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Abstract. A closed quantum system y is considered which is described by a micro-
canonical ensemble. S? consists of two rather weakly interacting subsystems 5^,5^. In
a rigorous way, the additivity of the entropy is proved by deriving an expression for the
entropy density of £f in terms of the entropy densities of 5̂  and 5 2̂. "Rigorous" implies
that the thermodynamic limit is taken. In the second part, it is shown how a micro-

ΎΐδA(H(Λ)-E)A
canonical state ωε(Λ) = lim - ̂ 7 - r~ °* ^ne composite system — provided this

Λ -» co LTo
limit exists — gives rise to a "canonical" state &/, when restricted to 5 1̂? provided 5̂  is very
"small" as compared to 5̂ 2 G/ is defined as a limit of Gibbs states. This yields a definition
of the equilibrium temperature β~*.

I. Introduction

The concept of temperature can be introduced in statistical me-
chanics in several ways. Up to now there does not exist a general proof
of the equality of time averages and ensemble averages of observables
it has to be taken as an axiom that there are suitable ensembles. One
can start with canonical or grand canonical ensembles with partition
functions depending on a parameter β and show that everything works
if β is the inverse temperature. A more satisfactory way of introducing
the temperature is to consider several microcanonical ensembles repre-
senting closed systems, provide them with a - however weak - thermal
interaction and show that there is a parameter govering the equilibrium
between them, which is to be defined as the temperature (or a function
thereof). A third possibility is, to deal with a 'large" system in thermal
contact with a "small" system and show that the usmalΓ one can be
described by a canonical ensemble with a parameter β depending only
on the "large" system, the heat reservoir. This is well known; in this
paper, we aim at giving new proofs considering quantum systems from
the very beginning and working in the context of rigorous statistical
mechanics as developed by Ruelle and many others.

* On leave of absence from the Institut fur Theoretische Physik, Universitat
Gδttingen.
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Our starting point is the following axiom:

(A0) A closed system in equilibrium is described by a microcanonical
ensemble which is defined by the requirement that all energetically
allowed quantum states of the system have equal probability.

(Normally, by using the word "states", we mean states over an
algebra of observables, but here, of course, we mean eigenstates of the
Hamiltonian of the system.) We shall specify this axiom in the next
sections because we want to perform the thermodynamic limit.

As a first step, we have to prove the additivity of the entropy, i.e.,
prove that the whole entropy of several systems in thermal equilibrium
with each other is the sum of the entropies (apart from mixing entropy)
of the systems, provided the thermal interaction between them is very
weak. Since we are going to take the thermodynamic limit, we shall give
a formula for the entropy density of the compound system as an ap-
propriate sum of the entropy densities of its members. This will be done
in Section II. In the third section, we shall give a first definition of the
temperature based on the result of Section II, and prove some lemmas
which are necessary for establishing our main theorem in Section IV,
where we shall show, starting with a microcanonical state for the com-
pound system, that the "small" system ίfγ can be described by a limit
A -> oo of Gibbs states ω^H defined by density operators

~ξΛHί (Λ) /- ~ ξΛHι (Λ)

where H^A) are the local Hamiltonians of the regions A, describing 5
Section V contains supplementary remarks.

II. Additivity of the Entropy

We consider a system ^ composed of two subsystems ̂  and ^2

defined as thermodynamic limits of sequences of finite systems ^(Λ^
£f(A2) and £f(Λ\ respectively, with finite regions At,

A^nA2=09 A^A2 = Λ. (1)

The finite systems are described by Hamiltonians H^A^ nt), i = 1, 2, and
H(A, rc), where

H(Λ, n) = H^A^ nj + H2(A2, n2) + λW(Λ, n) , (2)

operating in a Hubert space ^f(A] = ̂ (A^}®^2(A2\
 nι an<3 n2 denote

the number of particles in 5^ and Sf2 ,

n = nΐ+n2. (3)

The Ht are of the form J^®! and \®H2, respectively.
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Our basic statistical assumption is the following specification of the
axiom ( A0) :

(Ai) The entropy density of a closed system in thermodynamic equi-
librium with density ρ and energy density ε is given by

s(ρ,ε) = lim V(Λ)~ίS(Λ9 n, E)
Λ—> 00

whenever this limit exists; here "lim" means Λ-+CO in the sense of
Λ->oo

Fisher [1], with V(ΛΓln-*Q, V(ΛΓ*E-+ε, where

V(Λ) — volume of the region A ,

Ω~ (A, n, E) = number of eigenvalues of H(Λ, n) below E

*>o
According to Ruelle [2], we can as well define S(Λ, n, E) by

n . ,
0 elsewhere

without affecting the result of the limiting procedure.
We have to make further assumptions in order to ensure the existence

of the above limit for the systems <9 ,̂ <9 ,̂ and ^:
(B) Hi(Ai, n{\ z = l,2, are defined by stable and tempered potentials:

Ht(Ah Hi) = Friedrichs extension of (7] -f φ ,

where the kinetic energy may be represented in Hubert spaces ^(Λj)
of suitably symmetrized or antisymmetrized square integrable functions
(cf. [2]) by

T{ = Σ — ̂  — Λk , Ak = Laplace operators,
fc=l \ ^mi 1

the potential energy Ui by stable, tempered potentials,

(C) W is given by tempered potentials in such a way that
(i) W is a symmetric operator,

(ii) U1 + U2 + W is stable,
(iii) @(U1 + U2)C@(W), where @f(A) denotes the domain of

definition of A.
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(D) The potentials defining Ut and W are translationally invariant.
According to Ruelle, (B) is sufficient to guarantee the existence of
Sι(ί?ι,ει) and S2(ρ2,ε2)

 as defined in (At), if Λ^co (Fisher),

provided ρt and εf have suitable values. To be more precise, the density
has to be ^ 0 and smaller than some closest packing density, which may
be finite or infinite, depending on the potentials; εt have to be larger
than εί0(ρ\ i = 1,2, respectively, where

, ,

Eί0 = ground state energy of H{(Ah nt) .

According to Ruelle, these limits exist. Whenever we speak of "suitable"
densities, we refer to these conditions.

In Appendix A, we shall give two examples of how (C) can be ful-
filled. Due to (C) we can define H(A, n) as the Friedrichs extension of
//ι(Λι, n1) + H2(Λ2, n2) + λW(Λ, n). Denote the number of eigenvalues of
H below E by Ωΐ(A, n, E). We are interested in the limit /t-»co which,
in the following, always means

Λ±, Λ2 — » co in the sense of Fisher, maintaining condition (1) (5a)

A = Aί^jA2-^oo in the sense of Fisher (5b)

V(Λi)/ V(Λ) = Ki , κt = const > 0 , ίq + κ2 = 1 (6)

*i/V(Λl)-+ρ, and thus n/V(A) = n1+ n2/V(A1) + V(A2)-+ρ (7)

E/V(Λ)-+ε. (8)

(As to the case of different ρi and ρ2 and to the case of intersecting
region Ah see Remark 2.6 at the end of this section.)

Assumption (D) is needed so that (5 a) can be fulfilled. Given (5 a),
a necessary and sufficient condition to guarantee (5b) is the following:

Δ(A19A2)= inf \x-y\^ const (d^) + d(Λ2)) ,
x e A i , y e A 2

where d(At) are the diameters of Ai9 i=[,2 (see Appendix E).

Proposition 2.1. Assume (At), (B), (C), (D); then
(i) for all λ ̂  1 and for suitable ρ, there exists the thermodynamic limit

sλ(ρ,ε)= lim V(ΛΓ* logί2Γ(Λ, «, E)
Λ-* oo

(ii) lim lim K ~ 1 l o g Ω Γ ( Λ , n , E ) = lim lim V~l Iogί2;(/l, n, E) .
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As long as we are not interested in problems of the approach to
equilibrium, we may consider arbitrarily weak thermal interactions, i.e.,
arbitrarily small λ. Furthermore, it is clear that we cannot expect strict
additivity of the entropies unless we let the interaction vanish; hence
our interest in the second part of the above proposition.

Proof. Due to (B) and (C), I/1? l/2, and Uί + U2 + W are stable:

With £0 - maxdJ^I, |B2|, |B|) then follows

(l-λ)(Uι + U2) + λ(Ul + l/2 + W)

the lower bound being independent of λ. Hence H(Λ, n) fulfills the same
conditions as the Hh thus we have only to cite Ruelle [2], in order to
establish (i). The proof of (ii) is accomplished by a close inspection of
Ruelle's proof of the existence of the limit. It rests on the stability and
temperedness of the interaction. The corresponding inequalities for
Uλ= U1 -f U2 + λW are fulfilled uniformly in λ, i.e., the constants ap-
pearing in those inequalities are independent of λ for / < 1. This is trivial
as far as the temperedness is concerned and, as to the stability, it is
ensured by (C) (ii). Looking carefully through Ruelle's proof, one realizes
that everything goes through uniformly in λ, since the only other
inequalities which appear are estimates for quantities like E(ΛQ, l,σ),
E(Λ0, 0, σ), E(ΛN, 1, log V(ΛN}\ referring to zero- or one-particle expres-
sions; clearly, the latter are defined independent of any interaction.
Hence we can interchange the limits λ-+Q and Λ-»oo. Q.E.D.

Remark 2.2. (B) and (C) are more or less technical assumptions which
we do not want to put much emphasis upon. (B) is not a necessary con-
dition for the existence of the limit s(ρ, ε). Given any proof of the existence
of this limit, one has to modify (C) appropriately in order to make sure
that the limit for the composed system exists uniformly in λ. It is to be
expected that this can always be achieved, for instance, by the use of
a thermal interaction W which is given by the same type of potentials
as those defining U1 and U2.

Due to Proposition 2.1, we can study lim V(Λ)~l logΩo (Λ, n, E)
Λ-^CQ

instead of lim sλ(ρ, ε), which enables us to prove the following
Λ->0

Theorem 2.3. Let us assume (Ax) and make further appropriate
assumptions which guarantee the validity of (i) and (ii) of Proposition 2.1.
Then, with the definitions (5) to (8), we have

limsλ(ρ, ε)= sup
λ-"° L t 'e/(f)

(9)
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with
I(ε) = [K! ε10(ρ), ε - K2ε20(ρ)~] . (10)

The εi0 are defined in (4). Again, ε and ρ have to be chosen suitably.

Proof. We want to compute the number ΩQ (A, n, E) of eigenvalues
of H0(Λ,n) = Hί(Λ1,nί) + H2(Λ2,n2). These eigenvalues are sums of
eigenvalues Elr and E2s of H^ and H2. In the following, we shall suppress
the arguments A, n and Λ{, nt. For fixed E, we can find a (5 > 0 such that
the eigenvalues Elr which are smaller than E, differ from each other by
more than δ. Define

then there is at most one eigenvalue Elr between Ek and £k~1; and we
can write ΩQ (£) as

ΩO (JB) - X (Ωf (£*) - Ωf (E*-1)) Ω2- (E - Ek) .
h

The sum is finite, since Ω2 (E — Ek) = 0 for Ek>E — E20.
Now let us choose a Zl (which may be large compared to δ) and

collect those terms with energies between £10 + (/ — 1) A and E10 + IA:

with
σ, =

Taking the largest possible value for the second factor, we get

Similarly,

Here we have slightly overestimated the first factor, if A is not an exact
multiple of δ; but as £->oo and A-+CO we have to choose smaller and
smaller <5's, whereas A will be kept fixed; so let us assume that A is a
multiple of δ. The above estimates imply
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Δ is fixed, hence V(ΛΓl(E-Δ)-+ε and limK' 1 logΩ~(£)= limF'1

- log£2~(jE — A). Therefore we can find a correction factor ξ(A) such that

(11)

Denote the right hand side of (9) by s°(ρ, ε); we want to prove our theorem
by showing that lim inf V(AΓ1 logΩ~ (E) ̂  s°(ρ, ε), £ - 7(Λ) ε, and

Λ-+OO

lim sup V(Λ) ~ 1 log Ω ~ (E) ̂  s° (ρ, ε).
Λ-+00

We have to care only for ε' e /(ε), since otherwise the arguments of
st are not larger than ε10(ρ) and ε20(ρ), respectively.

(i) Choose an arbitrary δ > 0. There exists an interval Iδ = (ε1;ε2) £ /(ε)
such that for ε' e lδ

ε — ε'

We approximate ̂  ρ, — by V(A)~1 logΩί

 Δ (Λ^ n l 9 E [ ) and s2 ρ, -

by 7(vd2)~1 logΩ2 (Λ2,n2,E'2\ with

[where we made use of (6)], and get

Kί V(Λ,Γl logΩΛEi) + κ2 V(A2}'1

= V(AΓl

for sufficiently large A. (The sf are continuous functions, thus ε' varies
over a compact set, and the convergence of K"1 logΩ~ is uniform on
compact sets [2].) Put E=V(Λ)ε in (11) and adjust ε' e Iδ such that
V(A)εf = £10 + kA for a suitable fe (which is always possible if /I is large
enough), then

>expV(Λ)(s°(ρ,ε)-2δ),
and therefore

lim infF(yi)"1 (logΩ'(V(Λ)ε)-logξ(Λ))
Λ^co

- lim inf V(Λ) ' * log Ω ' ( V(A) ε) ̂  s° (ρ, ε) .
-
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(ii) For ε'e/(ε) and for arbitrary (5>0, we have for sufficiently
large A

s°(ρ, ε) + δ^ V(AΓl (\ogQl

Δ(V(A] ε') + Iogί22 (V(Λ) (ε - ε'))) . (13)

The summation in ( 1 1 ) extends from k = 0 to some k^A~1(E — Elo — E20):>

let the largest term of the sum be given by k0, then

0 A ) ) . (14)

Combining (13) and (14), with ε' = V(Λ)~ί(Eί0 + k0Δ), we conclude

and since V(ΛΓίlogξ(Λ)-^09 F(/L)"1(logzl + log(F(/l)ε-£10-£20))-+0,
we arrive at

5°(ρ, ε) ̂  lim supF(^)"1 logίT (E) . (15)
yl->oo

(12) and (15) together with Proposition 2.1 prove our theorem.

Remark 2.4. The ground state energy E0(Λ, n) of H0(A n) is given by
£10(yi l5 n t) + E2o(Λ2, n2\ thence

lim F(Λ)"1 £0(yl, n) = ε0(ρ) = κλ ε10(ρ) + κ:2 ε20(ρ) .

We are interested in the case ε>ε0(ρ), and this implies that /(ε) is not
empty.

Remark 2.5. /(ε) is a closed interval, thus there exists an εm for which
the supremum in (9) is achieved :

ρ, - - +κ:252 ίρ, m . (16)

Remembering that SΛ, s t,ε, and εm are densities, one realizes that the
additivity of the entropy is adequately expressed by (16).

Remark 2. 6. The condition Λ1r^Λ2 = 0 was used in order to avoid
mixing entropy: the essential point is that we wanted to use the Hubert
spaces ^f(Λ) = J^ί(Al)®^f2(A2) without additional symmetrization.
J#Ί and J^, of course, have to contain appropriately symmetrized wave
functions. The non-symmetrization does in no respect affect Ruelle's
proof of the existence of s(ρ, ε). The same holds true, if we consider
different sorts of particles in ̂  and ,9 ,̂ respectively. In that case, we
can distinguish between them without enclosing the systems in non-
overlapping regions of space, and can hence drop the above condition.
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We might, for instance, consider a system 5^ consisting of nuclei with
a weak spin coupling to an electron gas representing ̂ 2 We may choose
different densities ρt and ρ2 as well. In that case, one has to adapt Ruelle's
proof in order to show the existence of

lim V(ΛY1 \ogΩλ(Λ, nί9n2,E) = sA(ρ l5 ρ2, ε) .
Λ-χχ)

The theorem remains valid:

ε-ε'
hms λ(ρ l 5ρ2,ε)= sup (κίsί ρ l5
λ->co ε 'e/(ε)

/(ε)= [fqε

III. Discussion of the Additivity Equation, Properties of s(ρ, ε)

This section is devoted to a short discussion of the additivity Eq. (9)
which leads - at least in some cases - to the definition of the tempera-
ture as derivative of s, and to a summary of properties of the entropy
densities needed in the next section. In this section and in the following
one, we shall always suppress the arguments ρ and ρ f ; the densities will
be kept fixed.

Remark 3.1. It is well known that the entropy densities are con-
tinuous, concave, increasing functions of the respective energy densities
[2]. This implies

(i) their left and right derivatives s l _ , s [ exist everywhere;
(ii) si(ε)gs:(ε);

(iii) left and right derivatives are equal almost everywhere.
For the proof see for instance [3]. (The essential point is the con-

cavity of s.)
(iv) Moreover, because s is increasing, the number of exceptional

points where s| φsi is at most countable.

Remark 3.2. Define

+ κ2s2 - , (17)
\ *1 / \ K2 I

so that Eq. (9) reads

s(ε)= sup #Kl(β')
ε 'e/(ε)

We have to discern three cases:

(i) The supremum is reached at an inner point of /(ε);
(ii) the supremum is reached for εf — κl ε10

(iii) the supremum is reached for ε' — ε — κ2ε2o
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Since the st are concave functions, gκι is concave too, and can have
at most one maximum which in case (i) is given by

or, equivalently, by

ί P — F \ / F \ IP — ? \

- (18a b)

Here sί+ — ̂  means ^ j(ε')|ε' = ε m / K l,
 etc

\ κι I

If the left and right derivatives of s± and s2 at the respective points are
equal, (18 a) and (18b) go over into

— F

In this case, we can define a unique inverse equilibrium temperature by

The maximum of g may be a plateau. Eqs. (18 a, b) then fail to determine
εm uniquely. We shall later remove this ambiguity by taking the largest
or the smallest solutions of (18 a, b).

It is easily seen that corresponding equations hold also for three or
more systems in equilibrium with each other.

In case (ii), we have only Eq. (18 a):

This means that the system £/Ί is in its ground state even for tempera-
tures larger than zero. Whenever such a system exists, the notion of
temperature is meaningless for it in this state. Therefore, we shall exclude
this case. Case (iii) can also easily be excluded, if we consider κί — » 0
and if ε > ε0. We would then get

_sι-

But as κ1 -»0 the argument of sίL increases, and we know [2] that the
lower limit of the slopes of the tengents on the graph (ε, st (ε)) is zero,

hence s^L must finally become smaller than s2 + (ε2o)» ̂ us vi°latinβ tne

above equation.
ε ^2^20

If ε = ε0, then = would not increase.
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From now on, we are interested in a system in contact with a heat
reservoir which has to be infinitely large compared to the system 5̂
considered. The relative size of ̂  is given by jq therefore, we shall
consider the limit K^— »0.

If we perform this limit, the temperature 1 /β turns out to be uniquely
defined (apart from a special case), even if the left and right derivatives
of Si and s2 may differ at many points : β = s2 j (ε) or β = s2- (ε), depending
on the functional shape of s^ and s2.

For the next section, we need some information on the behaviour of
εm(/c1) if κl -»0. ε is henceforward considered as a fixed parameter.

Lemma 3.3. There exists an εί such that

hence

limεm(K l) = 0, lim E~^(KI) =ε.
κι-»0 Ki->0 K2

Proof. As already mentioned, the lower limit of the slopes of the
tangents is zero, hence

s1-(e1)<s2L(ε) (20)

for a sufficiently large εx. We may assume εί > ε, and thus

ε- jqε iq
- p _ I p _ p i ̂  p
— o \ΛΊ *^/ "̂  "

K2 K

This implies

ε
s 2 +

(see Appendix B). According to (20), we can find a <5>0 with s1L(£1)
<s2L(ε)-δ. But then

Thus the maximum condition (gκj- (εm) ̂ 0 can only be fulfilled if
ε m </c 1 ε 1 (notice that gκι is concave). The lower limit for εm is trivial
because ε^jq) 6 /(ε). Q.E.D.

Let us define

- (21)
KJ, /c2 κ:2

Then we can rewrite the supremum conditions:

s, I (ηfa)) ^ s2 L (ε(^)) , s, L (η(Kl)) ^ s2 [ (εfo)) - (22a,b)
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There are three cases :
Case(ε): sl + ( ε ) ^ s 2 L ( ε ) 9 sίL(ε)^s2 + (ε) 9

Case (ej): the first of these inequalities is violated:

s1;(ε)>s2l(ε); (23)

Case (ε2): the second inequality is violated:

S1:(ε)<s2i(ε). (24)

We can add two further inequalities to (23) [see Remark 3.1 (ii)]:

$! L (ε) *> s1 (ε) > s2L(ε) ^ s2 + (ε) ,

thus showing that the second inequality of case (ε) is fulfilled. Similarly,
in case (ε2) the first inequality is valid hence all possibilities are exhausted.

Case (ε) implies that we can choose η(κ1) = ε, hence ε(jq) = ε, for
all jq. This means that 5̂  and 5 2̂, when in equilibrium with each other,
always have the same energy densities, irrespective of their relative "size"
κjκ2\

Lemma 3.4. Given case (ε1) (resp. case (ε2)Λ then
(i) η(κ1)> ε (resp. η(κl}< ε) for all ?q

(ii) s 2 ί ( ε ( κ ί ) ) ^ζs2L(ε) (resp. s2 + (ε)).

This result already indicates that s2 + (ε) or s2 _ (ε) will be the temperature
defining quantities in the limit fq -»0.

Proof. We consider case (εj, case (ε2) can be treated completely
analogously.

(i) Suppose there exists a jq with

η(κι)^ε. (25)
then

ε(ίc1) = ε--^-(»/(ιc1)-ε)^ε (26)
K2

and hence

s^ I (ηfa)) ^Sί + (ε) >s2L (ε) ̂  s2 !_ (ε(/cj) ,

in contradiction to (22 a). [The first and the last inequalities are due to
(25) and (26), the second one due to (23); cf. Appendix B.]

(ii) Clearly, η(κί)>ε implies ε(κ1)<ε. According to Lemma 3.3,
^(7Cι)^Toεand thence s2 + (εfa))-^* s2L(ε\ (see also Appendix B).

Q.E.D.
Up to now we need not assume that η(κ\) is uniquely defined by

(22 a, b). In order to get uniqueness, let us define

ηs(κ1)= maxM/Ci); fq fixed, η f a ) solution of (22 a, b)} , (27 a)

ηί(κl) = mm {η(κ±)\ κ± fixed, ηfa) solution of (22 a, b)} . (27 b)
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Min and max of the above set {...} exist because gκι is continuous.
Accordingly, we write

^(/q) = ε L (ηs - ε) and ^(/q) = ε L (ηt - ε).
K2 K2

Lemma 3.5. (i) Case (ε^): η^K^ increases with decreasing κ1,
case (ε2)'. ni(κ\] decreases with decreasing jq.

(ii) Define

where ε means εs in case (εt) and εt in case (ε2). In both cases, K contains
sequences τqv—»0.

The proof will be given in Appendix C.
Part (i) together with Lemma 3.3 implies that lim ^(jq) exists, i.e.

κι->0

the energy density of 5^ is well defined for jq->0, as is to be expected
if the limiting procedure makes sense.

IV. Systems in Contact with a Heat Reservoir and Transition
to Canonical Ensemble States

In this section, we are interested in a system &Ί in thermal equi-
librium with a heat reservoir, i.e. with a system £f2 which is large com-
pared to &Ί the systems are the same as in Section II, but now we take,
in addition, the limit jq -> 0.

The basic assumption of this section is the following:
(A2) The equilibrium states of a closed system which is described

by a microcanonical ensemble are given by

ωε(A) = \imωΛ

E(A),
Λ-* co

ME/A^_ττδ'(H(Λ)-E)A
Λ v ' ττδΔ(H(Λ)-E) '

where A is an element of a suitably chosen observable algebra 91, and
δA(x) is the function defined after (A^ in Section II.

Part of this axiom is a further specification of axiom (A0) of the
introduction, part of it is an additional assumption: the existence of the
above limit. We are not going to answer the question under what con-
ditions this limit exists. Consequently, we cannot show, that the limits
λ->0 and A ->oo can be interchanged for the states, as they can for the
entropy density (Proposition 2.1). We shall therefore put A = 0 from the
beginning, and start with Hamiltonians H(A) = H1(Λί) + H2(A2\ oper-
ating in Hubert spaces ^f(Λ) = 3^l(Λl)®J^2(Λ2). To ̂ , 5 ,̂ and ̂  we
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ascribe observable algebras 2ll5 2I2, 9ί with some local structure. We
need not make detailed assumptions; the essential point is that we can
embed ^ into 91 in the form ^(x)!. ωε restricted to ̂ 01 can be
considered as a state over 91̂  Our aim is to show that, in the limit jq ->0,
this state is a "canonical" one, more precisely: to establish the following
theorem :

Theorem 4.1. Let (A2) be fulfilled for all κ:1? more precisely, we assume
the following: lim ωΛluΛ2

E(A) exists, in whatever way the limits
Λ\,Λ 2~* oo

Al-^co and /12— »oo are coupled, provided they are accomplished in the
sense of Fisher. If the limiting procedures are classified according to their
respective values κv = lim F(/11)(F(/L1)+ V(A2))~1, then limiting pro-

Λι,Λ2~*0

cedures of the same class yield the same state ωε

κι. Furthermore, assume
whatever is suitable to ensure the result of Theorem 2.3.

If ε > max(ε10, ε20), then exists a sequence ξΛί of real positive num-
bers with lim ξΛ = β, and

ΛI~> 00

H i U i ) j
_______ f .

β is given by

I s 2_(ε) in case (εx)

s2 + (ε) in case (s 2]

s2(ε) in case (ε), ι/s2i(ε) = s2^(ε).

The different cases are defined as in the preceding section after Eq. (22).

The rest of this section is devoted to the proof of this theorem. Due to
the condition ε> max(ε10,ε20), we can exclude the cases εm(κί) = κ1ε10

and εm(κ:1) = ε — κ2 ε 2 0 > and can apply the results of the preceding section.
By φ ί j r, ΐ = l , 2 , ..., r = l , 2 , 3, ..., we denote the normalized eigen-

functions of Ht(Λ^ with the respective eigenvalues Eir. (We omit further
indices At indicating the /^-dependence of tp ί j f. and Eir.) Then we can write

(28)

= (ΩΔ(Λ, E)Yl X Ω/ (/12, E - £lr) (φlr, Xφ l r) .
ί

From now on, we also omit the arguments Λ, Λ2 of Ω, Ω2, and the
index A. Our task is to give an estimate for Ω2(E — Elr) in terms of
const e~ξEίr with an appropriate ξ. In order to do so, we first look for
an estimate for s2(ε2).

We treat the cases (εt), (ε2), (ε) with s2^(ε) = s2|(ε) simultaneously;
accordingly, S(KI) means ε^jq), ^(K^) or ε(κ:1) = ε, respectively.
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Now define
ξ±(κί) = s2ί(ε(κ1)). (29)

In the following, we restrict ourselves to those κx for which ξ + (κί)

= £-(KI) = £(KI).
For the cases (%) and (ε2), Lemma 3.5 ensures that the set K of these

KI contains sequences τc lv->0 so that we can indeed adopt this restriction.
In case (ε), this is trivial as long as s2-(ε) = s2 + (έ).

Because s2(ε2) *s concave> the tangents

t(ε2 jq) - s2(ε(/q)) + ξfo) (ε2 - ε(τq))

are always above s2(ε2). Now let us choose a (3>0 and define

htKί = {^t(s2'9κ1)-δ<s2(ε2)}. (30)

ε — ε'
This set is a non-empty interval. Hence we get with ε2 = -

ΓV9

(31)

ε — ε'
the first inequality being valid for - e I δ > K ί .

K2

Remember that lim δ2(Λ2, V(Λ2) ε') = 0, where
Λ2-+00

δ2(Λ2, V(Λ2] ε2) - 52(ε2) - V(Λ2Γ
l logΩ2(Λ2, V(Λ2) ε2) .

Multiplying (31) by V(Λ2) = κ2 V(Λ\ and putting E = V(Λ) ε, Em = V(A) εm,
lElr, we find

Ω (E — E ) e^
E^ e^

E^ e

V(Λ^^2(Λ2,E-Em)-δ2(Λ2,E-Eir)]

<Ω (E — E \ e^
Em e~ξEιr eV(Λ2)[δ2(Λ2,E-Em}-δ2(Λ2,E

with the abbreviations

CA2 = eξ(Kί}E™ eV(Λ2)δ2(A2>E-E™} Ω2(E - JBJ ,

this reads

CΛ2e'V(Λ)δ e-ξEί- d(Λ2, £lr) ̂  ί22(JE - JE l r) ̂  Cyl2 β^£- d(Λ2, £lr) . (32)

The first inequality is valid for

ε —
e/4 f l c



208 H. Roos

According to Ruelle, δ2(Λ2, F(/t2)ε2)->0 uniformly in ε2 on compact
subsets of the region of convergence. We are interested in energies E
such that E — £ l r^£20, since otherwise Ω2(E — £lr) = 0; furthermore,
Elr^E10, hence

ε20 -δ' ^V(A2Γ
i(E-Elr)^^- (ε + Ki&o + δ"))

K2

^ 2(ε + \ (ε1 o + δ")) for all ^ ̂  i ,

c)' and δ" being finite correction terms independent of Λ2. This is a
compact interval, thus we can find a Δ(A2) with

^0, (33)

independently of /q.
It suffices to consider ωyl

£(^l®l) for positive operators A. Our
assumptions ensure the existence oϊ^e~ξEίr(ψlr9 Aψίr)\ due to (33),

and hence, ̂  e~ξEίr(ψlr,Aψlr) d(A2,Elr) exists and, because ^4^0, can

be written as

£lr) = ̂  Σ ̂ ^'-(Vu, ^Ψir) (34)

with an appropriate constant dΛ2.
Now we define

(Kί)Hί(Aί)CA2dΛ2 (35 a)

XΛ is also /q- dependent through ^ and Em\ and

H i U i ) j

Aψlr}ι (35b)

combining (28) with (32), (34), and (35) we then get

(A), (36)

Σ means summation over those r's for which Eίrφtf(δ,κl,A). Our
rest

aim is now to achieve

(a)
(b)
(c) KA->\

by performing the limits c)-»0, Λ-* oo, κ± -^0 in a suitable way.
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We need some more definitions:

Q(Λ19 ξ) = Tr e-
ξHί(Aί) = £ e~ξEί> ,

Y

~ξEίr

Elr>E

Clearly, for arbitrary α>0 there exists jE(Λ 1 ?α) such that

We divide the summation interval of Q(Λlf ξ) into three parts:

•/3: E(/t1,α)<£1,<oo .

We want to show that J^(δ,κ1,A) increases rapidly enough to cover
; then follows Q(Λ1,ξ)~1Qτcst<ct, and, because

(37)

^KAe-v^ \\A\\ Q ' ' ,

we then would have

RA(A)^KAe~V(A}*\\A\\a. (38)

We proceed by estimating the lengths /(J^), /(*/2) of J^ and «/2 ^
e

know that

^ i o ί Λ Λ - ε i o O , (39)

hence, using Lemma 3.3, we can find an upper bound

) = V(Λ) εm - V(Aί) (ε10 + ̂ ί^))

g V(A) K, fil - fc j F(/L) (ε10 + ̂ μO) (40)

^ const K F(yi .

A similar estimate can be given for /

Lemma 4.2. Let E^A^S^ denote the inverse function of Sί(A1,Eί)
^Ai, JEJ. We can choose
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in order to get

for all ξ in a finite interval (ξί9 ξ2). s0 is a constant which depends only
on(ξlfξ2).

Proof. We define

2 _ a _
SΛI ~ dξ

It is well known that Iim/(yi l5 ξ) exists if s^ε) exists [2], and that s Λ l ( ξ )
is bounded by a finite function p(ξ) [4] (see also Appendix D). Let s0 be
given by s0 = sup p(ζ), thus

Consider

T/Y Λ ^ Ci ^^"^ _ J- ^

therefore,

The terms on the right hand side are positive, because Q(Λl9 ξ}>e~ξEίr.
Restricting the summation to E l r >E(Λ l 5 α) we get

^β^^^Λ^)- (42)

Furthermore,

According to the choice of £(̂ 1^ α) in Lemma 4.2, we have

(43)
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Inserting (43) into (42) we find

Q(Λ19 ξ) V(Al) s Λ l ( ξ ) * -̂ 1 s0β*u l iβ> ,

hence, according to (41),

if £e &,£>). Q.E.D.

Since V(Aί)~1 E^Λ^ V(Aί)σί)-^εl(σ1\ where ε^σ) is the inverse
function of s^ε), we have

and thus

) = E(A1,a) — Em^ V(Aί) (ε11 — \ + θ2(Al) — ε10\ ^const^

(44)

This is the point where the necessity of taking the limit jq-»0 arises:
The length £(IδtKί) of Iδ K1 [defined in (30)] decreases, if δ-^Q as is neces-
sary in order to have V(Λ)δ-+Q. Therefore, the length of J>(δ,κ^Λ)
which is given approximately by V(Λ)£(lδtK^ increases more slowly
than V(Λ); [however, an increase of £(J>(δ,κ^Λ)) can be achieved]. If
we want £(J(δ, κί9 A)) grow faster than const K^ V(Λ\ we have to take
the limit jq-^0.

By definition of J*(δ, κl9 Λ\ Em e J>(δ, κ:1? A). Let us write J(δ, κ1? A]
as Jϊ(δ,κ1,A} = Jί+(δ,κ1,A)vJί~(δ,κ1,A) with

If we can show that

, (45)

then we know that J^\jJ2 is covered by J>(δ, κl9A). We divide IδtKl in
a corresponding manner:

Denote the lengths of /^K1 by /±(5, jq), then

/(^± (δ, /c1? yl)) = κ2 7(yl) /τ (δ9 KI) . (46)

Lemma 4.3. For both signs,

(Γ1 inf t±(δ, KJ—+CC.
ΰ υ
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Proof. From Lemma 3.3 we conclude that, for O f ^ f q r g ^ , ε^) is
contained in a finite closed interval; application of Lemma B2 of Ap-
pendix B then yields the desired result.

Therefore, we can find a function υ(S) with

where £0(δ) = mm(mϊS+(δ,κ1),mΐέ-(δ,κ1)). Define δΛ by v(δΛ)=V(Λ),
then

V(Λ) δA j^ 0 , £(^(0* Kl, A)) = κ2 V(Λ) /+ (δA, κ2)

uniformly in jq, 0 rg κl ^ |. Now we have to choose κί as a function K^
of /I in such a way that

This is always possible because V(A)^0(δA)-^ao. Consequently,

const κλ<g —> o,

and (45) is fulfilled for sufficiently large Λ\ this in turn implies (38), if
we insert KΛ and δA. Now we define ξAl by ξ(κΛ) whenever V(Ai) = KΛ V(Λ).
According to Lemma 3.4,

<U-»0 = s2:(ε) or «2!(e)9 (47)

depending on the case under consideration. Combining the above results
with Eq. (36), we finally arrive at

KΛe'^(ωΛ^(A)-\\A\\^^ωΛ

E(A®i}^KΛωΛ^(A}^ (48)

where oq and α are positive numbers which can be chosen arbitrarily
small, if A is sufficiently large.

With A = 1 we get

hence KΛ-^>\. According to the assumptions of Theorem 4.1,

lim ωA

E(A®ΐ) exists, yielding ω*l = 0(A®l), if we couple A1 and A2 in
Λ-+CC

the above way. Again using (48), we conclude that lim ωAί

ξΛί(A) exists

and equals ω*1 = 0(/l(χ)l), which completes the proof of our theorem.



Additivity Entropy 213

Remark 4.4. At a first glance, it may seem that the choice of the
tangent at ε^) in seeking a bound for s2 is arbitrary. One might think
of taking directly the tangent at ε, if s2 + (ε) and s2 - (ε) happen to coincide.
But then one encounters difficulties in showing that J^uJ^ *s covered
by J(b, fc1 ? A 2). A comparison of their lengths is no longer an argument
since one can no longer exhibit in an easy way a common point of

V. Concluding Remarks

For the study of the equilibrium of two systems, the special kind of
the heat transferring wall and, equivalently, of the energy transferring
interaction does not matter as long as one does not ask questions about
how and when the equilibrium is reached. Therefore, it is a legitimate
procedure to make suitable assumptions, as for instance (C), about the
interaction in order to arrive at Proposition 2.1. The same arguments
yield at least some plausibility that it is reasonable to assume a similar
proposition for the microcanonical state, which amounts to starting
with λ = 0, as we did in Section IV. We consider this to be the point
which to improve is most desirable; but in order to do so, one would
have to exhibit more or less general conditions entraining the existence
of the limit lim ωΛ

E — which, of course, is a hard task — , or confine
Λ-> oo

oneself to fairly simple models.
Given the statement of Proposition 2.1, the proof of Theorem 2.3

does not depend on whatever assumptions are made in order to guar-
antee the existence of s(ρ, ε). Of course, one cannot do without the
assumption of stability of the Hamiltonian itself, which is a basic one.
It was also used to conclude that the summations in the expressions for
Ω~(E) are finite.

The same holds true of Theorem 4.1. For its proof we used Theo-
rem 2.3 and the properties of the entropy density as a function of the
energy density. As was pointed out in Remark 2.6, Theorem 2.3 also
holds for systems with different densities ρ l 5ρ2. ^n Sections III and IV,
the densities enter as fixed parameters only, and consequently, we can
state Theorem 4.1 for different densities, too. If we are solely interested
in system 5 ,̂ and not in the special kind of heat reservoir, we can omit
the case not covered by Theorem 4.1: Case (ε) with s2 + (ε)φs2^(ε), e.g.
by a suitable change of ρ2.

In view of the fact that ̂  may undergo a phase transition at the
temperature jS"1, it is a satisfactory feature of Theorem 4.1, that the
resulting ^'canonical" state is defined as a limit of Gibbs states with
converging temperatures ξ^1 : £/ι~

1-> >j8~1 either from above or below,
depending on the case in question, if we temporarily disregard case (ε).
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Given the possibility of a phase transition, this is precisely the procedure
which one expects to result in a well defined state. This leads to the
conjecture that there are two different limiting states describing pure
phases, corresponding to the cases (εj and (ε2). Then one may ask how
the mixture states could emerge. To answer this question, a good guess
would be that these states can come out in the case (ε) when g κ ι ( ε ' )
[defined in (17)] has a plateau. We then may, but are not forced to, take
εm(κι) = κιε> and, according to the actually chosen sequence, one could
possibly get mixture states.

There is a conjecture stating that

< ΎΐδA(H(A)-E}A
lim

ΊrδΔ(H(A)-E) Λ^

if one takes β = — s(ρ, ε) = — lim V(AΓl logδΔ(H(Λ) - V(A) ε).
cε oε Λ-+OO

Proving this would be the most direct way of showing the equivalence
of microcanonical and canonical ensembles. But one has to assume that
s j(ε)= 5-(ε) and that no phase transition occurs at the temperature β'1.
Moreover, such a proof would certainly require more detailed assump-
tions about the underlying observable algebra than those employed in
the above treatment.

Acknowledgement. The main part of this work was done in Gottingen. I am indebted
to Professor Borchers for a series of stimulating discussions. Furthermore, I wish to thank
Professors Hugenholtz and Winnink for their hospitality and for helpful critical questions.

Appendix A

We want to give two simple examples of how assumption (C) of
Section II can be fulfilled.

1. Consider a system ̂  with stable U given by tempered potentials
φk. If we divide ̂  into two parts restricting one group of variables, say
{xj, to Aί9 the other, say {y7}, to A2, and define

k . . . k . . .

Wfγ v v i; Ί — TI(γ v v v Ί Γ/ΪY Y } TJ(λ> V )VY ^Λ! ... Λnι ,yι' yn2) — v VΛι •••Λ«1?/ι •••yn ί) u V Λ ι Λ«ι/ u \j\. - yn^ >

then, of course, (C) is fulfilled.
2. Let us suppose
(C') (i) W is a symmetric operator given by tempered potentials,
(ii) W is relatively bounded with respect to U0(A,n)—Ul(A1,n1}

+ U2(A2, n2), n = n1+n2:

\\W(Λ,n)ψ\\^a\\ιp\\+b\\U<>(Λ,n)ψ\\,

with constants α, b which are independent of A and n,b<i.
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Now we use a theorem of Kato ([5], Theorem V. 4.11), which gives
a lower bound yϋo + w °f U0 + W:

^ 7ι/0 -
 max ' a +

= —nB — max - , a +
\ l - f t

^ —nB(2 + b) ϊor sufficiently large n ,

thus demonstrating that l/0 + VF is stable.

Appendix B

In this appendix, /(x) always denotes a continuous, concave function
of the real variable x. According to [3], the left and right derivatives
fL (x) and /j (x) exist everywhere, and /j (x) ̂  /I (x).

In addition, one can easily establish the following properties which
are not listed in [3] :

Lemma B 1.
(i) // x1 < x2, a > 0, then f ( x 2 + α) - f ( x l + a) ̂  /"(x2) - /"(x^.

(ii) Ifxl<x29 thenfϊ(x2)^fL(x2)^K(xι)^fL(xJ.
(iii) // XA < x2 < x3,

Xi

(iv) /i (x) is continuous from the left, f+ (x) is continuous from the right.
(v) lfξ>0, then lira /; (x - ξ) = fL (x), lim fL (x + ξ) = fL (x).

ς-*0 ξ-»0

(vi) L^ί / be α c/os^d /ϊniί^ interval. Then the limits

,
m-(/(x + 3)-/(x)) = /|(x)

are uniform in x e /.

Proof, (i) Assume Xj_ <x 2 <x 3 ; concavity o f / may be expressed as

(X3). (Bl)
X Xj_ X3

Twofold application of (B 1) to xί < x2 < x2 + ̂  and to xx < xt + α < x2 4- α
yields the desired result.
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(ii) We have only to show that /I(x2)^/|(x1). Take a sufficiently
small δ > 0 and apply (i) to x1? x2 ~ <5, a = δ :

I (/(*2) - f(*2 ~δ)}^~ (/(*!

Taking the limit δ-^Q we get /-(x2) = /+(xι)
(iii) Due to (Bl), we have

L_ (/(X3) _ r.h.s. of (B 1))
X3 X2

 X3

= /(*3)-/(*ι) .

X 3 - X i

hence — (/(x3) — /(x3 — (3)) decreases monotonically as <5->0, finally
o

reaching the limit value /I(x3).
The second part is proved analogously.
(iv) We consider x<x 0 , x-»x0. According to (ii), /_(x) decreases

monotocially for x-^x0, therefore exists h(xQ)= lim /_(x), and clearly,
—*

for x<x0. (B2)

Assume h(x0) > fL (x0). Then we can find a δ>0 such that

The second inequality is due to (iii). Moreover, due to the continuity
of /, we can find a δί with

((X)> .

The second inequality is due to (i). But again according to (iii),

fc(*o) > y (/(^o - δj - f ( x o -δ,~ δ}} ̂  fL (x0 - δ,) ,

which is in contradiction to (B 2). In the same way, we can demonstrate
the right continuity of /| (x).

(v) This assertion is a corollary of (iv); fL (x — ξ) ̂  /j (x — ξ) ̂  /- (x)
and lim fL (x-ξ) = fL (x) imply lim /| (x - ξ) = fL (x).

(vi) Assume the contrary. Then exist an ε0

>0, a sequence <5V,
v = 1 , 2, . . . , with <5V -» 0, and a set {xv} C / such that

±- (/(xv) - /(xv - δv)) - /I (xv) > c0 . (B 3)
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The left hand side of (B3) can be majorized by

/; (xv - δv) - fL (χv) ^ fL (χv - δv) - fL (χv) ,
and this expression can be made arbitrarily small because fL is con-
tinuous from the left, hence uniformly continuous from the left in the
compact interval /.

Lemma B 2. Let I be a finite, closed interval on the real axis. For
δ > 0, x1 e /, define

t±(x;xί) = f ( x ι ) + /; (xr) (x - xj ,

€/(δ;x1)= {x;f(x)>t+(x;x1)-δ or f ( x ) > t ~ ( x ' 9 x ί ) — δ} .

Due to the continuity and concavity off, */(<5; Xj) is an interval (y-(δ; xj,
y+(δ χί)), with

De/me

/(x) > Γ (x X J L ) - δ for x e (y_ (δ xx), x^ ,

/(x) > ί+ (x; Xi) - δ for x 6 (x1? y+ (δ xj) .

Proof. The cited properties of J>(δ\ xγ) are trivial. It suffices to show
that δ / / ± ( δ ; x 1 ) converges uniformly in xx. This then implies that

We shall only give the proof for one sign. Suppose non-uniformity;
then there are an ε0 >0, a sequence (5V— >0 and a set {xv

+} C / such that

According to the definition of /+ ,

whence, with /+ (<5V, xv

+) Ξ /v,

As v-»oc, (5V and thus ^v vanish; and the right hand side approaches
zero uniformly in xv aaccording to Lemma Bί (vi), which is a con-
tradiction.
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Appendix C

Proof of Lemma 3.5. We restrict ourselves to case (ε ,̂ the other case
can be treated analogously,

(i) Suppose K! < κ[ and
ηs(κl)<η,(κ[). (Cl)

Then

~; wsl^i) ~ε)< ~ 4 r wsl^i)~ ε) 5

[remember that ηs(κί)>ε according to Lemma 3.4], hence

ε s ( κ 1 ) > ε s ( κ [ ) , (C2)
and thus

*ιiWκι))^2-(ε(κι))^2^ (C3)

[The first and third inequalities are due to the supremum conditions
(22 a, b), the second and fourth ones due to (C2) and (C 1).] (C3) implies
that we can put equality signs instead of the inequality signs. Furthermore,

g^) = ε - - — - — (^(Ki) - ε) > ε - - — — (ηs(κ[) - ε)
1 TCj: 1 ?Cj

Ξβ*(κ1)>ε a(κi), (C4)

^2 - (εs(^ι)) ̂  s2 1 (ε*^!)) ̂  s2 1 (εs(κί)) .

But due to (C3) with equality signs, we have

hence the derivative of s2 is constant between εs(κ[) and ε^/cj,
and thus

s2l(εs('cί)) = S2;(fi*('Cι)) = S2-(ε*^ι)) = 52-(fis('c1)). (C5)

Combining (C3) (with equality signs) with (C5) and (Cl) we get

But these are the supremum conditions for κί9 fulfilled by ηs(κ[)9 with
ηs(κ[)>ηs(κl) in contradiction to the definition of ^(/q) as being
maximal. Hence

ηa(κ^ηs(κ[). (C6)

(ii) ε^Ki) is a continuous function of /Cj whenever ^(jq) is con-
tinuous. Now assume that ?]s has a discontinuity at a point τc0. Without
loss of generality, let us suppose that it is discontinuous from the right:
there is an α > 0 with

a for all <5>0.
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This implies a discontinuity for εs(fq): for sufficiently small δ,

£s(*o + <5) = ε - -— (ηs(κ0 + δ)-ε)>εs(κ0)-f α', α'>0,
1 - KO - 0

i.e. εs(τq) jumps downward as ?q decreases to τc0.
On the other hand, εs(?q) goes to ε from below as /q-»0, therefore,

there must be increasing parts where εs(/q) has to be continuous. Thus
εs(?q) assumes a continuum of values as fq ->0, and we can find sequences
κ l v approaching zero, for which s2 + (εs(κlv)) = s 2 L ( ε s ( κ l v ) ) because
s2- Φs 2 + is only possible for countably many points.

Appendix D

The exact statement of Griffith, referred to in the proof of Theorem 4.1,
is that due to the convergence of the functions /(Λ l5 ξ) which are concave
functions of ξ"1, their derivatives also converge to the derivative of the
limit function wherever the latter is continuous:

Lemma (Griffith). Let gk(x) be concave, differentίable functions de-
fined on [α, ft], and assume that \imgk(x) = g(x) exists. Then we have
limg'k(x) = g'(x) for all x where g'(x) is continuous.

g(x) is also concave, hence g'(x) has at most countably many jump
discontinuities. g + and gL exist everywhere. One can sharpen the above
lemma to get the following

Lemma D1. Let gk be as above. For all xe [α, fc], we have

g + (x)^ lim i n f g k ( x ) g lim supgk ( x ) ^ g L ( x ) .
k~* oo fc—>• oo

The proof runs completely analogous to that one of Griffith's Lemma
(Appendix A of [6]), if one takes into account that gL is continuous
from the left and g'+ is continuous from the right. Clearly, Lemma Dl
implies the existence of a finite upper bound p(x) of gk (x).

Appendix E

Notations. d(Λ) = diameter of A = sup |x — y\
x,yeΛ

A (Λ^Λ2)= distance of Λί anάΛ2= inf |x — y\\
xeΛι,yeΛ2

Vh(Λ) = volume of the subset of points of A with distance less than h
to the boundary of A

γ4-p*co: the regions A tend to infinity in the sense of Fisher, i.e.
(i) F(Λ)-»oo,

(ii) there exists a function π(α), αelR, α< 1, with limπ(α) = 0,
α-» 0

V f d ( A ) ( Λ ) / V ( Λ ) £ π ( x ) . (El)
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Proposition El. Let {/1J and {Λ2} be sequences of regions in 1RV,
AI~J> GO, i= 1, 2. 77i£77 A = Λ±\J Λ2 -f oo if and orc(y if

jμ^yljί^cίdμ^ + d^)), (E2)

where c is an appropriate positive constant.
To be precise, let us introduce a real parameter τ and consider At(τ\

At^}j>co if τ->oo, i = l , 2 . Then yl(τ) = /l1(τ)uyl2(τ) is a well-defined
sequence.

Let us define

2τ

We need the following

Lemma E 2. // Ai —+ GO, z = 1, 2, /or τ— > oo, ί/zeπ ί/zer^ gχ/5ί constants

9 fc2Φθ, GO sue/! ίfeαί

,,s||s,,
Proof. A-j>oo implies the existence of constants C, C such that

C d(ΛL)v ̂  7(/l) ̂  C' d(Λ)v . (E 5)

[Fαd(vl)(/ί) contains a sphere of radius %a,d(A), thence the first inequality.]
Application of (E5) to V(Aί) and V(Λ2) yields

C2

and hence (E4) with

/c^C./CΛ k2 = C2'/C1. Q.E.D.

Proof of Proposition El. We first show the necessity of condition
(E2). Assume that A(Λί9A2) grows faster than d(A1) + d(A2). Then, for
arbitrarily small α, we can find a yl0 = yl1 0uyl2 0 such that Zl(vi1 0,yl2 0)

)), hence

and therefore,

^d(κ0)(^o)= ̂ 10) + V(Λ20) = V(A0) ,

which is in contradiction to the conditions for the Fisher limit.
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Now let us assume that A(Λ1,Λ2)^c^Λj) + d(Λ2)) and thus

c' = c + l , (E6)

j

V(Λ) ~ V(A)

We consider the following three regions separately (α< 1):

G1 = \(a,τ)',ρ(τ)>-τ

G 3={(α,τ);jA>ρ(τ)}.

(i) (α.^eGj: then diΛJ^l/acKAJ, otθ(τ)^<xc'(ί + \/<ήd(Λί), and
hence

(E8)

because we suppose Λ1 -^ oo, i.e. the existence of πj(α) such that (El) is

fulfilled. Furthermore,

^ 1 ^k2β(τ)-^kj (E9)

according to the above Lemma. Insertion of (E8) and (E9) into (El)
yields

T7 ί Λ\ _L _

(EίO)—- .V y^v, , ,~ yvxv^ , v^ vxv , , v^ y^v vx y *

(ii) (α, τ) 6 G2 implies —p- d(A2) ^ d(^i2) ̂  ]/ud(A2)', therefore

)c'). ( E l l )
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(iii) For (α, τ) 6 G3 we have d(Λ±) ^ ]/ocd(Λ2\ thence

and

V(Λ)

which yields
V

V . . ( A\ (Y2 r-

π(3)(α) = — + π2(αc'(l + J/α)) (El2)

From (E10), (Ell), and (El2), it is clear that

π(α)= max π(ί)(α)—>0,
ι = l , 2 , 3 α"^°

and
αdu)( ) ̂ π^ foral l α < 1 ^ i e Λ-»oo. Q.E.D.
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