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Abstract. An unsymmetrical, stationary solution of the Einstein-Maxwell equations
is given. The solution corresponds to the exterior field of two massive, charged, magnetised,
spinning particles. In general line singularities are present in the solution. The field of N
such particles is then considered and necessary and sufficient conditions for the equilibrium
of the system are given.

§ 1. Introduction

A method of constructing stationary solutions of the Einstein-
Maxwell field equations has recently been given by Perjés [1] and
independently by Israel and Wilson [2]. These solutions describe the
exterior field of massive, charged, magnetised, spinning particles.

Every particle satisfies (in relativistic units c= G =1)

m=e, h=+upu (1)

m, e, h and u being the mass, charge, three dimensional magnetic moment
and angular momentum respectively.

Particular solutions of this class were then given by Bonnor and
Ward [3] and by Hartle and Hawking [4]. The solution in [3] gave
the exterior field due to two Perjeons (to be defined later). It was found
that in general there exist singularities on the line joining the particles.

In this paper I give in §2 the generalisation, to the case when there
is no symmetry, of the Bonnor-Ward solution [3]. The condition for the
occurrence of singularities in the more general solution is found to be
exactly the same as in the axially-symmetric case. In § 3 I use methods
first given by Hartle and Hawking [4] and recently discussed by Israel
and Spanos [5] to derive necessary and sufficient conditions for a system
composed of N Perjeons (with spins in arbitrary directions) to be in
equilibrium. There is also an Appendix.
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The field equations used in this work are:
R,,=—8nE,,
4nE,,= —F°F, +%9,,F**F,;
Fivot+FogutF,,.,=0

Hv;o Vo U

@

Fo = J*

where Ej is the electromagnetic energy tensor, F,, the electromagnetic
field tensor and J* the four-current which vanishes because I consider
the exterior field only.

§ 2. Generalisation of the Bonnor-Ward Solution

The prescription for generating a PIW metric has been given in a
fairly concise form by Bonnor and Ward, and I reproduce this prescrip-
tion here.

Latin indices run from 1-3 and Greek from 1—4. All functions are
independent of X*. A comma denotes partial differentiation and a
stroke | denotes covariant differentiation with respect to the metric vy,,,
to be defined now. The metric is

ds?= — f Yy, dx"dx"+ f(dx* + w,, dx™)* (3)

the three dimensional positive definite metric v,,, having zero Ricci-
Tensor; the electromagnetic field is given in terms of two scalar poten-
tials:

F4-n = ¢,n’ Fab = r’abmfw,m (4)

n°®™ being the Levi-civita symbol formed from y,,,. The entire solution
is generated by two functions L, M harmonic with respect to y,,,,-

P Ly =0, "M, =0 (5)
through the equations
f=Hl+M)", (6)
wa,b_wb,a=8}1abmymt(ML,t_LM,t), (7)
_1 1
¢ 2Le 2 Me e=+1. 8)

i YT oM™ -
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Define U=2L+ i2M and consider the solutions generated by

taking

N . A.

U= Z{Hﬁﬂ(—‘”ﬁ)} 9)
j=1 ¥j ¥j

where

”j':(.ujla.ujZa:uj3) (10)

Vj=(x“‘xjay_Ysz—Zj)a "jzl"j|

and (x, y,z) is the field point and (x;,y;,z;) are the positions of the
sources.

Perjés gave the metric corresponding to taking N =1 (Bonnor and
Ward call this a Perjeon). Bonnor and Ward gave the metric correspond-
ing to

N=2 py=(0,0,p13)
=(0,0,
uy = Ha3) (11)
Xy =)= Zy=—a
X,=Yy,= z,=a a>0

so this solution represents the exterior field of two Perjeons with their
spins parallel or anti-parallel to each other and also parallel or anti-
parallel to their vector separation. Bonnor and Ward concluded that
singularities will occur along the line joining the particles unless

myps3+mypy3=0. (12)
Here I give the solution corresponding to
N=2 My = (U115 Byos Hy3)
M2 =Ua1s Ha2s H23) (13)
X =y, = z;=—a

X,=y,=0 z,=a a>0

This solution will therefore correspond to the exterior field of two Perjeons
with their spins in arbitrary directions. The solution is given by (10)
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with (3) to (8) and w is found to be

_ ompya(zta) o mappa(z—a)  2py5(zt+a)  2pp,(z—a)
W, = 1 - 4 - 3 - 3
1 2 1 2
m m 2 2
n 111413)’ n 25423)’ 4 #r133y n Mriay
1 2 1 2
m 2m X
2512 (—x2+y2+22—a2)+ 2/;11 y
arir, arir,
m 2m X
_ 13“22 (= X242+ 2% —a?) — 1/;21 Yy
arsr, arsry
m r 1 z+a
n jﬂlazy{%( 2>+(.3‘)(x2+y2+22 aZ)}
x“+y* |r; \2a arir,
myfa3y | Ty 1 (z—a) , 2 2 2
+ -1 E x2+yr+ 22 —ad)y,
x% 4 y? {rz (2a2> aryr, ( y )
_ mypyy(z+a) my iy (2 —a) 2ui4(z+a) 2pz4,(z—a)
Wy = 1 7 3 + 3
r F r "
1 2 1 2
oMy y3X Ml X 2py3x _ 2py3x
rt 4 r s
Maylyy , 5 2 2 2 2my py 2 Xy
— ————— — _a — e—————
arir, =y 2 ) arir,
m 2m X
n 2521 (2 =y + 22— a?) — 1/;22 y
arsry arsry
mythy3x |1, (1 (z+a)  , 2. 52 5
- - + xX“+y' +z-—a
Myfy3X | Fy 1 (z—a)  , 2, .2 2
- L - X2+ yr+ 22— ad),
x% 4 y? {7'2 <2a2) ar3r, ( y )
mypyy Myfy1 Yy 2u51y 2Uy 1y
W3y=—"a T & T3 T3
1 2 1 2
n Myfy2X MaHa2X 2py,x i 2pzax
" v 3 3
1 2 1 2
2mypyaxz 2my piypxz
arir, aryr,

2mypy, yz . 2my pyyyz

3
arir,

aryr,

(14)
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A look at the solution will easily convince the reader that the con-
dition which excludes singularities on the line joining the particles is
exactly the same as in the axially symmetric case, i.e. m, ;3 +m p,3=0,
or in vector notation (since this result must be true for arbitrary orienta-
tion of the line joining the particles)

riy-(mypy+myopy)=0. (15)

The result is that if the angular momenta per unit mass (u,/m,, u,/m,
respectively) are equal and opposite, or if the vector m, u, +m pu, is
perpendicular to the vector separation of the particles then the singularity
disappears .

§ 3. Equilibrium Conditions for N Perjeons

Hartle and Hawking showed that a necessary condition for regularity
of the exterior metric is that ?:

[(U*PU—-UVU*)-ndS=0 (16)
5

where S is any closed two-surface in the background Euclidean 3-space.
More recently Israel and Spanos [5] have argued that (16) is also suf-
ficient for regularity in the exterior geometry (assuming U is regular and
non-vanishing in the exterior).

It is more convenient for our purposes to amend (16) to the equivalent
statement (via Gauss’ divergence theorem)

[(U*P?U—UP*U*dv =0 (17)
V

where V is the volume enclosed by S. We shall consider the case in which

N A
U= 3 {1+ ﬁ+i(m_2m
j=1 r; rj

J

! The solution given in (14) is unique only up to the addition of the gradient of a scalar.
In (14) the line singularity shows up in the w,, w,, terms and occupies the whole of the line
x =y =0 in the background 3-space. By choosing the scalar carefully the singularity can be
chosen to lie only on the section of z-axis between the particles. If @, , w,, w5 are expanded
in powers of R™! =(x? + y? + z?)~* and if terms of order “a” are ignored then the solution
describes the field of a single Perjeon of mass m, + m, and angular momentum pu; + u,
(cf. Bonnor and Ward [3], Eq. (3.4)).

2 U* is the complex conjugate of U. V is the usual gradient operator and F? is the
Laplacian.



128 J. P. Ward

representing the field of N Perjeons with spins in arbitrary directions. It
is then fairly easily shown (outline given in Appendix) that the condition
(17) implies:

N . A..

Z {(miyj+mj2,ui) r,j} —0 (18)
i=1 |Vij|

iFj

where the volume V was chosen to enclose the i'th particle. We also note
that choosing N =2 and i =1 then (18) reduces to

(mip,+mypy)-71,=0

as of course it should for the two particle case. For equilibrium of the
whole system (18) should be satisfied for each particle.

Appendix

For convenience I will consider the case of two Perjeons only (the
N-particle case is evaluated in exactly the same way but the notation is
clumsy).

Thus in (10) take N =2, i.e.

m m - F .
U=1+—‘+—2+i<’“2‘+ ;
ry L) ry 2

V2 <—1~) =—4nd(r)=—4nd(x—x)0(y—y,) d(z—z,) (A1)

ry

Vz(f—f#)=4na’(x—x»é(y—yoa(z—zl)":%nax(rl) (A2)

5 0
k )(CX) _ _)5’2‘_)_’ 8 (=x)=—0(x) (A3)

1 f@o@ax=r0. [ f@50dx=-0O (A4

re=4

where

(A.1) to (A.3) are a sub-section of the usual statements made about the
delta-function. It should be remembered that these statements are only
valid when the appropriate integral is taken. A very full account of the
delta-function and its properties can be found in Ref. [6].
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Thus using (A.1) and (A.2), Eq. (17) implies directly:

m m
{ (1 4 ”TZ) (111 0:0r1) + 12 0,(r1) + py 3 6:(r1)) AV
14 1 2

3

n " m, 5(7'1)(#11(x_x1)+”12(f1_y1)+#13(z—21)>dV(A.S)

Vv

+im, 5(r1)(/121(x—xz)+#22(f3‘Yz)+,U23(Z“Zz))dV:O
v 2

where [ have chosen V' to include only the particle at (0, 0, — a) now

[MdV: | my iy 8'(x —xy) 3y — y,) 8(z — zy) dxdydz

v ry v ry

the “y” and “z” dependence can be taken out immediately and using (A.4)
we have
mypyy 0'(x —xy)

j my gy 6,(ry) dV=§ dx
v ry x |x — x4
thus (A.5) implies
O'(x— d
j 1 9'(x = X,) dx +“y”,“z”  terms
b'e [x — x4
mZull 5/(x_x1)d'x TR TENTIR L)
+f 3 3 =T + V, z terms
¥ Ux—x) "+ — +(z1 —25)7°}
¥ {( )+ =)+ (2 2)%} (A6)
— — d
n I My piy (X x1)5(3x x;)dx £ 2 terms
X |x — x4
I mlﬂzl(jci*xz) L4y 4 terms =0
T2
where 5 5 s
Fra=+ {01 = %) +(yy —y2)* + (2, — 2,)*}?
from (A.3) it follows that
6((X—x1) — —(x_xl)é(x_—xl) (A7)

X — x4 Ix — x>
thus we finally get using (A.4) and (A.7) in (A.6) (after some re-arrangement)
Fia-(mypy +mypy)=0.
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