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Abstract. The infrared-singularity structure of the vertex functions of massless-particle
φ4 theory is studied. This allows to construct the asymptotic forms of the vertex functions
of massive-particle φ4 theory in a simpler and more explicit fashion than in a previous
paper. With the help of the parquet approximation introduced by Diatlov, Sudakov, and
Martirosian we show that the infrared-singularity structure in a theory with besides the
massless particles, massive ones is the same as in the theory with massless particles only.
All these results in φ4 theory have analoga in other renormalizable theories.

Introduction

In a series of papers [1] a systematic approach to the large-momenta
problem for vertex functions1 (VFs) in renormalizable field theories
has been undertaken. A main step hereby was to define the asymptotic
forms (AFs) of those functions. At generic momenta, the AFs are the VFs
of a corresponding zero-mass theory, and their behaviour under overall
scaling of the momenta is described by the renormalization group equa-
tions for such a theory, given simplest in the form of homogeneous partial
differential equations (PDEs) obeyed by these functions.

The momenta sets at which the zero-mass theory VFs are infrared (UR)
singular are called exceptional. The AFs of the massive-theory VFs at
Euclidean such momenta are expressible as certain UR finite parts
extracted from the zero-mass theory VFs at those momenta, and trans-
form in a fashion, different from case to case, given simplest in terms of
certain (in general) inhomogeneous PDEs, the inhomogeneous terms
involving other exceptional AFs.

In the formulae derived in Appendix B of SD 2, for the described
connection between exceptional finite-mass theory AFs and zero-mass
theory VFs, coefficient functions appeared for which definitions only as
limites were given. In this paper, we derive equivalent but simpler
formulae, with explicit expressions for the coefficient functions. These
formulae are developed here for φ4 theory, but have analoga in all
renormalizable theories.

1 The amputated one-particle-irreducible parts of connected Green's functions.
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We also make a detailed study of UR singularities of some zero-mass
theory VFs near Euclidean exceptional momenta. We then show that the
same UR singularity structure holds in theories that have besides the
massless scalar particles also (arbitrary) massive ones. The tool hereto
is the parquet approximation (PA) introduced by Diatlov, Sudakov, and
Ter-Martirosian [2] in a study of the asymptotic behaviour of meson-
meson scattering. That the use of the PA is legitimate for UR behaviour
problems was shown by Larkin and KhmeΓnitskiΐ [3], whose considera-
tions we here sharpen, and generalize as described.

In Section I we recapitulate (from SD 1) the technique of mass vertex
insertion, extending it to vertex functions involving also Zimmer-
mann's [5] composite operator N2(φ2}. In Section II we recapitulate
(from SD 1 )̂ and similarly extend definition and existence proof of AFs
at nonexceptional momenta, and (from SD 2) the construction of these
forms from directly-defined zero-mass theory VFs. In Section III.l we
recapitulate (from SD 2) definition and PDEs of the AFs to some sets
of exceptional momenta, and give an application to a mass-switch-on
effect. In Section III.2 we analyze the UR singularities of the corre-
sponding zero-mass theory VFs near those momenta and define, by
simpler formulae than in SD 2, the UR finite parts, from which in
Section III.3 the AFs of Section III.l are obtained in explicit fashion.
In Section IV we define and analyze the PA, prove that the UR singulari-
ties derived from it are actually present in a theory with massless neutral
scalar particles even if there are also massive particles, and compute
in φ4 theory a correction to the PA to demonstrate the reliability of the
reasoning used. We also show why the PA gives no nontrivial result for
the σ-model in the Goldstone mode. Appendix A gives a formulary of
algebraic deductions from the Bethe-Salpeter (BS) equation, to which
also Appendix B gives some technical hints. Section V contains con-
cluding remarks.

I. Mass Vertex Insertion

We here recapitulate the derivation of PDEs for vertex functions
in φ4 theory, admitting also N2(φ2) operators 2 in the notation of Zimmer-
mann [5]. These vertex functions are defined by 3

(2π)4 δ(Σp + Σq) Γ(p1 . . . p2n, qί . . . ql m2, g)

... φ(p2n)N2(φ2(qι)) ... N2((
2 PDEs for vertex functions involving such operators were already considered by

Callan [4].
3 Momentum conservation is understood and here mostly not expressed in the

notation. For Fourier transforms we use the conventions of the last papers of Ref. [5].
Note that Γ(p(- p),) = -G(p}~1.
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The PDEs are obtained simplest, as in SD 1, from the generating func-
tional. For

Gdigcμ, K} = <(exp {i J dx{J(x) φ(x) + i K(x) N2(φ2(x)J]})+y

we have, by mass vertex insertion

L^L + ΛL = L - \ m2 φ(g) N2(φ2)As

with φ(g) defined below, a result expressible in two ways:

G^C{J, K} (m2, g) = const Gdisc{J, K - m2 φ(g)As} (m2, g) (u)

where the extra exponential is due to the fact that, while N2(φ2) is like φ
multiplicatively renormalized, ((N2(φ2(p))N2(φ2(0)))+y requires4 beyond
this a subtractive renormalization.

From the equations (cp. SD 1)

9 K} = G{J, K} - i f dx J(x

}^,κfϊxeά = A G{J, K}j,κnκed

follows similarly as in SD 1, by differentiation of (I.I)

{m2 [δ/am2] + β(g) [3/3^] - 2nγ(g)

+ l(2γ(g) + η(g))}Γ(pl...p2n,ql...qr,m
2,g) = &/t2nJΓ(...) (1.2)

= - im2 φ(g) Γ(p1 . . . p2n, q1...qιO'9m
2

9g)- i δn0 δl2 κ(g) = AΓ(.. .)

whereby the functions β(g)9 y(g\ η(g) and κ(g) are obtained from con-
sistency of (1.2) with the renormalization conditions

p),;m2^)|pa = ll|2 = i , (L3b)

Γ(p1 ...p49 ;m2,#)| s.pt.
5

tom2= -ig9 (1.3 c)

Γ(00,0;m 2 , 0 )=l, (I.3d)

Γ(,00;m 2,#HO, (L3e)

4 A formula for this computation is (A.9). The effect of subtractive renormalization
on PDEs was first observed by Coleman and Jackiw [6].

5 PιP2P3P4\s.Pt.toaz means pipj = ̂ a2(4δij- i).
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and φ(g) is determined by the normalization convention

ΔΓ(p(-p\ ;m2,g)\p2=m2 = -im2 (1.3 f)

implicit in (1.2).
One finds 6 (SD 1)

Γ1, (L4a)

and (SD 2)
hίg

2 + " h0 = ±b0, (1.4 c)

~. (I 4e)

For later comparison, we note that (1.3) implies

Γ(p(- j>), m2, 0) = ί(p2 - m2} + 0(g2) , (1.5 a)

ιP2,3ι;ro 2,0)= 1+0(0), (L5c)

(1.5 d)

Concerning extensions of mass vertex insertion we remark : PDEs for
vertex functions involving ^-operators [5] with δ > 2 were derived by
Christ, Hasslacher, and Mueller [7], Mason [8], and more generally by
Mitter [9]. In the case of conserved currents, the corresponding y-term
in PDEs is computable 7 from consistency of the PDEs with the Ward
identities, as shown for quantum electrodynamics in SD 1. Insertion
into the Lagrangian density of Λ^-operators [5] with δ=4 appearing
already in Zimmermann's effective Lagrangian [5] was studied, and
called generalized vertex operation, by Lowenstein [10].

II. Asymptotic Forms at Nonexceptional Momenta

ILL Existence of Asymptotic Forms

To analyze (1.2) we introduce8

...g + .. (II. 1)

6 In Section II.3 we shall prove that the coefficients bQίbίt c0, h0, and k0 are independent
of the precise forms of (1.3 b-d) as long as (1.5 a-d) hold.

7 An equivalent result was obtained by Coleman and Jackiw [6] using a different
method.

8 Throughout this paper we take 0 < g < gm where g^ is the first positive zero of β(g).
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and define
(IL2a)

such that

F(g(λ)) = Σ (I »~ ' Onλ2)' C%) W Ffe) (Π.2b)
j = o

and, as λ-> + 0

We also introduce

a(g) = exp [2 f ̂  ,%')' * 7(^)1 = 1 + 260" ' c0g + - - , (Π.4a)
L b J

-flf + -), (Π.4b)

k(g}= dg' β(gT1 a(g')2 h(g')2 κ(g'}=-g~-(i + *..g + - . - ) . (Π.4c)

where in (II.4b— c) we have made a convenient choice of the integration
constants.

(1.2) becomes
Γ(Pι .-P2n><lι ...qι;m2,g)

= a(gΓla(g(λ))-" + lh(gΓlh(g(λ))lΓ(Pl...p2n,q^

- iδnQδl2 a(g)~2 h(gΓ2 Wg) - k(g(λ)}] (11.5}

-ίm2 dλf2a(gΓl

Now for any momenta

Γ(λ~1pl ...λ-1p2n,λ~1qi ...λ-^q^m2^)
T - 4 + 2 « + 2 / Γ / T Λ „ _ n ml ϊl n\= λ 1 (pί ... p2n, q± . . . ql , m λ , g) .

Nonexceptional momenta are defined (SD 1 •£) by

Γ(Pl ...p2n,qι ...qιQ;m2λ2,g)

for λ—>0 to hold in all orders of renormalized perturbation theory,
with c depending on the order. Weinberg [11] power counting (see also
Fink [12] and Westwater [13], and SD 2) applied to (II.6) with Λ-»0
yields : Euclidean momenta sets are nonexceptional if no (in the present
model, even 9) partial sum of momenta vanishes. Other considerations
(SD 2, and unpublished) yield: Minkowskian momenta sets are non-

Hereby the g-type momenta count as even.
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exceptional if no (in the present model, even) partial sum of momenta is
lightlike and certain other sets of momenta more complicated to
describe, where at least one (in the present model, even) partial sum of
momenta is timelike, are also excluded. For nonexceptional momenta,
as /l->0 afortίorί

Γ(Pί ... p2n9 qι...qι ,m
2λ2,g) = 0((\nλ}c) (II.8)

holds and so, by comparison with (II.7), also for momenta sets that are
not too exceptional.

For nonexceptional momenta, (II.7) and (II.2 b) show that the integral
in (II.5) allows Λ,-»0 in all orders of perturbation theory. Thus (SD 1 ̂ ),
in this sense, except for n = 0, / = 2

•Γtp1...p2H,q1...ql;m
2λ2,g(λ)) ] (Π.9a)

exists, while for n = 0, / = 2

lim{α(0Γ2 a(g(λ))2 h(gΓ2 h(g(λ))2 Γ(,q(-q);m2λ2,g(λ))
2 (Π.9b)

These are the AFs of these VFs.

II.2. Properties of Asymptotic Forms

The formulae (II.9) show that the Γαs are the VFs of a massless (see
below) φ4 theory, which (for 0<g<g00) we call the prae-asymptotic
theory: performing the limit in the renormalized Euclidean integral
equations (involving e.g. skeleton expansions in Dyson's sense) written
with subtractions10 at nonexceptional Euclidean momenta one can
interchange the integrations with the limit λ -»0 since the power behaviour
of the integrands does, in any case in renormalized perturbation theory,
not change during the limiting process, the integrals remaining absolutely
convergent (UV, and also UR if the external momenta are nonexcep-
tional). It follows that one could construct the Γas directly as those of a
massless theory from renormalization conditions obtained by using (II.9)
merely for the renormalization functions at suitable (nonexceptional)
normalization momenta. This inconvenient method is avoided by the
technique of Section II.3.

10 The prescription (II.9 b) is due to this VF involving a subtractive renormalization,
and the convention (I.3e) cannot be upheld in a massless theory.
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The limites in (II.9) were shown to exist in all orders of renormalized
perturbation theory. In view of (II.3) it is reasonable to assume that the
Γas exist also outside of perturbation theory if 0^0 <gao (On the other
hand, for g <0 the behaviour of g(λ) as Λ-»0 is unknown and also the
existence of the Γ themselves doubtful [14].) In this sense, we make no
distinction in the following between validity in and/or outside perturba-
tion theory unless there is reason to.

Replacing in (II.9) λ by λλ' and letting Λ/->0 yields, using (IL2a),
the transformation laws (except n = 0, / = 2)

a(gΓla{0WΓn + lh(0Γlh{0(W
= Γas(p1...p2n,qί...qlim

2,g)
and

a(gΓ2 a(g(λ)f h(gΓ2 h(g(λ)f Γas(,q(-q) ,m2λ2,g(λ))

-ia(gΓ2h(gΓ2[k(g)-k(g(λ))-]=Γas(,q(-q) m\g}

which are equivalent to

<¥2π,Z^«s(Pl ~ P2n><ll - - <ll \ ™2> 0) = ~ ίδnO $12 *(0) ' (Π.l l )

(II. 10 a) gives, for p2^0

-Γas(p(-p\ m2

9g)-l = Gas(p)

= a(gΓ1ί(p2 + ίεΓ1V+2b;2c0(\ntm2(-p2-ίεΓ^Γ1 (11.12)

+ 0((lnp2Γ2lnlnp2)]

showing that the Γαs are VFs of a theory with discrete massless particles
(SD 1 ̂ ), a property, like (II.3) it is derived from, not visible in perturbation
theory.

The justification of the nomenclature ''asymptotic form" lies in the
consequence of (II.5) and (II.9)

Γ(λpί ...λp2n,λqί ...λq^m2^)

- Γas(λp1 ... λp2n, λq^.. λql m2, g)

= _ ίm2λ2-2n-2l J ̂ 2 a(gγ-l a(g(λ'))-n + l (IL13)

b

h(gΓlh(g(λ')γΓ(Pl...p2a,qί...qlO ,m

2λ-2λ'2,g(λ')).

Thus from (Π.6-8) follows that Γas describes all the logarithmic terms of Γ
in the leading λ order as λ-> oo, the RHS of (11.13) being O(λ2 -2n~2l(\nX)c\
while (11.10) with (Π.2b) shows that Γfls comprises these logarithmic terms
only. In Section III.3 of SD 2 we showed how to obtain for n= 1, / = 0
a refined AF by evaluating the RHS of (11.13) to its logarithmic accuracy;
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in Appendix C of Ref. [15] this was generalized to all n. With formula
(III. 10) below the extension to all n, / is obvious.

Formulae (II.6, 8, 13) can be complemented (cp. SD 2 (11.15)) with

as λ -» oo for nonexceptional p, q.
From (IL2b) and the considerations on (11.13) follows: The evaluation

of the limites (II.9) in perturbation theory amounts to keep in the expan-
sion, as Λ,-»0, of Γ(pί ... p2n,ql ... q^m2 λ2, g) as double power series11

in In λ2 and λ2 merely the ^-independent terms. This procedure we call
"elementary recipe" (SD 2). It yields from (1.5) immediately

Γas(p(~P\ \m2,g} = ip2 + 0(g2}, (II. 15 a)

s(PιP2PιP4> im2,g) = -ig + 0(g2}, (ILlSb)

Γas(Pι P2, qι m2, #) = 1 + O(g) , (11.15 c)

(Π.15d)

to be used below. Otherwise, however, this (in renormalization group
applications, traditional) procedure is highly uneconomical, and avoided
by the technique (Appendix B of SD 2, abbreviated SD 2 B) reviewed
in the following section.

II. 3. Relation to Zero-Mass Theory

The vertex functions Γ0 of a zero-mass φ4 theory are defined by
imposing the renormalization conditions

Γ0(00, t/2, 7) = 0, (II. 16 a)

Γ0(p(-p), C/2, V)\p2=^2=-iU2 , (Π.lόb)

Γ0(Pl ...P49 C/2, V)\s.Pi.i0-u>=-iV, (Π.16C)

(ILlόe)

11 Our remarks on (11.13), and extension of the procedure discussed, to also the
corrections to the AF of the Γ in the integrand prove that such double power series expan-
sion exists.
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A possible construction of the Γ0 without ^-arguments was described in
SD 2 B and is easily extended to all Γ0 functions 12. We have (cp. (1.9))

Γ0(P(-P), V2, V) = ip2 + 0(V2), (Π.lVa)

Γ0(Pl...p4;U
2,V)=-iV+0(V2), (Π.17b)

Γ0(Plp2,q1 U2,V)=l+0(V), (Π.17c)

Γ0(,q(-q);U2,V) = 0(l). (Π.lVd)

The normalization momenta square — U2 in (11.16) is not intrinsic, such
that its change can be compensated by V- and normalization change,
plus an additive term if n = 0, / = 2. The functional equations expressing
this fact are the well-known renormalization group equations 13 of a
massless theory [17]. Their differentiated forms are the PDEs

+β(V) [d/dV~\ -2nγ(V)

Γ0(Pl...P2n,q1...ql U 2 , V ) (11.18)

= &^2n,tΓ0(...)=-iδn0δ,2k(V)

with coefficient functions obtained from (11.16) as

F3 + .. , (Π.19a)

V3 + , (Π.19b)
2 + , (Π.19c)

From the observation at the beginning of Section II.2 it follows that we
necessarily have

Γas(pι ...p2n,qι ...q,;m2,g)

= Z1(gΓnZ2(gΓίΓ0(p1...P2ll,qι...qι;m
2,V(g)) + iδn0δ

and comparison of (11.17) with (11.15) yields

V(g) = g + 0(g2), (11.21 a)

Z1(g)=i + 0(g2), (11.21 b)

Z2(g)= ί + 0(g), (11.21 c)

f(g) = 0(i). (Π.21d)
12 The results of Blanchard and Seneor [16] imply that the Γ0 functions are tempered

distributions in Minkowski space to all finite orders of perturbation theory.
13 These equations are described before (11.27) below.
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Applying (9/t2nJ of (1.2) on (11.20) and using (11.18) yields, due to linear
independence (verified by special choices of n, I, and momenta)

β(gΓ1dg = β(VΓίdV, (II.22a)

β(g) \_dldg\ InZ^gf) = 2y(V) - 2y(g) , (II.22b)

β(g)[_d/dg-]\nZ2(g) = -2y(V)-ή(V) + 2y(g) + η(g), (11.22 c)

[d/dg] f(g)L i y j j w ,

Integration yields

(11.23 a)

(Π.23b)
1 a(g)h(g), (11.23 c)

f(g) = a(gΓ2 %Γ2[-/c(0) + k(V(g)J] , (II.23d)

where we have introduced, analogous to (II. 1) and (Π.4)
v

ρ(V) = (dV β(V!Γl

(II 24)

(11.25 a)
6

dV β(V'Γl η(V) = Vb^'h\i + ...7+ •••)> (IL25b)

μF β(V)~ 1

 25

Consistency of (11.23) 14 with (11.21) requires

bo = b0, b 1 =b 1 , c0 = c0, h0 = h0, k0 = k0 (11.26)

which relations (except the second, which involves some computation)
are easily verified directly, and yield b^ 1 h0 = ̂ . The integrated form of
(11.18) is analogous to (11.10), with functions (11.25) if we define

V(λ) = ρ-1(]nλ2 + ρ(V)). (11.27)

We now consider the massive-theory vertex functions Γ defined by
replacing the renormalization conditions (1.3 b-e) by others that also

14 In the calculation of V(g) from (II. 23 a) an integration constant needs to be com-
puted (most easily, with the help of the "elementary recipe") from the second order four-
point graphs.
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lead to relations (1.5) for Γ with g replaced by g, e.g. by merely replacing
the _renormalization momenta in (1.3 b-e) by others. The relation of
the Γ to the Γ is then analogous to the one between Γas and Γ0 in (11.20),
by familiar renormalization group considerations. Going then in this
relation to the asymptotic forms by, e.g., the ''elementary recipe" yields
the same relation between Γas and Γas as just described for Γ and Γ.
The same steps that led from (11.20) to (11.26) now lead to

bo = bQ, b1=bl9 c0 = c0, hQ = h0, k0 = k0 (11.28)

where bQ etc. are the coefficients in the functions β(g) etc. of the Γ theory.
Likewise, if we change (II. 16b-e) such that (11.17) holds for new Γ0, F,
then b0=b0 = b0 etc. Thus, the coefficients in (11.28) are universal,
e.g. independent of the renormalization momenta chosen, and the same
in the massive and massless theory. A consequence of this result, that
the imaginary part of the four-point vertex function should not change
sign in Euclidean and Minkowskian momentum space, was elaborated
inRef. [14].

III. Exceptional Momenta and Infrared Singularities

1 1 LI. Asymptotic Forms at Exceptional Momenta

At exceptional momenta, by definition the estimate (II.7) does not
hold, which requires to remove from the integrand in (II.5) the offending
part with the help of the appropriate Wilson expansion [18]. For the
four-point vertex, the momenta sets p( — p)00 and p( — p ) q ( — q) are
exceptional. In Section III.l of SD 2 we derived the PDEs

[0/*4,o - *l(9)~\ Γjp(-p) 0 0, m2, g) = 0 (III.l)
and

0/*4,o Γjp(-p) q(-q\ m2, g)

= iκ(g) Γjp( - p] 0 0, m2, g) Γj,q( - q) 0 0, m2, g)

with η(g) and κ(g) of (1.4 c,d), where immediate consequences of the
formula (A. 6) had been used. (The underlined subscript indicates that
the asymptotics of that function is exceptional.) The analoga of (IL9a)
are SD 2 (III.8) and SD 2 (III. 15), and the analoga of (11.10) the for-
mulae SD2 (III. 7) and the analogous one derived from SD 2 (III. 15).
For the vertex, p( — p\ 0 are the exceptional momenta sets, and we
obtained, again as a consequence of (A. 6), Eq. SD 2 (III. 19)

with limit formula SD 2 (111.21) and corresponding transformation for-
mula [cp. (III.9) below].
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In all these cases, the correct limit formulae show that the cor-
responding Γαs would not exist (or, in the Γ(p( — p)00, ) case, would
vanish), the reason being an infrared (UR) singularity of the Γas at the
exceptional momenta, to be investigated in Section III.2. The mentioned
correct limit formulae, however, allow to read off the /l->0, i.e. small-
mass, behaviour of the vertex function (s) in the limitand, from the
Λ->0 behaviour of the factors that had to be inserted to render the limit
finite. The reader is referred to SD 2 Section III for details, and also
for the proof that the "elementary recipe" of Section II. 3 is applicable
also to the functions considered here.

There are analoga of (11.14) which show the relation between the
asymptotics near, and the one at, exceptional momenta. They are ob-
tained from (A.6), (A. 11), and (A.8), respectively, as

r2) r3 r4, )

(III. 6)

to be contrasted with (11.14). It is the λ-> oo asymptotics of the functions
on the RHSs that the formulae (III.4-6) and the cited ones of SD 2
apply to.

There is an analog of (III. 3) for many arguments:

Γ((λp + rj(-λp + r2] (λq + rz)(-λq + r4),

= Γ(λp(-λp)λq(-λq)9)

and

Γ((λp +r1)(-λp + r2), r3) = Γ(λp( - λp), 0)

s •••n> . . . ,
Γas(Pι P2« 0 0, ft . . . g,; m2, g)

with, analogous to (III.l),

whereby the set pί . . . p 2 n > 4 ι - Qι must not be exceptional. In Eqs.
(IΠ.7-10), Γ^ is the (one-particle-irreducible) VF plus the sum, over all
partitions of arguments, of multilinear combinations of VFs times
connecting propagators as correspond to contributions to the ampu-
tated Green's function forming a chain, with partition of arguments such
that in each of the end VFs there is one of the two zero-momentum
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arguments. (III. 7, 8) with / = 0 were used in Appendic C of Ref. [15] to
evaluate the mass correction term to the Gell-Mann-Low limit

Γas(λpι ..'λp2n;m
2,gj of Γ(λp^ ... λp2n;m

2,g).

(III. 7, 8) also yield a precise estimate of the A->0 behaviour of the
limitand in (II.9). Namely, (II.5) can be rewritten

-iδn0δl2a(gΓ2h(gΓ2lk(g)-k(g(λ))-]

~Γas(Pl ...p2n9q1 ...gz;ro2,0)

= -ίm2 J dλ'2a(gΓla(g(λ'}Yn + lh(g
b

• φ(d(λ'))Γ(Pί ... p2n, q, ... qιQ;m2λ'2,g(λ'))

* -im2 J dλ'2a(g)"-la(g(λ')Γn+lh(gΓlh(g(λ'))1 (III.9)
b

]dλ'2h{g(λ')Γlk{g(λ'))

C(Pι •• P 2 w O O , q 1 ...q, m2,g)

where the formula resulting from (III.7) and (III

Γas(Pι •••P2n,<?ι ...q}Q;m2λ2,g(λ))

1^ h(g)l +

has been used and only the terms most singular as A-»0 have been
kept. (III.9) shows that a small-mass correction to a zero-mass theory,
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as the LHS represents according to (II.9), is nonanalytic15 in the mass,
naively as a consequence of the UR divergence of the small-mass-
correction integral obtained e.g. by the Schwinger action principle [20].
The logarithmic power two-third in (III.9) can be understood as one,
from the massless-propagator pair, minus one-third from the "mass
analog", SD 2 (III.8) and following, to (III. 18) below.

III. 2. Infrared Singularities in Zero-Mass Theory

The vertex functions Γ0 of the zero-mass theory of Section II. 3 are
UR singular at exceptional momenta. In this section we analyze this
singularity structure in the simplest cases and define certain UR finite
parts Γ0. The formulae we here obtain for these are simpler than those
of SD 2 B and will allow us in Section III.3 to calculate the Γ^ therefrom
without need of any asymptotic consideration.

For Euclidean momenta, UR divergences arise only from two-
particle links through which zero momentum flows, and from three-
particle links differentiated at zero momentum as will not occur in our
cases. Thus, in the formulae of Appendix A, to which we now must refer,

there is UR divergence danger from factors G and, related thereto, / but
o o

not from B. Thus, W in (A.2b) does not exist. However, a G is admissible
if the factor to its right or left vanishes at zero relative momentum since
(the Euclidean integral)

is UR divergent only if p = 0, and thus UR convergent if /(p, k) vanishes
at k = 0 of first order. Thus, on the RHS of (A.6) the second term is UR
convergent, and so are, for nonzero total momentum (and momenta so
chosen that there is nonzero momentum in the other channels also, as
we will always assume in the following) all other terms except

/°° < (1 + IΛO = /V0)"1 Γ (III.l 1)

where (A.7) is used. Since (III. 11) must therefore also be UR finite, and
we normalize Γ to be UR finite at nonexceptional momenta by (Π.lόd),

jWv'V0)'1" (III. 12 a)
15 The analytic structure of a Feynman integral as a function of the complex-valued

mass of one propagator near zero of that mass has been determined by Speer and West-
water [19]. (III.9) can be looked at as resulting from summing over all insertions in all
diagrams, the broken power of the logarithm being due to summing over two-nearly
massless-particle intermediate states lying behind each other, which essentially leads to a
binomial series. See also the end of Section IV.2.
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is UR finite, where here and in the following quotation marks mean,
optionally, obtaining the expression either by a limit from the nonzero-
mass theory [as in (II.9) for the nonexceptional case] or by a limit
within the Γ0 theory letting the momentum in the through-channel go
to zero. (A.6) allows, however, to give the definition without any limiting
process

(ΠL12b)

where the U on top means that the through-momentum16 has square
— U2 and (ILlόd) has been used. In Section III.3 we need a PDE to relate

/° to Γ .̂ This is simplest obtained by considering instead of (III.12b)

fo = (/0)-ι r /0 -.(B-BQ}

with p arbitrary and unrelated to U. Namely, (11.18) gives then
immediately 0

o
Turning to /, (A. 11) suggests the definition

(ΠL13a)

to be understood similarly as before, with the manifestly finite form
(note (Π.lόe)) simplest from (A. 10)

O O C K 0 0 - U U

l = (B-BQ}(l + W) + /° Γ(l - R) . (III. 1 3 b)

The PDE is obtained by applying β^4)0 on (A. 10) written as

0 0 _ 0 0_

and using (II. 18), as o o

Finally, in view of (A. 8) we set

Γ = 'Ύ-Π °/°" (III. 14 a)
with the finite form

r = Γ(l-R). (ΠI.14b)

The PDE is obtained applying ^/2,ι
 on (A.8) written as

f = Γ(l -R)-Π °/°
16 From (A.6) follows that the RHS in (ΠL12b) is independent of the direction of that

momentum.
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and using (11.18), as

The formula before (IΠ.12c), and (A. 11) and (A.8) can now be written

P P

, (III. 16)

°
2+{ΓR}. (III. 17)

These formulae display the UR singularity structure, as p-»0, of the

LHSs, with the curly brackets being O(p) then. As to Γ° and /7, from
the integrated form of (11.18), analogous to (II. 10), follows for p2-»0

iln\np2) (III. 18)

and

Here the UR divergence appears in the imaginary, dispersive, part only,
the absorptive part is (we omit the error estimates)

which equals the one obtained using (III. 18) bilinearly, the Γ0 analog of
(11.12), and inserting the two-massless-particle phase space factor:

Similarly, the absorptive part of Γ° is

where the last square bracket is the (nonexceptional) UR form of the
zero-mass four point vertex.

The p->0 singularities in (III. 15— 17) are quantitatively related to the
ones at exceptional momenta for vanishing mass, as comparison with
the formulae (III.5), (III.8), and (111.21) of SD 2 shows: it is merely
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necessary to replace ln( — p2) by In A" 2 = In(m2/l~2/ra2), λ-+co. Related
to this is the following: Choose for the momenta in (III. 16-17), and in
the more general equation from (A.6)

instead of (III. 15), the momenta appearing in (IΠ.4-6). Inspection of the
correction terms shows that they have for Λ,->oo the same order
0(λ~l(\κλ)c) as in (III.4-6). This means that (IΠ.4-6) are also valid in
the Γ0 theory provided one replaces those Γ0 functions not possessing
the restrictions required in (IΠ.4-6) by Γ0 functions. The results of the
next section will even allow us to pass from the Γ0 to the Γas functions.

Formulae (ΠI.4-6) relate to the small-distance behaviour of ampu-
tated functions. The Wilson expansion in the narrow sense involves
unamputated functions. Concerning these, we only remark that e.g. (A.3)
is in the massless theory not adequate in coordinate space even after

using (A.7) and (III. 12 a): Due to factors G the two terms on the RHS
are then not separately UR finite. The appropriate version17 of (A.3) is

18

in view of (A.7). Here (suitable matrix elements of) the N0 and M2

products are finite also in the massless theory for fixed x and ξ, ξ2 φO,
such that also the square bracket in the penultimate equation is finite.

Finally, we mention that Eqs. (IIL12c-14c) allow to determine the
precise small-momenta behaviour of the underlined functions, written
here under omission of the error estimate :

which in coordinate space corresponds to Zimmermann's

III.3 Asymptotic Forms Obtained from Zero-Mass Theory

Comparison of the limit formulae analogous to (II.9), cited in Sec-
tion III.l, for the functions considered there with the formulae (III. 12a,

17 The author thanks H.-J. Thun for a helpful discussion in this connection.
18 See last Ref. of [5], Eq.(6.31).
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13 a, 14 a), recalling also (11.20), shows that we have

Γjp( ~ P) 0 0, m\ g) = X(g) Γ0(p( - p) 0 0, m2, V(g)) , (111.20)

+ i Y(g) r0(p( - p) 0 0, m2, V(g)) Γ0(q( - g) 0 0, m2, V(g))

and

- 2 = 1 1 - 2

Inserting (111.20) into (III.l) and using (III.12c) and (11.23) yields

= Z1(gΓ1Z2(g) (111.23)

with the multiplicative integration constant obtained from g->0, using
(11.22) and the "elementary recipe". Inserting (111.21) into (III.2) and
using (IΠ.13c), (11.23), and (ΠL12c) gives

= h(g)~2 a(g)~2 X(d)2 Wg) - k(V(g)ft , (111.24)

and then (111.22) is seen to be consistent with (III.3) and (IΠ.14c). It is
easily seen, using g-*0 limites, that (ΠI.21-24) is the only acceptable
solution of the relevant PDEs.

Formulae (IΠ.20-22) can be written more symmetrically as (V= V(g)
understood)

a(gΓ2 h(gΓl Γjj>(-p) 0 0, m\ g)

= ά(VΓ2h(VΓ1E0(p(-p)QO,;m2,V)

a(gΓ2Γas(p(~p)q(-q\ m2,g}

- ia(gΓ4 h(gΓ2 k(g) Γjp(-p) 0 0, m\ g) Γu(q(-q) 0 0, m2, g)

= ά(VΓ2L0(p(-p)q(-q), m2,V) (111.26)

-iά(VΓ4h(VΓ2k(V)Γ0(P(-p)UO, m2,V)Γ0(q(-q)00, m2,V)

h(g)Γ^(p(-P),0 m2,g)

- ia(gΓ2 h(gΓl k(g) Γj,p(-p) 0 0, m2, g)

= h(V)L0(p(-p),0;m2,V)

where both sides are solutions of the homogeneous PDEs to

<¥o,o = <¥o,o (U2=m2, V=V(g))

that is, in conventional terminology [21], the expressions (IΠ.25-27) are
renormalization group invariant.
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The formulae (III.20—24) solve the problem of computing the Γas

from the Γ0 and thus, by (IΠ.12b, 13b, 14b), from the Γ0 in the most
economical way. These formulae are simpler than those of SD 2 B and
free of any limiting processes.

Inserting (ΠI.20-24) into the large-/t versions of (II.15-17) described
at the end of the last section and using (11.20) and (11.23) we find that
(III.4-6) hold also for the functions Γas provided one writes ΓM where
in (IΠ.15-17) there appears a Γ0 instead of a Γ0 function. It follows that
in (IΠ.4-6) for large λ the LHSs do not approach the corresponding
Γas functions, the difference residing, however, only in the Λ-free factors
on the RHSs.

IV. Infrared Singularities in Non-massless Theories

I V.I Definition of Parquet Approximation

The PA 1 9 VF Γ^ ...p4, L/2, V) = Ip is defined by the crossing
symmetric BS equation Fig. 1 (letters and the dotted lines disregarded)
with propagators i(k2+ iε)~l. The notation is self-explanatory, the
function marked i being two-particle irreducible in all three channels.
In Fig. 1 c, the PA in the narrow sense uses on the RHS only the first
term (a constant in momentum space); we shall see that the UR
behaviour is unaffected by the higher terms.

All the integrals in Fig. 1 are (at least in the iterative solution, see
Appendix B) logarithmically divergent. As is well known, the BS- and
the i-kernel each must contain an undetermined (logarithmically di-
vergent) constant to allow a finite vertex function. These constants are
fixed implicitly by prescribing the value of the vertex Ip at some sub-
traction point, e.g.

Γp(Pl ... p4, U\ 7)Lptto-ι/2= -iV. (IV.l)

Then all functions in Fig. 1 can be constructed, modulo the mentioned
constants, as power series in V (see Appendix B for a computational
scheme). Under change of subtraction point we obviously have

Γp(Pl ... p4, I/2, V) = Γp(Pl ... p49 I/2,/>; ... p'4, L72, 7)|,pt.to_^).

Differentiating with respect to UQ at UQ = U2 yields

(IV.3)
19 This approximation was introduced by Diatlov, Sudakov, and Ter-Martirosian [2]

to study meson-meson scattering at large energy in pseudoscalar meson theory. While the
PA is not suitable for that purpose (unless F<0 in (IV.l), cp. Ref. [14]), its use for UR
behaviour studies is legitimate [3], We here always suppose 0< V < V^ where Vm is the
first positive zero of βp(V).
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where (cp. (1.4 a))

βP(V)=$i Σ Pj [.3/dpj-] Γp(plP2p,(-Pl-p2-p,\ t/2, V)\s.pi.io_u2

(IV.3) allows to write (IV.2) in the form

Γp(Pl ... P4, t/2, 7) = ̂ ^ ... p4, I/2 A2, Vp(λ)) (IV.5)

defining Fp(A) analogously to (11.27). From (IV.5) the small-momenta
behaviour of Γp follows by setting Pί^λpt and using the analog of (II.3)

as λ^O.
By the formulae of Appendix A we may now define PA functions

ιlU2

9V) = Γp ( = l ) (IV.7a)
and υ

Γp(,q(-q)l U2, V) = Πp (Πp = 0) (IV.Tb)

and then by skeleton expansions also all functions

Γp(Pι .. P2n,qι ...q2;U
2

9V).

The point of interest presently is that the considerations of Section III.2
can be taken over in toto merely all functions to be read as the PA ones.
Since Θfap annihilates Ip as well as the propagator, from (A.I) follows
that (9/ίp also annihilates Bp — B'p i.e. Bp subtracted arbitrarily (but
U- independently). Since U enters the definitions of Γp and Πp in (IV.7),
however, we finally obtain the PDEs

Γp(Pί ... p2π, q, ... qι; U\ V}= -ίδn0δl2κp(V) (IV.8)

with ηP(V)=$b0V+ .. F 2+ . - . , (IV.9a)

(iv.9b)

analogous to (11.18). Thus, the UR singularity structure of the functions
hP(V)lΓp(p1...p2n,qι...qϊ,U2

9V) with hp(V) defined in analogy to
(11.25 b), is the same as the one of the functions

n + l h(V')lΓ0(pl...p2n,q1...ql ,U2

9V')

for any Fresp. V in the allowed ranges. The higher terms on the RHS
of Fig. 1 c hereby have no effect (except on the functions with ^-arguments
in view of the factor hp(V}1} since they change βp(V) in (IV.4) only by
terms O(V4) that are, in view of (II.3), without interest for UR behaviour.
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IV. 2. Application of Parquet Approximation

Consider a theory that describes besides self-coupled (pseudo) scalar
neutral massless particles also (arbitrary) massive particles. We will
prove that under a certain assumption the UR singularities of the VFs
of this theory are the same as the ones of the PA functions, up to overall
normalizations.

Let M2 and G stand for the "large" masses and for the couplings
constants related to vertex functions with fields to those particles. Then
the four-point vertex of the zero-mass-particle field still obeys the
equations Fig. 1, provided

1) if the pole of the propagator of the zero-mass-particle comes out
as i(k2 + zε)"1 f(M~2 U2, F,G) we consider the function

f = f(M-2U2,V,G)2Γ. (IV. 10)

2) All corrections relative to the parquet approximation functions
are lumped into the i- kernel, which are the corrections to the free zero-
mass propagator from self-energy effects by the massive as well as the
massless particles, and the contributions from all intermediate states
other than the two-massless-particle ones, giving terms to be added to
the RHS of Fig. Ic. This has the effect that, keeping20 (IV. 1) for f,
(IV.3) is replaced by

{U2ld/dU2^ +β(V, M~2 V\ G) Id/dVy f(Pl ... p4, U2, V, M2, G) = 0

where (IV. 11)

β(V,M~2U2,G)
(IV. 12)

= τi Σ

The mentioned assumption now is

lim β(V, M~2 U\ G) = βp(V) (IV.13)
u —> o

which holds certainly in all orders of G, and which means that the
momenta dependence near the normalization point is independent of
the large masses and related coupling constants if the normalization
point is chosen at sufficiently small momenta. Note that the assumption
is formally analogous, with small and large momenta interchanged, to
the one usually made [21] to extract nontrivial consequences from the

20 Due to (IV. 10) we may have to introduce a new V only implicitly defined in terms
of the old one, but this does not alter the conclusions. Note also that the present BS equations
may not be UV finite upon subtraction, due to two-massive-bosons intermediate states in B
and the z-kernel. This can be remedied, e.g. by restricting the integrations to small momenta,
and does not affect the UR singularity structure.
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exact renormalization group equations of a massive theory. That
assumption is proven to hold to all orders of renormalized perturbation
theory by e.g. the mass-vertex-insertion technique (SD l^ ). It is likely
that also for (IV. 13) one can give a formal proof in a large class of
renormalizable theories. The main difference between the two situations
compared here is that in the UR case, the true behaviour is ultimately
calculable, while in the UV case it is not (except in separate orders of
perturbation theory, or upon solution of the Gell-Mann-Low limit
problem [17]). - There is a subtle point, however, with the L/ dependence
from self-energy corrections to the zero-mass propagator, which will be
discussed in detail in Section IV.3: to have (IV. 13) hold one must cal-
culate correctly rather than in unsuitable expansions in V. This pre-
caution is unnecessary if (IV.I3) is replaced by the weaker

lim l i m F " 2 β ( V , M~2U2,G) = b0 (IV. 14)
t/^O F^O

which actually suffices as far as the strongest UR singularity is concerned.
To solve (IV. 11) one must consider

U-2dU2=β(V,M-2,GΓ1dV = (b0V
2 + correction)'1 dV (IV. 15)

yielding

In I/2 = - ί?o 1 ̂  ~1 + const + correction (IV. 16)

from which follows that as λ-»0

f(λp1 ... λp4, U2, F,M2, G)= -ί[_b0 Inλ~ 2 + correction]'1 (IV. 17)

where the correction vanishes relative to the first term as λ->0. A sample
calculation hereto is given in Section IV.3.

The other VFs with zero-mass-particle arguments alone are treated
analogously; in particular, the UR singularities at exceptional momenta
for the f are the ones of the PA (upon appropriate overall normalization,
see the discussion after (IV.9)). It is straightforward to analyze the UR
singularities of VFs with (also) massive particles arguments, on the basis
of their many-particle structure [22]. It follows that if in the present
class of theories a mass term for the zero-mass particles is switched on,
one obtains the same type of nonregular behaviour in the mass as in (III.9),
the result for φ4 theory.

Models to which these considerations apply are those where a
(pseudo) scalar neutral21 particle is forced to have zero mass by ad hoc
renormalization condition: From renormalization theory we know that
such particles are necessarily self-coupled as in φ4 theory.

21 The modifications for massless-particle multiplets are obvious. For electrically
charged massless "particles" additional UR-effects set in making these "particles"
presumably nondiscrete (cp. SDlJ).
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Attention is required, though, since (IV. 11), (IV. 1) also have the
isolated solution Γ = 0 corresponding to V = 0. This solution is realized
in the σ-model in the Goldstone mode [23]. There the irreducible vertex
is a contact term plus a bare σ-propagator (plus other terms) and as
known from the axial vector Ward identity the four-point vertex (IV.I7)
vanishes as λ->0 of order λ2 rather than as slowly as the RHS. Then the
small-momenta form of Γ involves the mass parameter /π already [24].
Also the UR behaviour of other VFs will now differ from the one found

in Sections III.2 and I V.I, in particular, Γ° and, related to it by (III. 12 a),

/° no longer vanish. Likewise, the effect of switching-on a mass term22

will not be of the type (III.9), we have not worked it out, however.

IV3. Corrections to Parquet Approximation

The reader's appreciation of the reasoning in the previous section
may be helped by presenting here a comparison of the UR singularities
in full φ4 theory with the PA ones, and proving how a systematic correc-
tion of the latter brings refined agreement with the former.

In the Γ0 theory of Section II.3 the propagator pole is
α(F)~ 1i(fe2 + iε)~1 and thus the nonexceptional small-momenta-behav-
iour of the adjusted four point vertex (cp. (IV. 10)) is

Γ0(λPl ... λp4, m2, V)= -ib^

2)-2 In InA' 2 + 0((lnλ)~2)

as Λ,->0. Deviation from the PA result, cp. (IV.6), occurs first in the
term with

as one easily sees from the defining formula of b(v) (Section II.3).
We now note that the equations Fig. 1 differ from the corresponding

ones of φ4 theory only by having a free rather than a self-energy-corrected
propagator. Thus, according to the discussion in Section IV.2, the largest
correction of the /-kernel to be considered is the one in Fig. 2. The
correction to the propagator is, from (11.12),

AG(p) = 2ί(p2 + ie)"1 bΰ2 c0(ln[m2(-p2 - ieΓ1])'1 + ••• . (IV.20)
22 Note that the mass-switch-on considered in Section ΠI.l differs from the usual

one induced by a term in the Lagrangian linear in the σ-field [23]. However, in the Gold-
stone mode, both are equivalent with respect to the singularity in question. A discussion
in the one-loop approximation was recently given by Guralnik, Tsao, and Wong [25].
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n + 1
n n

Fig. 1. Crossing symmetric Bethe-Salpeter equation

Fig. 2. Propagator correction to the irreducible kernel

In the spirit of the PA this is simplest obtained from its absorptive part

the last braquet being the three-particle phase space factor. Inserting
(IV.20) into the equation Fig. 2 and computing23 the contribution to
(I V.I 2) gives

which satisfies (IV. 13) and (IV. 14). Inserting (IV.21) into (IV. 15) it
suffices to treat the last term in (IV.21) as a perturbation, which is equiv-
alent to inserting into the square bracket b$ l V~l due to (IV. 16). This
reduces (IV.21), in view of (11.26) and (IV. 19), to (II. 19 a).

That (IV.21) satisfies (I V.I 3) is due to our using the estimate (IV.20)
rather than an expansion of A G(p) in powers of 7, which would in (IV.21)
yield terms like V4 \n(U~2m2) violating (I V.I 3) and (unless one performs
an infinite summation) not leading to the correction sought, while (IV. 14),
which is satisfied, guarantees only the correctness of the strongest UR
singularity.

In all of this Section IV we needed not specify whether or not the
nontrivial skeleton terms on the RHS of Fig. 1 c were considered also.

23 The calculation to lowest order in inverse logarithm, the accuracy sufficient here,
is trivial and therefore omitted.
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What was said at the end of Section IV. 1 holds also for the more general
theories: the nonconstant terms are O(V4) and thus also add to β(V9...)
only terms of this order, and therefore modify only singularities weaker
than considered above. In a word, those terms on the RHS of Fig. 1 c are
UR-soft due to being "massless-particle dressed"; their only effect is
via overall normalization factors such as in (IV. 10) and those displayed
after (IV.9).

V. Conclusions

The new results of this paper are: 1) The technique to obtain the AFs
at Euclidean exceptional momenta from the directly-constructed zero-
mass theory without any limiting processes needed (Section III.3),
completing thereby the consistency argument for certain assumptions
concerning asymptotic limits in Section IV.3 of SD 2. 2) A detailed study
[26] of the UR singularity structure of zero-mass-theory VFs near
exceptional momenta (Section IIL2). 3) The proof that these UR singu-
larities are present also in theories with massive particles besides the
massless ones (Section IV.2). 4) Determination of the mass singularity
of finite-mass theory VFs near vanishing mass (Section III.l). 5) Uni-
versality [14] of the coefficients &0, b l 5 c0, /z0, and fe0 (Section II.3).

For the details of the application of results on AFs to the large-
momenta-behaviour problem in perturbation theory (e.g., summing
leading logarithms, next-to-leading ones etc.) and beyond perturbation
theory (introducing certain apparently consistent assumptions as men-
tioned before) we refer the reader to SD 2 Section IV. Here we only
remark that the possible occurrence of logarithms besides power laws,
as exemplified in SD 2 Section IV.4, is a manifestation of not-fully-
reducible representations of the dilatation group emphasized by Otterson
and Zimmermann [27], and DelΓAntonio [28]. The degeneracy of
dimension leading hereto occurs in the cited example if the operator
N2(φ2) has canonical asymptotic dimension. (The consistency test of
SD 2 Section IV.3 requires its dimension to lie between zero, or one for
positivity reasons, and four.)

The extension of the considerations and results of Section III to other
functions and larger sets of Euclidean exceptional momenta leads only to
more complexity but not to essentially new problems. Thus we consider
the problem of the large-Euclidean-momenta behaviour of VFs solved
in principle as far as it can be solved on a formal level, i.e. without also
solving the problem24 of existence of Gell-Mann-Low eigenvalues and
of computation of anomalous dimensions. We hope to discuss the
problem of exceptional Minkowskian momenta in later papers.

24 See Ref. [29] and references given therein.
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Appendix A. Algebraic Deductions from the Bethe-Salpeter Equation

We here derive some formulae, using the formalism of SD 2 A, which
are simpler than those used in SD 2 B for similar purposes. The matrix
notation employed is

(A.I)

for the BS equation. Here / is the four point vertex (φ arguments only),
B the BS kernel (which in the φ4 model involves a logarithmically
divergent constant so that for finiteness one should first consider a
regularized theory and go to the limit only in the subtracted equations),
and G stands for the pair of propagators. Momenta are indicated as

etc., and are suppressed if internal (and then integrated over with a
factor ^(2π)"4 supplied), or if external (left relative, right relative, and
throughgoing or total) and kept general. In (A.I) it is understood that
internal relative momenta fit unless a momentum associated with the
factor to the left or right is indicated to be fixed (usually at zero) such that
that factor, if the relative momentum is fixed, is constant in the internal
momentum integration, amounting to let the arguments of the G-link
coalesce in coordinate space, indicated by a bracket ) or <(.

From (A.I) we derived (SD 2 (A.9a))

1 + G/ = (1 + G/°°) (1 + I/I/) (A.2a)
with

9 (A.2b)

inverses defined by expansion. As shown in SD 2 A,

G/ = G/°°< (1 + W) + W (A.3)

from (A.2a) is the simplest Wilson expansion [17, 5] formula.
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SD 2 (A.5) can be written

/ = /[! + G(B - £) (1 + G/) + (G - G)/] + (B - B) (1 + Gί). (A.4)

Inserting here SD 2 (A.7)

0 0 0 0 0 0 0

yields

°- °- - Ω - (A.6)

which is the Wilson expansion formula analogous to (A. 3) for the
amputated function. Multiplying (A.2) from the left with the bare vertex γ
and writing

yields

Γ = Γ°<(1 + W) (A.I)

showing the structure of Γ, given JΓ° = 1 in the massive theory.
From the subtracted BS equation for Γ

Γ - Γ - ΓGB - ΓGB - (Γ - Γ)GB + Γ(G -G)B + ΓG(B - B)

follows, using (A.I)

0 0 0 0 0 0
Γ - Γ = Γ(G - G) I + Γ G(B - B) (1 + G 1}

and herefrom, using (A.6) at zero total momentum

- Γ[G - G + G(B - B)G~] (1 + Wτ) > °/°

which we abbreviate as

Γ = Γ(l -R)-(Π-Π) (Γ0)'1 °/° (A.8)

in view of (A.7), the notation

Γ(,q(-q))<>ή

and

Π-ή = ΓGγτ-0

γGΓT = ΓG0f-yGΓτ

o o o o (A 9 )
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Inserting (A.8) with (A.7) into (A. 6) taken at zero total momentum yields

o o o o o , ( A . 10)
+ (B - BQ) (1 + W) + /°(Γ°) ~ v Γ(l - R) .

Subtracting from (A.6) the same equation with zero throughgoing
momentum and using (A.7) and (A.8) yields

(A. 11)

Appendix B. Computational Scheme for BS Equation

We here briefly describe the algorithm by which one could verify the
well-known result, used in Section IV. 1, that the solution of the BS
equation (A.I) is fixed knowing G arid the subtracted B, and prescribing /

at one point in momentum space, as 1/3 say.
From (A.5) follows

^(Φ + ^-ΦHl-G^-S3)]-1. (B.I)

Using this in the transposed form of (A.6) gives

/= [1 - (B - 1B}G~] ~ 1 (V2 + B - 1B) (B.2)

and finally from (A.4)

-6)']. (B.3)

The / so constructed solves (A.I) if we set

Φ = (l + 1/G>Γ1 C 1/ 3 - V2G(53 - Φ)] (B.4)

where numerator and denominator both diverge in perturbation theory,
2

1£?3 being there divergent in second and higher order. (B.3) is the unique
solution of the initial problem if the inverses used in its construction
are unique.

The expansion in powers of B of the / in (B.3) is the same as one
obtains applying Bogoliubov-Parasiuk-Hepp (BPH) subtraction pre-
scriptions [30] to the iteration solution / = B + BGB + - of (A.I),

2

whereby B is (final-) subtracted to have the value V 3 at the corresponding
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Fig. 3. Starting approximation for calculation Fig. 1

momenta, and reducible (sub)diagrams are subtracted to have the value
zero at those momenta.

The computation of lp, referred to in Section IV. 1, could be organized
as shown in Figs. 1 and 3, letters denoting the order of approximation,
whereby the dotted line indicates orientation since the approximate lp

are not crossing symmetric. Each time the equation Fig. 1 a is solved, the
procedure described before could be applied. To generate the power
series solution in V, of course only quadratures need be performed, with
crossing symmetric result in each order. Again there is a correspondence,
similar to the one described before, to BPH-subtracted vertex parts.
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