaces
&, are nuclear. The topology of a nuclear space can always be defined
by Hilbert seminorms [9, 10], i.e. seminorms which derive from a scalar
product. For %, we can even find Hilbert norms [11]. Let h* h" be
Hilbert norms on ¥,, ¥, respectively, and denote by <{f,g>*, {f,g)"
the corresponding scalar products. On the tensor product %, ® &, one
can define many different norms A* @ h”* with the property

@ (f ®g)=h"(f) '(g).
The biggest one is the trace norm
@) = nf [ (1) 6 2 f @' =u}
because every norm with the albove property lsatisfies
hﬂ@hv(zf@gf)g YRR ®g)= LR (I,
In particular, h* (l>§,t R is greatér than the Hilbert-S::hmidt norm
we, k(L0 (Tt g
which on the other hanld dominatesl:cile usual operator norm*

W@, h*(u)=sup {IT®SW)|Te &, Se L, |TISh, SISk}

! One can think of the tensor product of two Hilbert spaces #, ® #, as the set of
linear operators #, — #, with finite dimensional range. Hence the names for these three
products. The products ®, and ®, can of course be defined for arbitrary seminorms
[9, 10].
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Now the ,, &, are nuclear spaces, and this implies that it makes no
difference which of these products one uses [9, 10]: For fixed h*, h* they

are not equal:
Hr®.h <h@,h Sh*®,.h",

but there are always other continuous norms k¥, k* such that
.k <k*®,k" <k*®,k”.

The families {h; ®,hp}, {hy®,hp}, and {h;®,h;} define therefore all the
same topology on &, ® & if {h;}, {hy} is a basis of continuous Hilbert
norms for the topology of &,, &, respectively. The completion &, R
is isomorphic to %, .., [10]. In particular, one can define the topology of
4, by a system of Hilbert norms of the form

h1®a'“®ah1

with Hilbert norms h' on ;.
The topology of & is defined as the locally convex direct sum of the
4, topologies, i.e. it is given by the norms

o0

p(f)= . h(f)

n=0

where the A" run through a basis of continuous Hilbert norms on %,
multiplied with arbitrary coefficients. It is, however, not difficult to see
that we get an equivalent family of norms if we take the Hilbert direct sum

0 1/2
= ( ) h"(f,.)z) :
n=0
Although this is probably well known we give a proof:

© 2 ©
Lemma 1. There exist constants c? such that (Z xu) <) eixl
for all finite sequences of real numbers {x,}. #=0 =0

Proof. Let a,,= —1 for p%v, a,,=ci—1. We have to choose ¢}
such that Y x,a,,x,=0. For this it is sufficient that the determinant

v
of every submatrix A =(a,,),.v<n 18 greater than zero. We define ¢ by
induction: Choose ¢ > 1 and assume then that det4,_, >0. We have

detd,=a,,-detd,_, +R,_,
where R, _ ; does not contain g,,,. So det 4, > 0 if

2—1=a,,>—R,_, (detd,_,)"".
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We conclude this section with a few remarks on representations of &.
By representation we shall in the following mean weakly continuous
x-representation, i.c. a mapping of &% on linear operators A(f) with a
common dense domain of definition D in some Hilbert space # such that

(i) A(f/)DCD forall feZ.

(i) A(ef + Bg)=aA(f)+BA(g),

A(f xg)=A(f) Ag).
A(f*)=A(f)* on D.

(iii) <@, A(f)y> is continuous in f for all ¢,y e D.

If #,D, A is a representation, then T(f)=<{¢, A(f) @) is a positive
functional on & for all ¢ € D, and conversely, a positive functional T
defines by the GNS-construction a cyclic representation with cyclic
vector Q, domain of definition D, = {A(f)Q|fe S} and [A(f) Q|
=T(f*x f)"'2

Although the multiplication on & is not jointly continuous, it is
jointly continuous as a map ¥, x %,— %, and this is sufficient for

Lemma 2. A weakly continuous x-representation of & is strongly

continuous, i.e. [ ||A(f) | is continuous for all ¢ € D. As a consequence,
h(f)=T(f* x [)"/? is a continuous seminorm on & for all Te & *'.

Proof. |A(foll =| X A(f)e | = YIA(f) el = XAe. AfF x f) o>

By weak continuity there are continuous norms p,, on %, such that
@, A(SF X 1) @) S P2 fiF % f). Since S, = #,®, F,, we can choose
Pan=4,8,.9, With continuous norms g, on ¥, and we can take g, such

that qn(fn*)=qn(fn) Hence HA(f)(p” é Z qn(fn) SO “A(f)q)” is con-
n=0
tinuous. The last statement follows immediately because a positive T

defines a representation with |A(f) @ =h(f).

3. A Class of Positive Functionals

If T is a positive functional, then h(f) = T(f* x f)'/? is a continuous
Hilbert seminorm on % by Lemma 2. The collection of all such semi-
norms defines a topology on & which is in any case weaker than <. It is in
fact identical to t as we are now going to show. The method is a gener-
alization of a construction used in [13] to show that every sequence of real
numbers is a difference of two sequences of positive type (cf. also Lemma 2

in [7]).
Theorem 1. For every continuous seminorm p on & there is a positive
functional T such that

P ST(f*x [f) forall fe&.
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Proof. The Hilbert norms
h(f) = ( Y J 4+ PP () dx)l/z

Ja],k <k
form a basis of norms for the topology of & [11]. We can also write

this as
()= fs My f 56/

where < f, g), is the usual scalar product in L, and
M= Y (=)D +[x]>D*
la|,k Sk
is a continuous operator &, — &, positive with respect to the L, scalar
product. We denote {f, M, g>, by {f, g>,. On &, we have the basis of

Hilbert norms
hz = hk®o’ ®o‘hk

with the corresponding scalar products

o= <1 M¢g)5
where M) =M, ®--- @ M,.

After these preliminary remarks we begin the construction of T by
defining T,,,, =0 for all v=0,1,.... We are then going to define by
induction Hilbert norms g, =c, - h;_ and distributions T,,€ %;,, where
¢,>0 and i} is of the above form, such that the following three con-
ditions are satisfied:

n 1/2
O a2 () or al £ =(for - 0l = 3 P

(ii) There is an ¢,> 0 such that T(f* x f) = (1 +¢,) - q(f)*
(iii) There exist continuous seminorms g, , ,on %, for 0 < u<v=2n,
w+v=2n, such that

iTu+v(fu* X gv)‘ = qu(fu) : qu+v,v(gv) for all fue ‘9;4’ gv€ %

We begin at n=0: p, is a continuous seminorm on C so thereis a ¢, >0
with po(a) £ colal = : qo(a). Define Ty =2c3 and &, =1. The conditions
above are all satisfied. Assume now that they are valid with n — 1 in place
of n. Choose g, =c, - h;, such that

ngmax{h'(',, pnvqn,m Qn+ 1,n5 *°*> QZ(n—l),n} . (2)

This is possible because every finite set of continuous norms is dominated
by some norm of the type h}. By Lemma 1 we may suppose that the given
norm p is the Hilbert direct sum of the norms p, so (i) is satisfied. Now
define a linear functional on ¥, ® ¥,:

T2n<z fnl X g:x) =lZn ) 03 Z <fnl*a g:.>2,.
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with a constant 1,, to be fixed shortly. We have

|T,,(f) < consth; ®,hy (),

for fe 4,® ¢, so T,, defines a continuous functional on %, =, ® .
To check (ii) let f =(fo,.... fu—1): f =(fo» .-» f) =([s f,)- Then

T(f*x f)=T( *x )+ 2Re T(f* x £,)+ T(f* x f,).

The mixed term can be estimated by (iii) and (2):
n—1 n—1
IT(f* X fn)l :<: ZO ITu-i- n(fu* X fn)l é ZO qu(fu) : qu+n,n(.f;1)
u= u=

< (z quu))-q,,(f,,) <n'.g()- -

By (i), T(f*xf)=(1+e,,)-q(f)* with &_,>0. Let &,=1/2¢,_,.

Since T(f,* x f,)=242,q,(f,)* and q(f)*>=q(f)* +q,(/,)* by definition,
we have

T(f*x f)—(1+2)-q())* (1 +2¢,) - q())* = 2n"2 - q()- 4,(f,)
+ Ao gu ) — (U +8) - a())? = (1 +5,) - 4,(f,)?
=6,4([)* = 2n"2q(f) qu(f;) + (2 — 1 — &) - 4,(,)* 20
if Ay, =n-e l+1+e,.

It remains to verify (iii). For u+v=<2(n—1) it is valid by assumption
and for u+v=2n—1 because T,,_,=0. One has therefore to find
continuous seminorms q,, , for v=n+1, ..., 2n such that

|T2n(fu* X gw)l é qu(fu) ) q2n,v(gv)
for 4+ v=2n, v as above. By definition
T2n(fn X gn) = const <fn*’ MI?,. gn>8
and thus by Cauchy-Schwarz
ITZn(fn X gn)l é h'(')(fn) : r"(gn)

where r"(g) = consthg(M;, g) is a continuous seminorm on %, This
implies

]TZnI é hg@nrn .
Now let u=2n—-v=<n—1. We have

hg = h @, o™ < bt ®hg™*
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and thus
}T2n| é (hlé ®1r hg— /l) ®nrn = hs ®n(h3_“ ®n rn) é qu ®nq2n,v

and q,, ,:= hj”*®,r" is a continuous seminorm on .
As an immediate corollary we have

Theorem 2. For every continuous linear functional S€ &' there is a
cyclic representation H#, A, Q of & and a vector ¢ € # such that

S(f) =<0, A(f) Q).

Proof. By the previous theorem there is a Te & *' with

ISUNST(f*x HH2.

The proposition is thus a consequence of the Riesz lemma: T defines a
cyclic representation # 4, Q of & with cyclic vector  and [|A(f) Q|
=T(f* x f)"/2. On the dense set D, = {A(f) Q| f€ #}, S defines a con-
tinuous linear functional

S(A() Q)= S(7)

and is therefore given by a vector ¢ € #.

4. Decomposition of Linear Functionals

Positive functionals on & are continuous in the direct sum topology
7 as mentioned in Section 2. They have in fact a stronger continuity
property which follows from Lemma 2 and is not shared by all func-
tionals in &’:

Lemma 3. For every Te &' there is a continuous norm p on & such
that for all f,ge &
IT(f*xgl=p(f)-P@, ©)

i.e. T defines a jointly continuous sesquilinear form on &

(_f,_g)i—>T(f* xg).

Proof. The statement is just Lemma 2 combined with the Cauchy-
Schwarz inequality.

If T, and T, are positive functionals, then Lemma 3 is also true for
T, — T, because |T, — T,| <|T;|+|T,|. The following example shows
that (3) is not valid for all Te &,. For simplicity of notation we take
I =L (RY.
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Example. Define T =(T,, T}, ...) as follows: Ty =1, T, =6"®---®5™.
(Derivative of the J-function in each variable) Let f=(0,f)),
g=(0,0,...,0,gy). We have

IT(f* % gl =Ty + 1 (fF x gl =1V D(0) - g 1", ..., 0)].
If the last factor is # 0, then (3) would imply

|f1<N+ 1)(0)| §P1(f1) *CN

with a continuous seminorm p! on &, and

en=p"(gx) gy "N TP, .., 007

This is not possible for all N because a single continuous seminorm on
& can only dominate derivatives up to some finite order.
Thus, although &' — £ is dense in &, we have

Lemmad4. ¥*!' - "'+, and
Lemma 5. The product f x g is not jointly continuous.

Proof. Otherwise (f, g)+T(f* xg) would be jointly continuous
for all Te & as a composition of continuous mappings.

Notation. By 4" we denote the strongest locally convex topology on
& such that the multiplication on & is a jointly continuous bilinear

mapping m: Lt] x L[t]->L[N].

Since m is surjective (& has a unit element) this topology exists. An
absolutely convex set U C & is an .4 -neighbourhood of zero if and only
if m~Y(U) is a neighbourhood of zero in #[t] x &[7]. The bilinear
mapping m is by definition continuous and defines therefore a con-
tinuous linear mapping of the tensor product

M: 2111, L[t]1-ZL[AN]

and 4" is also the strongest convex topology such that M is continuous.
L[] is therefore isomorphic to the quotient space

LN =L )@, L[1]/Ker M . 4)
A can be defined explicitly by the norms
pulf) = inf{z pg) )| T x I =4 0
where {p,} is a basis of norms for 7. It makes no difference whether the
infimum is taken over the decompositions of f into a finite or an infinite
number of products because

0 N 0
S axh= ¥ axs( ¥ gxn)xi

i=1 i=1 i=N+1
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and the last term becomes arbitrarily small for N— oo if the sum con-
verges. A" is weaker than 7 because

P =p()-p(f). (6)

If p is a seminorm with p(f*)=p(f) then |T(f)|<p(f) for all fe & if
and only if |T(f* x g)l S p(f)- plg) for all f,ge &. Positive functionals
and their linear combinations are therefore .4"-continuous. The con-
verse follows from Theorem 1 as we are now going to show. In fact a
little more can be proven: An .4 -equicontinuous set of Hermitean
functionals can be expressed as the set of differences of positive func-
tionals in some .4"-equicontinuous set. (A set C is equicontinuous if there
is a continuous seminorm p with |T| £ p for all T e C.) Such a connection
between order and topology has a name [12]:

Definition. A cone K in a topological vector space is normal if there
is a basis of neighbourhoods of zero U with (U + K)n(U —K)=U.

Theorem 3. (Schaefer). Let E be a real topological vector space with a
cone K and dual cone K' CE'. K is normal if and only if every equicon-
tinuous set C C E' is of the form C; — C, with an equicontinuous set C; CK'.

Proof. See [12], Proposition 1.22, p. 73.
We now have the following corollary of Theorem 1:
Theorem 4. &+ is a normal cone in &,[N].

Proof. Let CC &,[ /] be equicontinuous. There is then a t-norm
p such that |S| < p for all Se C. By Theorem 1 there is a Te &' with
T(f*x f)=p(f)* and by Lemma 2 a g such that |T| <4. We write
S=(+T)—T.(S+ T)is positive because (S+ T) (f* x /)= T(f* x f)
—I8(f*x N =p(f)*—p(f)*=0. and both T and (S+T) are con-
tinuous with respect to the norm p + 4.

The functionals in &' — %"’ can now be characterized:

Theorem 5. The following are equivalent for a Hermitean linear
functional S on & :

(i) Seg™ —&".
(i) S is A -continuous.
(i) (f,g)S(f* x g) is a jointly continuous sesquilinear form.
(iv) There is a cyclic representation #,A,Q of & and a bounded

Hermitean operator B on #, commuting weakly with the representation?®
such that
S(f)=<(BQ A(f) Q).

? Le. {@, BA(@) w) =<{A(g*) @, By) forall ¢.peDo={A(f)Q|fe &}
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Proof. (i) implies (iii) by Lemma 3 and (i) follows from (ii) by Theo-
rem 4. Equivalence of (ii) and (iii) follows immediately from the defini-
tion of .4 and the fact that = is an antiisomorphism. (iv) implies (iii):
IS(/* x | =[KBRA(f* x 9)@)| = [KA(f) 2 BA(g) @) | A(f) |- | Bl
-l 4(g) QI < |BII**p(f) - | B]I*'* p(g) by Lemma 2. Finally, (iii) implies (iv):
Let |S(f*xg)<p(f)-plg). By Theorem 1 there is a Te "' with
p(f)>’ST(f*x f) and S defines a bounded sequilinear form on the
Hilbert space of the corresponding representation. It is therefore given
by a bounded operator by the Riesz lemma, which is Hermitean since
S is, and commutes weakly with the representation because S(f* x (g x h))
= 5((g* x f)* x b).

The topology 4" has the advantage of being better adapted to the
order structure and the positive functionals than t. We collect its basic
properties:

Theorem 6. (i) [ A"] is a Hausdorff locally convex space with dual
space LN =L -~ L) +i(L —FL). There is a basis of con-
tinuous norms » such that 0 < f' < g implies »(f) £ »(g).

(i) A is strictly weaker than t, but both topologies are identical when

N
restricted to @ &, for N <.

v=0
(iii) Let Qy be the projection Qn(f)=(fo,.... f3.0,...). If MCL
has the property Qn M C M for all N < co, then the closure of M is the
same in both topologies.
(iv) The bounded sets are the same in L[ N"] and &£ [1].
V) LLAT] is nuclear and complete, but neither bornological nor
barrelled.

For the verification of these properties it is convenient to have a more
explicit description of the .4#"-continuous norms:
Lemma 6. Let p(f)= Y, p"(f,) be a t-norm and p the corresponding
N -norm (5). Then "
p(f)= 2 p"(f)

where

pr(f)=inf Y p'&p(fu) X fuv=fn}'

ptv=n ptv=n
Furthermore,

e =2 cu- P"(f)

is N -continuous for all sequences c, = 0.

Proof. Consider the latter statement first. Let {d,} be a sequence such
thatc, < uglégn {d,- d,}.(Constructitbyinduction: Taked, = max {cy/?, 1}
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and suppose then one has constructed do,...,d,_; with d,>0 and
Cyrv=d,-d, for all yu,v=<n—1. Define

d,=max{1,c,-dy . ...,con_r d; 21, c3?})
Now
ﬁ(cn)(gxll)=zcn'ﬁ"( ) g#xh»)é Y d,-d,-p"(g,)- p'(h,)
n ptv=n n,v

=Dw,y(@) - Push) .

$O Py, is A -continuous. If d,=c,=1 and f= ) g'x I, we also have
by taking the infimum over decompositions of f that Y p"(f,) <p(f).

Conversely, since ¥, ®, %= oy we have by the definition of p (5)
that p(f,,) S p" ®, pv(f,”) for all fuv Fsysoif fo="3  f,,, then

putv=n

)= Zp(f)< X X ISY X pPep ()

n utv=n n utv=n

and thus p(f) < > p*(f,)-

Proof of Theorem 6. (1) By Lemma 6 there exist .4"-continuous norms
so L[ A] is Hausdorff. The dual space is generated by the positive func-
tionals according to Theorem 5 which says just this for the real and
imaginary part of [ ./7]. The last part of the statement follows from
Theorem 4 and Proposition 1.5, p. 63, in [12]. The norms » have the form
a(f)=sup{|T(f)|Te L', |T| <4} where § is some .4 -norm.

(ii) A isstrictlyweakerthantby(6)and Lemmad4.1fp" =p' ®,---®,p’,
then p*®,p’ =p**" for all y and v, so p" =p" in Lemma 6. Thus Y p"(f,)

N
is 4 -continuous, but these norms form a basis for the topology of P .
n=0

(iii) Since 7 is finer than 4" the t-closure .#" is in any case contained
in the A -closure .4/*. Let f=(fo, ..., fy) ¢ 4. There is then a t-neigh-
bourhood of 0, U, such that (f + U)n.# =@. We can choose U such that
OnU C U [e.g. the unit ball of a norm q(f) = £¢"(f,)]. By (ii) there is an
A -neighbourhood of 0, V, with QyVCQyUCU. Therefore,
ON(f + V) ll) CQnf +OxV)NQntl C(f + U)n.M =0 because
Onxf=f and Qy.# CM by assumption. So (f+V)n.4# =@ and
[ea

(iv) Since the sequence {c,} in Lemma 6 can grow arbitrarily fast,
an 4 -bounded set must lie in (—B &, for some N and so be 7-bounded
by (i). n=0

(v) L[A] is nuclear because it is isomorphic to the quotient of the
nuclear space £ [7]®,F[7] and the closed subspace ker M (4). (KerM
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is closed since 4" is Hausdorff.) A 7-continuous linear functional is
bounded on the t-bounded sets and thus on the 4 -bounded sets by (iv).
Since t-continuity does not imply.4"-continuity [ .4 ] isnotbornological.
Letp= (—D p” be a T-norm. The unit ball (7p ={fIp(f) =1} is A -closed

by (iii) and thus a barrel in #[A"]. It is not an .4 -neighbourhood of 0
if p is not 4 -continuous. Completeness of [ A#"] can be proven in a
similar way as for a direct sum of complete spaces (cf. [8], p. 215) using
Lemma 6.

At the end of this section two remarks:

1. The ordered vector space &' — &' is not a vector lattice, i.e.
for a Se#*' —F* thereisin general no smallest T =0 with S + T =0.
This can be seen as follows:

Let $=(0,5,,0,...) with a real S; € &. By Theorems 6 (ii) and 5,
Se ST —F* so there is a T=0 such that T+S=0. Let A be a real
number >0,0; T=(Ty, AT, A% T,,...). This is also positive because
a; T(f*x f)=T(,f**xa,;f)=0,and so A 'a; T=20and A~ o, T+S
=11 (T+8)=0.IfOSF<A 'a,Tforall 1>0,then0<F, <A™ ' T,
which implies F, = 0 and therefore F =0 by Cauchy-Schwarz, sosup{S, 0}
does not exist.

2. The order topology on & is by definition the finest convex
topology with the property thatevery orderinterval [ f, gl ={h| f Sh =g}
is bounded (cf. [12], p. 118). This topology is here identical to the Mackey
topology 7. (Proposition 1.29, p. 77 and Proposition 1.16, p. 123 in [12].)

5. On the Extension of Positive Functionals

In this section we consider the problem of extending a positive func-
tional from a subspace to the whole of . For applications in field theory
two types of subspaces are particularly of interest, subalgebras and the

N

spaces (P ,. We shall here only consider the former case and even
n=0
restrict ourselfs to special subalgebras. As for the latter case we only

mention that the extension problem does not always have a solution:
2N

Consider for instance T=(0,...,0, T,y) on P ¥,. This is positive on
2N n=0
LA (6—) 9?,) if only T,y is positive on &,yNn & ". For functionals in
n=0
&+, however, T, =0 implies T =0.
If # is a =-subalgebra of & we define

93+___{fzzi:fi*xfi

f‘egz}.
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It is not true in general that #% = #n#*. For instance, if
B={feZL|f,=0 for 1Sv<2N—-1},

then (0, ..., 0, fy)* x (0, ...,0, fy) is in ZnZL " but not in 7. We shall,
however, be concerned with subalgebras which are tensor algebras over
closed, *-invariant subspaces o/, C 4, i.e. algebras of the type

o= D

where o/, =C and &, = o, ® --- ® «, . For this case we have

Lemma 7. Ifoi*xfieg with fie &, then fle o/ for all i. In
particular !

() " =L

(i) f,ge ™", f+geo implies f,ge ™.

Proof. Since o7, is closed we have .o/, = (/{)*, where .o/ C &] is the
annihilator of «/;. More generally

A, ={[LeL|IH®1®5(f,)=0for all teA}, "€ ¥, F,,u+v+1=n}.

2N
Suppose f=) f"x flesd/. For some N, fe @ ¥, Consider the
i n=0
2N-component fiy= ) fy x fy€ o,y. For all te o1, "€ &, '€ &
with u+v+1=N we have (HRtRs)V*Q(*"Rt®s") e /3y and thus

0=r"®tRs)V*®(r"t®s") fx= 2. ["@t®s") fil*,
i=1

5o (M ®t®s") fi =0 for all i and thus fy €y for all i. Suppose now it
has been proven for m=n+1 that f) e .o/, and therefore also f. e </,
for all i. We have

0

fum § T fExfi= ¥ xS

i=1 A+xk=2n

) AT
i=1 A+k=2n,A%k
The functionals (*®t®s")* R+ R®t®s’) with te &, and u+v+1=n
annihilate f,, and also all fI*x f! with A or k= n+ 1 by assumption.
Hence

¥ (@:@s) £ =0

and therefore f; € o/,. We have thus proven that f*e o for all i. (i) and (ii)
follow immediately.

For C*-algebras the extension of a positive functional from a sub-
algebra with unit to the whole algebra causes no problems [14]. The
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proof depends on the fact that the unit element is an interior point of
the cone of positive elements. On the other hand it is not difficult to see
that &7 has no interior points at all [6]. Moreover, Lemma 6(ii) means
that &/ is an extremal surface of &+ and this makes some other con-
venient criteria useless (e.g. [12], p. 83). The necessary and sufficient con-
ditions e.g. in [12], [15] or [6] are not very handy in the present case.
We are going to see that this question has no equally simple answer as
for C*-algebras (which is not so surprising because the structures are
quite different). A related question which will also be treated is the follow-
ing: Is the finest convex topology .4, on &, with the property that
1] x [1]> L[ N,] is jointly continuous, identical to the restriction
N\ 7

Theorem 7. If </, has a topological complement in &, then every
positive functional on &/ has an extension in &*' and Ng=N|.

Proof. Let m; be a continuous projection of & on ;. If 7,(f*)
£7n,(f)*, we can find a real projection by taking Re n; =1/2(n, + n¥)
which is a projection on 2/; because &/, =.&/§. So we may assume that

T, (f*) =n,(f)*. Define n,=id|C and n,=7,@ - @n,. t= P 7, is
n=0

then a continuous x-algebra homomorphism & — & with 7|2/ =id.
If T is positive on &, then T~ & is a positive extension to &.

Let U be an .#,-neighbourhood of 0 in /. By definition, there is a
t-neighbourhood ¥ C.&/ such that m(V x V)C U and since = is con-
tinuous, there is a t-neighbourhood W (¥ with aWCV. Thus,
m(WxW)yn o =na(m(W x W)) =mrWxzaW)cm(VxV)CU, and
m(W x W) is an A -neighbourhood of 0 so A"| .« is finer than ./,,. The
inverse is trivial. B

Theorem 8. Let o/, C¥, be a closed *-invariant subspace and T
a positive linear functional on of. If there exists a continuous norm p'
on ¥, and constants c, such that |T|<c, - p' ®, - ®,p, then T has an
extension to a positive functional on & .

Proof. Let h' be a continuous Hilbert norm on &, with p* <h' and
h'(f*)=h'(f). This norm defines a topology on .¢/,, let .o/, be the com-

pletion and o/ = (P o, ®, - ®,., the corresponding tensor algebra
n=0
with the topology of a locally convex direct sum. &/ is dense in o and we
can extend * to a continuous involution on /. Furthermore, the multi-
plication is jointly continuous on .«/: By definition the topology on &/
is given by the norms h,(f) = Zc,h"(f,) where h,=h'®,--®,h' and
¢,>0. As in the proof of Lemma 6 we can find d, such that
cngurpvlrzln{dﬂ-dv}, and show that hy ,(f % g)=hy,(f) hy,(g). The
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positive cone o/ " ={X f"* x f'| f'e o/} is therefore contained in the
closure of &* in &/. Every linear functional T on & with |T,|<c, - h"
defines a continuous functional on & which is positive on &/ if it is
on &/*. Let ©, be the projection &, —.o/; with respect to the Hilbert
norm h'. As in Theorem 7, the corresponding x-algebra homomorphism
n: & — o defines the extension To 7.

The following counterexample shows that Theorem 7 is not true for
arbitrary subspaces o/, C %;. For simplicity of notation we consider
functions of one variable, i.e. ¥ = #(R'). For o7, we take the subspace

FO={fe L |d"f/dx"(0)=0 for all n}.

&° has no topological complement in £ (R%).

Theorem 9. There are positive functionals on &° which have no
extension in &' — L *'. In particular, Nyo+ N'|S°.

Remark. The restriction of #*' to & is strongly dense in (°)*".
This follows simply from ¥°* =%°n%" by duality and the fact that
strong and weak closure of a convex set in #°' is the same thing. (This
because & is reflexive and the strong topology on #° therefore com-
patible with the duality between &° and &°'.) But if there exists one
positive functional R on &#° which has no extension in &' — &%,
then such functionals are also dense: If T has an extensionin %' — ¥’
then T + &R cannot have an extension for any ¢ > 0.

Proof of Theorem 9. The notation becomes simpler if we use the
fact that #(IR!) is isomorphic to the space *[— 1, 1] of C®-function
on IR with compact support in the closed interval [ — 1, 1] (cf. [10], p. 529).
This isomorphism is given by the transformation of variables

x=(1—-0"'—(1+0)"'e[—1,1] for te[—o0,00],
and the topology on € by the Hilbert norms
k 1 1/2
W= 3 T 1700 dx)
k=0 —1
with the scalar product

o= Mgdo.  My=1-d/dx*+ - +(—1)" d**/dx*".

&° is isomorphic to {fe€*[—1,1]|f™(0)=0 for all n}. By abuse of
notation, we shall in the following write f € % and mean the correspond-
ing function in €[ —1, 1].
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Let 0 be the step function: 6(¢) =0 for t <0 and 1 otherwise. Functions
in #° have a zero of infinite order at 0, so cutting with 0 defines a con-
tinuous *-algebra homomorphism «a,: #° — #°:

(xﬁfn(tl’ A tn)=9(t1)...9(tn) fn(tla AR tn)'

If T is a positive functional on %, then R = T-q, is positive on #°. In
the proof of Theorem 1 we considered functionals of the form T, =1,
T,,-1=0, T,,(f®g)=cy,-{f* g)i, and it was shown that
T =(T,, T}, ...) is a positive functional on & if the sequences {c,,} and
{k,} grow sufficiently fast for n— co. We claim that R = T-a, has no
extension in & *' — Z*" if the sequence {k,} is not bounded. As a first
step towards a proof of this we consider the following functionals on
PR .
sl f ®@9)=<0f, 09>, = ZO _fl () 0(x) " (x) dx .

s, is real and symmetric in f and g. Any two extensions of s toa linear
functional on ¥ ® & differ at most by terms with support in {0} x R*
UR! x {0}, so the symmetric, continuous extensions have the form

k 1

s(f®9)= 2 | 909" (x)dx + Z (fP 09 + (g PO

k=0 —1
with the 7.
Lemma 7. Let {k,} be a sequence of natural numbers and s, of the
Sform (7). If there exist continuous seminorms q and q, such that

Isi.,(f @9 =4q(f)- q,(9) t)
forall f,ge & and all k,, then {k,} is bounded.

Proof of the Lemma. There is a Hilbert norm
M

1/2
g f) = ( Y (190 dx)

k=0

with g < hy,. Suppose {k,} is not bounded. Then for somen,k,=N=M +1
and

Isy(f @9 =q(f) - qan(g) S hy- () qnlg) . )
Partial integration in (7) yields
sy(f®g) = NZI J £O(x) 0(x) g™(x) dx — [ fN~D(x) O(x) g™+ V(x) dx

L

_ f(N— 1)(0) g‘N)(O) + z (f(/l)(()) t.g)+t,(f) g(M(O)) .

A=0
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For the first two terms an estimate of the form (9) is valid (eventually with
another gy). We have therefore also

L

2 (PO t:(9) +1:(f) g2(0) = fND(©0) g™ (O) Shy-1(f)dnlg) (10)
A=0
with some continuous seminorm §y. Let g€ &° and f»(0) =0 with the
exception of A = N — 1 and A = N respectively. In these cases (10) reduces to

IfN7P0) ty— 1 () S hy- 1 (f) an(9)

|f™MO) ty(@)l S hy— 1 (f) an(9) .

Now f™~1(0) and f™(0) are not dominated by the norm hy_; because

derivatives of order < N can be arbitrarily large at one point while the
N-1 1/2

integral hy_,(f)= ( Y 1) dx) remains bounded. Therefore
k=0

tn-1(g)=tn(g) =0, so ty_, and ty must have support in {0}. Let g'*(0)

= f#(0) =0 with the exception of A=N —1 and 1= N. Then (10) takes

the form

and

Y,y f™(0) g™(0) — £V~ (0) gw’«))[ <hy_1(f) dxlg)

with constants a,,, which are symmetric in m and n because the sum over
A in (10) is symmetric in f and g. This inequality can only be true if the
last term on the left side is compensated by ay_; yf™ ™ (0) g™(0),
ie.ay_; y=1.Butin that case ay y_,; =1 and f™(0) g™~ V(0) can even
less be estimated by hy_(f) Gn(g) so (9) cannot be true and we have a
contradiction to the assumption that {k,} is unbounded.

We now bring the proof of our theorem to an end. Consider any
Hermitean extension of the functional R. For f,, ..., f, fixed the func-

tional

is an extension of const{0f, 0g), and is therefore of the form (7). If
Re &t — %" then R is A -continuous and there is a continuous norm
¢, (not depending on n) and continuous norms ¢,,, such that

Ry f ®Gon-IN=q1(f) d2n-1(920-1) -

But this would imply (8) which is not possible if {k,} is unbounded. So
there is no extension in %' — %% and R is not 4 -continuous. It is
in any case Ayo-continuous, so Ao is strictly finer than A& 0,
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