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Abstract. O'Connor's approach to spatial exponential decay of eigenfunctions for
multiparticle Schrodinger Hamiltonians is developed from the point of view of analytic
perturbations with respect to transformation groups.

This framework allows an improvement of his results in some directions; in particular
if interactions are dilation analytic, exponential fall-off is shown to hold for any bound-state
wave-function corresponding to an eigenvalue distinct from thresholds; it is shown that
the exponential decay rate depends on the distance from the bound-state energy to the
nearest threshold. Applications include non existence of positive energy bound-states.

Exponential fall off for eigenstates of many-particle Schrodinger
Hamiltonians has been investigated in detail in a recent work of
O'Connor [1]. He assumes that particles interact through multiplicative
two-body potentials in R + L™ (Rollnik class plus arbitrarily small L°°
tail); then if E0 is the lowest threshold of the system, bound-state wave-
functions associated to an eigenvalue E with E < E09 are in the domain of

eβv2M(E0-E)R9 o < Q < 1 here M is the total mass of the system and R is the
radius of gyration operator about the centre of mass of the system.
Other results on the asymptotic behavior of eigenfunctions for
Schrodinger Hamiltonians include [1] Bazley and Fox, for one electron
molecular ions; Paris, single particle Hamiltonians with exponentially
decaying potentials Alrichs, multiparticle atomic systems with Coulomb
interactions.

These results supplement the smothness properties for multiparticle
eigenfunctions described by Kato [2] and have important theoretical
implications for bound-state or scattering problems. However they
pertain to eigenfunctions with isolated eigenvalues of Schrodinger
Hamiltonians with local interactions. These two constraints are not
satisfactory from a mathematical point of view and not physically justified
(e.g. existence of permutation or rotation symetries can lead to bound-
states in the continuum).

Our major aim is to show how one can avoid such restrictions and
obtain a general treatment of exponential fall-off with the help of analytic
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perturbation techniques developed in [3]. First by defining explicitly the
concept of analyticity with respect to the boost group one can allow non
strictly local potentials and prove pointwise exponential fall-off for the one
particle density probabilities associated to the Λf-particle isolated bound-
state wave functions. Second since dilation analyticity allows to treat
on an equal footing isolated bound-states and those enbedded in the
continuum, one can expect to prove also exponential fall off for these
last by requiring analyticity with respect to the linear group (boosts +
dilations). We will develop this concept in the first section of the paper.
In the second one we will use the techniques of [4] to prove the basic
results on exponential fall-off, namely:

1) Bound state wave-functions associated to a non threshold eigen-
value E are in the domain of ^VMIE-E^+Γ^R whQΐQ g^ js ^e nearest

threshold and ΓΛ=\ImEΛ\.
2) One particle probability densities have pointwise exponential

fall-off.
Section III discusses applications of these concepts and results, in

particular the question of the existence of positive energy bound-states
recently treated by Simon [4] and an aspect of sudden perturbation
theory for multiparticle systems which is illuminated by the concept of
boost analyticity.

I. Transformation Groups and Related Analytic Families

The linear group LN is the set {(τ,z);τ eIR 3 ( Λ Γ~ 1 );zeIR+} with the
group law: ( , , , A , ,_•, , A6 F (τ, z) x (τ', z') = (z' 1τ + τ',zz').

The unitary representation of LN on HN&L2(R3(N~ί} used here is
given by: 3 ( N_1 }

(u(τ,z)φ)(X) = z 2 e-l<x^φ(zXlφE^, (1)

where <. ..> is the scalar product on the configuration space
as defined in the Appendix.

The two subgroups corresponding respectively to τ = 0 or z = 1 are
the usual dilation or boost groups. For any cluster decomposition of the
AΓ-particle system D = {Cl5 C2, ..., Cfc}, the Hubert space J^N factorizes
as a tensor product.

(2)

where 2tf c is the state space for particles belonging to cluster C (center
of mass or C separated) and ffl D is the state space for the center of mass
of clusters in D. Then the representation u(τ, z) also factorizes as

u(τ, z) = uCί(τ, z)® wC2(τ, z) ® uCk(τ, z)®uD(τ, z) (3)
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where uc(τ, z) and uD(τ,z) are defined as in (1) with φe^c or J^D

respectively and where the position vectors Xc or XD for particles in
cluster C or centers of mass of clusters in D are substituted for X then
only the orthogonal projection of τ (for the scalar product <. , .» in the
corresponding subspaces of configuration space is involved. In fact the
decomposition of u(τ, z) comes from the direct sum decomposition of
configuration space (A.5) associated to the cluster decomposition D.

To study the action of w(τ, z) on the Λf-particle kinetic energy operator
H0 we notice that in momentum representation one has

where P is the 3 (AT— 1) dimensional momentum vector and M is the
mass operator defined in the appendix. In this representation H0 is
multiplication by the quadratic form K(P) (A.6) so that simple compu-

tation gives: M(τ,z)flr M-ι(τ>z) = z-^(zτ) (4)

where H0(zτ) is the multiplication operator by K(P + Mzτ).
If we now take (τ, z)e(C3(N"1)®(C- {0}), the right member of (25)

defines an operator analytic function

H0(τ,z) = z-2H0(zτ). (5)

Since the perturbation K(P + M zτ) — K(P) is H0 — ε-bounded, ele-
mentary smallness arguments imply that H0(τ,z) is closed on ®(H0);
so //0(τ, z) is an analytic family of type (A) [5]. The operator H0(zτ)
is unitarily equivalent to /f0(ilm(zτ)) through w(Re(zτ), 1). So the
spectrum of H0(τ, z) is the image P(τ, z) under a dilation of scale z~2

of the paraboloid

— - and

where σ = Im(zτ) and Q(σ) is the quadratic form on configuration space
defined in the appendix. To prove this statement we notice that

K(P + iMσ) = K(P) - Q(σ] + 2iM" 1/2P - M1/2σ .

Forjΐxed value of ReC = K(P) — β(σ). The maximum value of Imζ
= 2M1/2P M1/2σ when P varies on the corresponding energy sphere
is K(P)1/2 β(σ)1/2.

One can define in the same way analytic families HQ (τ, z) and H$(τ, z)
for any subsystem C or cluster decomposition D, substituting in (4) and (5)
HQ and HQ respectively for //0, where HQ and ί/^ are respectively the
internal kinetic energy operators for particles in cluster C or centers of
mass of clusters in D.
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Using the decomposition (3) one can see that their spectra are as
above with Qc(σ) or QD(σ) instead of β(σ).

The interacting system has an hamiltonian

We assume that the interactions Vlj between particles i and j are
symmetric A compact operators in <?fIJ~L2(IR3), i.e. are compact
operators from 2(A) to L2(IR3). This assumption has fundamental
consequences for the hamiltonian H, namely: H is self-adjoint with
domain Q>(H) = @(H0). The essential spectrum is the half-line (E0, oo) (6)
where E0 is the lowest many-body threshold ie

£0 = inf Y σc

d .
D CeD

The lower bound is taken over many cluster decompositions and σ£
is the discrete spectrum for the hamiltonian Hc describing the interacting
subsystem C:

iJeC

Under our assumptions £0 is finite.
We now define a concept which will be basic to our investigations and

will allow in particular to make precise statements about the spectral
properties of H.

Definition. Let G be a subgroup of the linear group. Denote by G
the complexification of G. Let u(y\ y e G, be the representation of G as
defined above. A two-body interaction Vij is G-analytic in Ίf C G if the

has an analytic extension from i^nG to i^ as a A -compact operator.
This assumption can in fact be weakened without altering results of

this paper, provided quadratic forms are used in place of unbounded
operators. Then "weak G-analyticity" defined as follows would be
sufficient:

Vij(y)9 yei^, is an analytic family of compact operators from the
form domain for A to its dual space [for the topology induced by L2(IR3)].

Simon has shown [7] that G-analyticity implies weak G-analyticity.
We refer to his paper for the extension of our methods to such per-
turbations.

Dilation analytic potentials are studied in detail in [3, 7, 8]. Homo-
geneous potentials gr~^, 0<β<f (or 2 in the weak case), Yukawa
potentials are dilation analytic. On the other hand all multiplicative
relatively compact interactions obviously are boost-analytic since they
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are invariant under boost-transformations; a similar property holds e.g.
for electromagnetic forces

— V —> —(V— eA)

or spin-orbit forces under suitable conditions ([9]); this comes from the
very simple action of the boost group on momentum operators. So
all multiplicative interactions and those depending linearly in the mo-
mentum which are dilation analytic also are analytic with respect to the
linear group. Notice also that the class of multiplicative interactions
weakly analytic with respect to the boost group contains those belonging
to R + L™ (Rollnik class plus arbitrarily small L°° tail) which is the
class studied by O'Connor.

We can now define a family H(y\ y e i^9 by:

The fundamental property is that if γ e G, y0

 and 7o + J are in

u(yΓ1. (7)

In fact our assumptions imply that H(y) is obtained from H0(y)
through the addition of an H0 — β-bounded perturbation; so that for
all yei^ the operator H(y) is closed on ®(H0) and analytic on this
domain [type (A)]; identity (7) simply expresses unicity of analytic
continuation in i^. The investigation of the spectral properties of H(y)
can then be made following exactly the same lines as in [3]. The basic
facts are indicated below; we refer to [3,7] for the detailed proofs.

Definitions.
σ(y): spectrum of H(y\

σe (y): essential spectrum of H(y\
σd(y): discrete spectrum of H(y) (isolated eigenvalues with finite

multiplicity).
For any subsystem C we denote by Hc(y) the family defined as H(y)

for the system C. For any cluster decomposition D the operator

HD(γ) = H$(γ)+ £ Hc(y)
CeD

is closed on ®(H0). Let σc(y\ σD(y) denote the spectra of Hc(y\ HD(y)
respectively etc .... Then we have the following basic properties :

1) If E e σd(y0), y0 G ̂  then E also is an eigenvalue of H(y) for
any y belonging to the maximal open connected subset @(γθ9E) contai-
ning y0 and contained in {y e i^ E φ σe(H(y))}.

2) Let P(E, y) denote the finite dimensional projection operator for
H(y) associated to the eigenvalue Eεσd(y). Then P(E,γ) is analytic

3.a) σe(γ)=(J(σξ(γ)+ £ σc

d(y)\
CeD /
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where the union is over all many-cluster decompositions and σo is the
spectrum of H^y).

3.b) σ(y) is contained in a sector with arbitrarily small opening
angle and direction β(yY.

II. Sketch of the Proofs

1) and 2) are consequences of unitary implementability through u(y)
of the mapping H(y o)^>H(y + y0)9 if y is real, and analyticity of H(y).
These two facts and basic results from analytic perturbation theory imply
local invariance of discrete spectrum and from this our statements.

The proofs of 3.a) and 3.b) is inductive and uses the Weinberg
equation (see e.g. [3, 10]):

(H(γ) -*)-' = D(γ, z) + I(y, z) (H(y) - z)~ 1 . (8)

For ΛΓ = 2 the statements are true since according to the relative
compactness of the interaction, σe(γ) coincides with the spectrum of
H0(γ), i.e. 0>(γ) which satisfies the sectoriality assumption.

We assume now that they hold for any subsystem. Both I(y9 z)
and D(y,z) are finite sums of products like (HD(γ) — z)~ί Vij(y) where
D = {Cl5 C2, . . ., CjJ, fc ̂  2, is a cluster decomposition of the total system.
Such factors are bounded and z-analytic in the complementary set of
σ°(γ). So I(γ, z) and D(y, z) are analytic in the complement of (J σD(y)

D
where the union is over all many-cluster decompositions. Now any
HD(γ) has the following tensorial structure :

All factors Hc(y) satisfy by assumption the sectoriality condition 3.b).
The same property holds for H<?(y) whose spectrum is a paraboloid.
Then theorems on tensor products of closed operators (11) (12) imply

CeD

cFrom the induction assumption for σc(y) and sectoriality of H^d)
for each cluster decomposition D, the obvious extension of (A.9) for
y φO gives finally:

= Σ K(Ύ)+ Σ oί'
D'DD\ CeD'

1 A sector is a set <zeC; |arg(e iβ(z Zo)| < —>; φ is the opening angle and β the

direction of the sector. The paraboloid ^(τ, z) is contained in sectors with arbitrarily small
opening angles and direction β(τ, z) = e~2laτgz.



Asymptotic Behaviour of Eigenfunctions 257

It remains to use compactness of /(y, z); the relative compactness
of all Vij(γ) implies compactness of /(y, z) far from (J σD(y) and therefore

D

by analytic continuation everywhere in the complement of this open
connected set. Then analytic Fredholm theory allows to conclude that
(H(y) — z)"1 is meromorphic according to (8) in the complement of
(J σD(γ); the fact that this meromorphy domain is maximal comes from
D
the cluster properties of the system and we refer to [4] for the proof of
this fact.

Concerning the sectoriality of H(γ) we notice that σd(y) consists of
poles of (/ — I(γ, z))"1; since |j/(y, z)|| goes to zero as an inverse power
of dist. ίz, (J σD(γ^\ it is sufficient to prove that σe(y) is contained in a

\ D I

sector with arbitrary small aperture and direction β(y\ But this holds from
the induction assumption for any σD(y) and then from simple geometrical
arguments for the finite union of these sets.

Statements 1) and 2) can be extended under some circumstances
to non-isolated eigenvalues. In particular if we choose for G the dilation
group one has ([3]):

Lemma 1. If two-body interactions are dilation analytic in a cone
Cβ= {zeC, |argz| <α}, with α<f, and if ψ is an eigenvector associated
to a non-threshold eigenvalue of H li.e. E φ \J t ^ σd

c\\ then ψ(Q,z)
\ D \ C e D //

= (7(0, z)φ, zelR+, has an analytic extension to (Cα satisfying:

This lemma extends to the linear group as is shown later. We first
apply above statements to the boost group and recover O'Connor's
result.

Theorem 1. // in (6) two-body interactions are boost analytic and if
φe^y satisfies Hιp = Eψ, E<E0 = mϊσe(H\ then ψe^(eeV2M(E0-E)R^
for any θ with Q^Θ<1.

Proof. E is an isolated eigenvalue with finite multiplicity ofH = H(Q, 1).
According to 3.a) the essential spectrum of H(τ, 1) is the union of para-
boloids (directed along #+)£α + σ0

D(τ, 1) where £αe £ σ/(τ, 1). So
CeD

E remains in the complement of such a paraboloid as long as

E<EΛ-lQD(Imτ). (9)

Since £0 < £α and from (A.3) this holds a fortiori if

£<£0-iβ(Imτ).
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By 1) and 2) ψ(τ,l) = el<x'τyψ has an analytic extension to the open

domain {τ; β(Imτ)<2(E0-E)} .

This implies that φe^(e~<x'σ>) for all σ with Q(σ) < 2(E0 - E).
From this the theorem follows (see [1] O'Connor's thesis p. 64).

Singularities of the potential £ Vlj prevent the boundstate wave-
i*/

function to have in general pointwise exponential decay in any direction
of configuration space. However such a property holds for "one-particle
like" density probabilities associated to bound-state wave-functions,
i.e. those concentrated on a 3-dimensional subspace of IR3^"1*, reducing
the mass operator to a constant μ.

To each particle or to each pair of disjoint clusters there corresponds
such a subspace, its vectors describing the position of this particle or
the relative position of the centers of mass associated to clusters. The
density probability on F associated to a state ψ is then given by

ξ(x)= J \ψ(x,y)\2dy
Fx

where F1 is the orthogonal complement of F (for the scalar product <. , .».

Corollary 1. Let ψ be as in Theorem 1. Then any density probability
ξ associated to ψ on a one-particle subspace with mass μ satisfy estimates

Proof. If β(σ) < 2(E0 - E) then ψ(iσ, 1) is an eigenstate of H(iσ, 1)
with eigenvalue E. Since @(H(iσ, 1)) = ®(H0) & is known ([13]) that one
particle like density probabilities associated to ψ(iσ, 1) are continuous
and bounded, their bound depending only on \\H0ψ(iσ, 1)||. For σeF,
the density probability on F for ψ(iσ9 1) simply is e~2<x'σ>ξ(X). So for all
σF with Q(σ) < 2(E0 - E) one has

e-2<x>σ>ξ(X)<C(σ).

Let 0£Ξ0<0'<1. Then there exists a finite set of cones, C(θ',σ^
= {XεlZ?l(X,σiy^θ'Qi/2(X)Q1/2(σi)} whose union is 1R3. Choosing
Q(σt) sufficiently close to E0-E and using the identity Q(X) = μ\X\2,
XeF, the corollary follows.

If one has bound-states in the continuum the preceding treatment does
not work. However results from [3] suggest that non-threshold bound-
states share most of the properties of isolated bound-states. In fact we
prove below, under an additional analyticity assumption, that exponential
decay still holds in a similar form, namely:

Theorem 2. If in (6) two-body interactions are LN-analytic in a domain
<C3(N~1}X€a (where Ca is the cone defined in Lemma i) and if
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satisfies Hip = Eψ where E is a non-threshold eigenvalue, then for any θ
with O^Θ<1, ψe^(^v/2M(|E-f;al + ra)R where Ea is the closest bound-

state or resonance threshold and ΓΛ = |ImEJ.

The proof of Theorem 2 requires the following auxiliary lemma which
states that the analytic extension ψ(Q, z) defined in Lemma 1 has ex-
ponential fall-off; in fact for arg(z) Φ 0 the vector tp(0, z) is an eigenvector
of #(0, z) associated to the eigenvalue E, which by our assumptions is
isolated and has finite multiplicity ([3]). So we can expect to carry over
for tp(0, z) the results of Theorem 1. For convenience (but this is not
essential) we will restrict ourselves to

π

z = ρe±i4, ρeIR + .

Lemma 2. Let \p be as in Theorem 1 and assume \<a. Then for

ρeR+ the vector valued function φlτ, ρe*4/ is defined and analytic in

T(E)-{τ6C3(N~1); β(lm(β4τ)) <inf(|Eα-E|- ImEα)l
I α )

where the infimum is taken over all bound-state and resonance thresholds for

Proof. By Lemma 1, ψ 10, ρ e v , ρ e 1R+, is an eigenvector of H10, ρe^i
associated to the finitely degenerate eigenvalue E. One has

9e* (10)
/ .π_\

for any τ in the analyticity domain for ψ Iτ, e 4J which is given by

IT € C3(iv- » E φ U LD(τe*} + % σd

c

( D V CeD
I .π\

Now σ0

D\τe 4j is the paraboloid

and |Reζ|2^ -2QD(σ)

where σ = lm(τel4}.

( I i-\\
J] σ/ re'4 denote by - Γα the imaginary part of £α.

CeD \ //
One has Γα^0([4, 8]). The condition EφEΛ + σQ(iσ) is equivalent to

- 2QD(σ) Γα + Q2

D(σ) - Re(£ - £α)
2 < 0

and it is satisfied if
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{ i~\So ψ \τ, e 4 ' is analytic in

where σ = Im (e4τl and the infϊmum is taken over all Eα, £
is non empty since it contains T(E). CeD

(11)

_ —
A similar result holds of course for ψ\τ,e v.
Proof of Theorem 2. Let Jf denote the dense subset of Jf consisting

of states having compact support in configuration space. Let φ e Jf
and define:

Fφ(τ, z) = (φ, ψ(τ, z)) , (τ, z) e 1R3(N- 1}^1R . (12)
One has

Fφ(τ,z) = (u(-zτ9l)φ,ψ(09z))

so that by Lemma 1 this function can be analytically continued in
<C3(N~1)X<Ca. Furthermore for fixed τ and zeC e lf one has an estimate

where C(τ) and b(τ) are positive constants depending on φ (and in
particular on its support in configuration representation in which u(— zτ, 1)
acts as multiplication by ei<x'zτy). Then according to Phragmen-Lindelof
theorem,

\Fφ(τ,z)\^ sup \Fφ(τ,z)\.
|arg(z)|<|

Uniticity of analytic continuation and Lemma 2 imply

for τ e T(E). According to (10) one has then

ί ±l

ψ\τ,e

From this, definition (12) of Fφ and density of Jf in Jf, it follows that
ψ(τ, z) has an analytic extension to T(E) x<C eϊf.

Taking z = l we obtain that ψe@(e~ί<x'τ>) provided Q(Reτ + Imτ)
<2inf|£α — E\ where the infimum is taken over all thresholds. We can

now conclude as in Theorem 1.

Corollary 2. Let ψ be as in Theorem 2. Then any density probability ξ
associated to ψ on a one-particle subspace with mass μ satisfy estimates



Asymptotic Behaviour of Eigenfunctions 261

Proof. As in Corollary 1, since analytic continuation of the equation

to the domain T(E) exists by Lemma 2 and implies that ψ(iσ, 1) is an
eigenstate of H(ίσ, 1) for β(σ) < 2 inf (\E - EΛ\ + Γα).

III. Concluding Remarks

i) Although our main interest is in the qualitative aspect of the results
obtained above, we want to make some critical remarks about the numeri-
cal factor 1/2 μ inf (\E — EΛ\ + Γα) involved in Corollary 2.

The first remark concerns the fact that for the sake of generality
we have not considered the maximal analyticity domain @(E) given by (1 1)
for our bound-states wave-functions but the domain T(E) defined in
Lemma 2.

Define for each cluster decomposition D and a one particle subspace F :

nDF = sup QD(σ).

Let ip be a bound-state wave-function with energy E\ then repeating
the proof of Theorem 2 we obtain the following domain of definition for
ψ(iσ, I), σeF:

; Q(σ) < 2nDF~
 1 inf(|£β - E\ + Γα)}

D

where the infimum is taken over Ea e £
 σd e*)9 so that in Corollary 2

CeD

the factor inf (|£ — EΛ\ + Γα) can be replaced by

This result is in general better as can be seen on the following
examples:

a) D = {C1? C2} and PF < PCl : then nDF = 0. This example is particu-
culary relevant in the two-cluster continuum limit for σe(H)\ then
the rate of exponential fall-off is strictly greater than (μ\E0 — E|)1/2 for
a bound-state below the continuum.

b) Assume a three particle system, D = {12, 3} and F is the subspace
associated to the relative position of particles 2 and 3. Then

^1^3 ΛnDF=ί- - - ̂ — - - - < 1 .
(wi! + m2) (m2 + m3)
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As an application assume a repulsive interaction between the identical
particles 2 and 3 and only one bound-state for an attractive interaction
between 1 and 2 (or 3) with energy £0 then the rate of exponential decay
for ξ(X2 — X$) associated to a three-particle bound state wave-function

/ mm ~1 2

ro2 U-(mί + m2)
Another fact can still prevent these results from being optimal and

is the possible existence of symmetries, either of the usual type (rotation,
permutation, etc ...) or accidental like e.g. for the helium atom in the
limit of zero interaction between electrons. We would expect that only
some "compatible" thresholds contribute to the rate of fall-off for a
bound-state having a given symmetry. However it is not always clear that
the investigation developed in the paper can be carried out for the
hamiltonian reduced on the subspace corresponding to this symmetry;
in particular it is an open problem whether this reduced hamiltonian
gives under the action of one of our groups an analytic family (see
however [14] in the case of the dilation group). It is true in the case of the
helium atom with no electronic repulsion and allows to recover the
correct exponential fall-off for the known ground-state wave-functions,
which is only very badly described by our general corollaries.

ii) It is interesting to compare the conclusion of the Theorem 2 with
the Wigner-Von Neumann example [15] of a single particle Hamiltonian
with spherically symmetric potential having a positive energy eigenvalue
embedded in the essential spectrum. The eigenfunction corresponding
to this eigenvalue vanishes like an inverse power of r, r->oo, and hence
is surely not a boost analytic vector. But the potential is essentially of the
form (trigonometric functions of r )xr - 1 and is not dilatation analytic
so Theorem 2 is not applicable.

In the appendix, we prove that for a single particle Hamiltonian
with spherically symmetric potential V(r) such that F(r)->0r-»oo, and
V(r) is continuous, r > 0, boost analyticity of the eigenfunction fE implies
the eigenvalue E is ^ 0. This result together with Theorem 2 provides a
new proof of Simon's result [16] that single particle Hamiltonians
with spherically symmetric dilatation analytic potential have no
positive energy eigenvalues.

Recently Simon [4] has shown the non-existence of positive energy
eigenvalues for n-particle Hamiltonians which have potentials dilatation
analytic in the strip {θ/\Imθ\ < π/2} with continuous boundary values for
|Imθ| = π/2 by exploiting the boost analyticity of the eigenfunctions.
(Such Hamiltonians include those with Yukawa and Coulomb inter-
actions.) In outline, his argument runs as follows; by induction one
supposes that H has no strictly positive thresholds since for n = 2 the
only threshold is at zero. Assume φeL2(lR3"~3) satisfies Hψ = Eψ,
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E>0; then ψ satisfies the hypotheses of Theorem 2. Let ge C^(1R3"~3)

with supp gc {x/\x\ ^R(g)>0} and define F(Z) = Z 3 J V J g ( x ) ι p ( Z x ) d 3 N ~ 3 x ,
Z 6 (0, oo). Then one easily shows that F(Z) is regular in D = {Z| |argZ|
^ π/2, |Z| > 0}, is polynomially bounded in D, and (using the boost)
falls off exponentially along the imaginary axes. Carlson's theorem then
implies F(Z) = 0. Since such 0's are dense, ψ = 0.

iii) In the appendix we discuss in detail a problem arising in sudden
perturbation theory, where an n-particle system in an eigenstate
ψ0e~lEt,£<0 is suddenly subjected to a homogeneous electric field
(Stark effect) which is turned on in the time 0< t < T. We show the ex-
istence of a solution ψτ(t\ t > 0, ψτ(0) = ipQ, to the resulting Schrodinger
equation with time dependent Hamiltonian which satisfies
lim ΨT(T) = ΨQ If ΨQ is boost analytic then the transition amplitude

(ψo9ψτ(i)) is differentiable in time ί.
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Appendix

i) Some Facts about N -particle Kinematics

Let X = (xl9 x2, ..., xn) be the ΛΓ-particle position vector in con-
figuration space corresponding to particle i having position xf in a given
reference frame. We define a bilinear form on configuration space

<X,X'y= Σ mΛ.χ; (A.I)
ί= 1

where mt is the mass of particle i and xt x is the usual scalar product
of the three dimensional vectors xt and x . One can write

where the dot denotes the usual scalar product and the mass operator
M is defined by this equality. The norm associated to the bilinear form
is the classical moment of inertia of the system according to Huygens
formula the moment of inertia of a system is the sum of the moment of
inertia of the center of mass and moment of inertia about the center of
mass. Then one has:

mΛY +Q(X) (A.2)
i = l /
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where Q(X) is the moment of inertia about the Λf-particle center of
mass and is related to the radius of gyration R about this center of mass by

Q(X) = MR2

N N -j / N \

where M = Σ mi9 R
2 = Σ mί(xi ~ XCM) and XCM = ~rT Σ mίxί is the

i=ι ί = ι M \ί = ι I
center of mass position vector.

Since we consider a system without external forces we will always
assume that positions of particles are given in the center of mass system;
accordingly the configuration space is isomorphic to lR3(Ar~1} onto which
Q(X) defines a non degenerate quadratic form. This form can be diago-
nalized in many ways by choosing suitable sets of relative coordinates
for the IV-particles. In particular for any cluster decomposition.

D = (Cl5 C2,..., Ck} one has a splitting

Q(X) = QD(X) + Σ Qc(X) (A3)
CeD

where QC(X] is the moment of inertia of particles in cluster C about
their center of mass and QD(X) is the moment of inertia for centers of
mass of clusters in D.

We can then define the projection operators Pc and PD on the ortho-
gonal complement (for the scalar product defined in A.I) of the null-
spaces for Qc and QD. Then to (A.3) there corresponds a similar splitting
of this scalar product:

<*, xfy = <*, pDxfy + Σ <*> PCX'> (A.4)
CeD

and each vector XelR 3 ( j V~ 1 } splits into an orthogonal sum

X = XD+ Σ xc (A.5)

with XD = PD and Xc = PCX .
Let D' be another cluster decomposition; we write DcD' if clusters

in D' are obtained by partitioning clusters in D. One has then by (A.3)
QD(X) < QD'(X} and accordingly PD < PD,.

All these facts have similar counterparts in momentum space. Let
N

P = (Pι>P2> •• >Pjv)> Σ Pi = ® denote the momentum vector of the
ί = l

Λf-particle system in the center of mass reference frame and define
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The quadratic form K(P) is the classical kinetic energy in the center
of mass system. For each cluster decomposition D it can be diagonalized
as

K(P) = KD(P)+ Σ KC(P) (A.7)
CeD

where KD(P) is the kinetic energy for centers of mass of clusters in D
and KC(P) is the internal kinetic energy for particles in C.

Let H0 be the quantum mechanical observable associated to K(P);
in the configuration representation, where the Hubert space J^N for the
Λf-particle quantum system in the center of mass reference frame is

simply Z^flR3^"1^, H0 is obtained by substituting —i-~— for the
c/.X

coordinate p of the momentum vector, x and p being canonically
conjugate variables; (A.7) implies a decomposition

H0 = H0

D+ £ H0

C. (A.8)
CeD

Now let D' be another cluster decomposition which DcD'. Then if
D = {Cl9C2,...,Ck} one has Df = (D(Cl\D(C2\ ...,D(Q)} where D(C)
is a cluster decomposition of C which gives

H0

D' = H0

D+ X H0

fl<c> (A.9)
CeD

as an immediate consequence of (A.7).
ii) For the single particle Hamiltonian with spherically symmetric

potential V(r) such that 7(r)->0 as r-κx) and V(r) is continuous for
r > 0, the x a, analyticity, a arbitrary, of an eigenfunction fE implies
that the eigenvalue £ is ^0. To prove this remark we use the following
lemma:

Lemma. Let f(f) be a non-trivial real solution to the equation

~~έ~/(ί)=ω2(ί)? /(ί) to-t < °° (A 10)

where ω is a positive real continuous function satisfying

lim ω(ί) = ω0 > 0.
i->00

Then f is not identically constant in any open interval. The graph of
f(t) consists of a succession of "oscillations".

Beyond some point tί>t0 where f ( t ί ) = Q, //(ί1)>0, each oscillation
Cm, w = l , 2, ... is composed of successively alternating bumps

0}, {ίeCm |/(ί)<0}. Let fm,i=l,2 denote the boundary
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points of the bumps, namely the first zero (f > 0) and second zero (f < 0)
of Cm. We have the estimates in Cm:

f(t) ^ /'(t1,) - " , 0 ̂  (ί - t1 J ̂
ωmax

/' (ί2 J ^ f'(t 'J (1 - 2«in/<ax)
2) ,

^ /'(ί2 J ̂ ^f"^ , 0 5Ξ (ί - ί2J ̂
^max

^ /'(ί2J (1 - 2«nin/ftCx)
2) ,

<aχ = sup ω(ί), <in = inf
ίeCm ίeCw

α/so have the estimates —^ — ̂ tί

m+1 — t1

m^ — ̂ -, and /or any

ίo

Proof. The proof of this lemma is not difficult, although somewhat
tedious; we derive only the estimates. First suppose that we have two
such differential equations (A. 10)

Λ2 2

ι

with the boundary conditions /ι(ίι) = /2(ίι) = 0,//

1(ί1) = //

2(ίι)>0
and ωj_ ^ ω2. By multiplying the first differential equation by /2 and the
second by f1 and subtracting, we obtain the equality,

- Z-(/4Λ-/.-s-Λ)-«°.1-'OΛΛ.

The integral of this equation from ^ to t > t1 in a region where both f1

and /2 are non-negative gives

which can be further integrated to show /2 ̂  /i The choices α^ = &Cax,
ω2 = ω in Cm show /(ί) majorizes the sine function in π/ω^ax, and give
the estimate (ί2

m — ί1

w)^π/ω^ax. The choices ωί=ω, ω2 = ω^in lead
to (ί2

m— ^J^π/ω^jn The estimate on successive derivatives across a
positive bump is obtained from

= V^mm; J m

 a^

ί 1 m<^<ί 1 m +

= 2(ωm I of1 )2

^V^^min/^^max/
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Estimates in the negative bump regions are obtained similarly. Finally,
let α>0 be given. There exist numbers 0<τm i n^τm a x<oo such that
τmin ̂  t1

m+ i — ti

m ̂  τmax for all m. Choose ία so large that
l<^ατmίn(l-2(ω inf/ωsup)

2)4 where ωinf = inf ω(ί), and ωsup - sup ω(t).
ί^ία ί^f α

The estimates for / imply that

ί e«'/2(ί) dί £ e""» (4) (ωlJ-2 ((/'(ί1 J)2 + (/'(t2J)2)

- 2

Now Sm+ ! ̂  Sm for ί^ ̂  tβ so that

Proposition. Let fE be a real function satisfying the Schrδdinger
equation — ΔfE+VfE = EfE in IR3, where E>0 and where V(r) is
spherically symmetric and continuous in r for r > 0, and V(r)-*Q as r-»oo.
Assume further that for some α > 0, ||^αr/£||L2 < oo. Then fE = 0.

Proof. It is no restriction to assume fE is an eigenfunction of the
spherical Laplacian with eigenvalue /(/ + 1). If fE were not identically
zero for r sufficiently large, F(r) = r J PtfEdΩ (Pt is a Legendre Function;
integration is over a sphere of radius r) would satisfy the hypotheses of the

lemma iω2 = E— V -- 2~/(/+ 1)1 and so §earF2(r)dr = ao, contrary to

the assumption of the proposition. The theory of ordinary differential
equations implies F(r) can be uniquely continued into r = 0 and thus
vanishes throughout IR3. (Cf. [17], particulary lemma C of appendix
and [18, 19,20].)

iii) Finally, we discuss a particular problem in sudden perturbation
theory and the sudden approximation (Stark effect) which uses the
analytic techniques developed in the first of the paper. Let

Kτ(t) =

H ί<0

H + -^X = H + ~Σ
1 1 i = l

H + X t>T

(A.ll)

be the time dependent Hamiltonian for the rc-particle system with
interaction X which is suddenly turned on in the time 0 ̂  t ̂  T. H is
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given by equation (6) with Vij real. Kτ(t) is essentially self-adjoint on
CQ for each ί. Let ψτ(t) be a solution to

ί-~ιpτ(t) = Kτ(t)ψτ(ή (A.12)

which for ί^O is an eigenstate of H, i.e. ψτ(t) = ψ0e~iEt, ίrgO. The
sudden approximation consists in approximating ψτ(T) for T small by
ψ0 (21). To justify this approximation, one must establish that (A. 12)
has a solution ιpτ(t\ ί^O and

5-lim \pτ(T) = \pQ. (A.13)

Existence of a solution to (A. 12) is not immediate, however, because the
domain of Kτ(t) is time dependent 0 ̂  t ̂  T and the usual existence
theorems are not applicable. To avoid this problem we first consider the
equation A

i — Vτ(t) φ0 = Hτ(t) Vτ(t) φθ9 Q^t^T (A. 14)

for Vτ(t) ψo, (Vτ(0) ψo = ιp0) with

We may apply the following theorem which is a special case of those
proved in [22—24].

Theorem. Let A(t) be a family of self -adjoint operators in a Hilbert
space depending on the parameter t e (0, T0) with domain & independent of t.
Let B(t) = ((l+iA(t)) (1 + iA(Q)))~ ί be strongly continuously differ entίable.

To

(B and B are bounded). Let \\B~ί\\ <M and set f \B(t)\ dt = N. Then
ό

there exists a unique bounded operator V(t) strongly continuous in ί,
0 ̂  t ̂  T0 with 7(0) = 1 such that

(i) V leaves 3) invariant ana satisfies the estimate

|| < eMN

(ii) for φ0 E @, φ(t) = V(t) φ0 is strongly differ 'entίable and satisfies

1 —— φ(t) = A(t) φ(t)ιA(t) φ(t) is strongly continuous in t.
at

The estimate can be found in [22].) Since Hτ(f) is type A holomorphic,
it satisfies the conditions of this theorem. In particular, Hτ(t) has time
independent domain. Thus (A. 14) has a unique solution.

By the definition of Hτ(t) and conclusion (i) of the theorem we have
Vτ(f) satisfies a uniform estimate in t and T,

|| (1 + iHT(t)) Vτ(t) (1 + iH(0))- 1 1 | < C , 0 ̂  t ̂  T < TO .
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On integrating (A. 14), we obtain

| |K τ(Γ)v> 0-Vo| |= SdSHτ(S)Vτ(S)ψQb
proving that

s-lim Vτ(T)w0 =
Γ-»0

Finally, let

Then ψτ(t) clearly satisfies (A.13). ψτ(t) satisfies (A.12) in the weakened
sense that if φ is a fixed vector in £&(X)n@(H), then (φ,ψτ(f)) satisfies

i—-(φ,ψτ(t)) = (Kτ(t)φ,ψτ(t)). In particular, if φ = ψ0 has isolated

eigenvalue t < 0, or eigenvalue isolated from threshold with H dilatation
analytic ί<0, then ψQ will be in ®(X)n®(H) and thus the transition
amplitude (v>o» VrW) will be differentiable in ί.
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