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Abstract. A scheme is presented for the description of the states and dynamics of
infinitely extended systems. In this scheme, the physical states of a system are taken to
comprise the maximal folium of its locally normal states which can support a one-para-
meter group of affine transformations, that corresponds to a certain infinite volume limit
of the time-translational group for the states of a finite system of particles of the same
species. The resultant one-parameter group of transformations of the physical states of the
infinitely extended system is then taken to correspond to its time-translations. An explicit
construction is given which serves to identify the physical states and dynamics of the system
in terms of its interactions. The present scheme generalises that of Dubin and the author
beyond the islands of Gibbs states.

1. Introduction

It is well-known that the generalisation of quantum or classical
dynamical laws to infinitely extended physical systems presents certain
problems (cf. [1,2, 3]). A first approach to a dynamical theory for such
systems was made within the C*-algebraic framework by Haag, Hugen-
holtz, and Winnink (HHW) [4]. The scheme of HHW was based on a
postulate concerning the existence of a certain "infinite volume limit,"
which led to a description of time-translations of an infinite system in
terms of a one-parameter group of automorphisms of the C*-algebra
of its observables. However, although the basic postulate of HHW is
satisfied by lattice systems with suitably tempered interactions [5], it is
not generally valid for non-relativistic continuous systems [1] or for
lattice systems with sufficiently long range interactions [2].

A subsequent approach to the dynamical problem by Dubin and the
present author (DS) [1], based on weaker assumptions than those of
HHW, led to a description of time-translations in the "island" of a Gibbs
state in terms of a one-parameter group of automorphisms of the weak
closure of the associated GNS representation of the algebra of ob-
servables. However, although the DS scheme is applicable to a wider
class of systems than that of HHW, it has the disadvantage of being
strictly limited to the islands of Gibbs states. This limitation is serious
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for the following two reasons. Firstly, it rules out the possibility of
formulating the dynamics of a system in other states, e.g. those which
are appropriately "far" from equilibrium. Secondly, it precludes the
possibility of deriving equilibrium conditions for an infinite system in
terms of some suitable dynamical principle: this is a drawback because
the Gibbs states are merely defined as thermodynamical limits of finite-
volume canonical (or grand canonical) states, whose identification
with equilibrium states has not, as yet, been established on a fundamental
basis.

The object of the present article is to construct a dynamical theory
for infinitely extended systems, without resorting to assumptions con-
cerning equilibrium states (e.g., such as KMS conditions). The theory
is constructed within the C*-algebraic formalism and is based on the
postulate that the physical states of a system constitute the maximal
folium (defined in Ref. [6]) of its locally normal states which can support
a one-parameter group of affine transformations that corresponds to a
certain infinite volume limiting form of the time-translational group for
a finite system of particles of the same species. The resultant one-para-
meter group of affine transformations of the physical states is taken to
correspond to the time-translations1 of the system. On the basis of the
above-described postulate, we are able to formulate an explicit con-
struction of the set of physical states of the system and of its time-
translation group. It will be seen that this construction generalises the DS
scheme beyond the islands of the Gibbs states.

The material of this article will be presented as follows. In Section 2,
we introduce the concept of a dynamical folium, i.e. of a folium equipped
with a one-parameter group of affine transformations, which do not
necessarily correspond to time-translations in a physical sense. We also
define certain classes of dynamical folia. In Section 3, we introduce our
basic postulate that the physical folia are those locally normal dynamical
folia whose dynamical groups correspond to appropriately defined in-
finite volume limits of corresponding groups for finite systems (cf. Defini-
tion 3.1). This postulate enables us to obtain an explicit construction for
the physical folia and their time-translation groups (Proposition 3.1)
in terms of the interactions in the system. Our main results are given
by Proposition 3.1 and the subsequent discussion in Section 3. In
Appendix 1, we present the proof of Proposition 3.1. In Appendix 2,
we apply our scheme to the formulation of time-translations in certain
folia of states of an ideal bose gas.

1 A quite different approach to the theory of time-translations has been made by
Lanford [3], who has formulated the dynamics of a certain class of states of an infinitely
extended one-dimensional classical system on the basis of the Newtonian equations of
motion for its constituent particles.
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2. Observables and Dynamical Folia

We start by recalling that the set of observables of an infinitely
extended system may be constructed as follows (cf. [4]). Let Γ be the
one-particle space (e.g., Rv or Zv) of the system, and let L be the set {A}
of bounded measurable open subsets of Γ. By a standard procedure,
one may construct a Fock-Hilbert space 3/C over Γ, corresponding to
the species of the particles in the system, assigning to each A in La sub-
space MA of tf and a C*-algebra sίA in &(Jf?A) such that tfA and siA

are isotonic with respect to A: here s4A is chosen so that its self-adjoint
elements correspond to the bounded observables of an assembly of
particles of the given species, confined to the region A. We define J</L

to be (J siA and si to be the norm-completion of J/L. The self-adjoint
ΛeL

elements of s/L (or of si) are taken to comprise the set of bounded2

observables of the system.
Let &0* (resp. sif) be the set of all (resp. positive) continuous linear

functionals on si, and let JS? be the set of elements of «s/ί whose restrictions
to the subalgebras {siA \AeL} are all normal; i.e., in a usual terminology,
j£? is the set of locally normal elements of si*. We define α to be the map
from si into the affine transformations of j/f given by the formula

<αμ)0;( )> = <0;Λ*( )Λ>, V</>e^*, Aε^. (2.1)

Then, following Haag, Kadison, and Kastler [6], we term a subset J
of si*, a folium if */ is norm-closed, stable under u,(si) and closed under
convex combinations. Thus, for example, if is a folium. If X is some
subset of si*., we define the folium generated by K to be the smallest
folium containing K. If J^, ,/2

 are folia in ί̂> such that ̂  C*/2, we
say that ̂  is a subfolium of «/2 I*1 particular, if J is a subfolium of S£,
we say that ̂  is a locally normal folium.

Let </ be a folium in j/f. We define [,/] to be the norm-closed
linear span of,/, and [</]* to be the dual space of [«/]. We define the
map A-+AJ of j^ into [«/]* by the formula

<^;0> = <φU>, V 0 e ^ ; (2.2)

and we define $4$ to be the image of ̂  under this map. Let π^ be the
direct sum of the GNS representations of si induced by the elements of,/.

Then π^(j^) is a C*-algebra in a certain Hubert space $fj and (cf. [6])
sij (resp. [./]*) is canonically isometric with π^(s/) (resp. π,
Thus, [̂ ]* is a PF*-algebra and ̂  is σ([̂ ]*, [</]) dense in

2 One may extend the above description by defining the set of all observables of the
system, including the unbounded ones, to be (J £A, where 2LA is the set of self-adjoint

ΛeL

operators affiliated to s4A in 3f [7].
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In the particular case where Jf is generated by a single element ω of
j3/ί, j/^ corresponds to the GNS representation πω(j/) induced by ω,
and [</]* corresponds to πω(stf)".

We define a dynamical folium to be a pair (</, τ^) where </ is a folium
and ijp a homomorphism of the real line R into the affine norm-preserving
transformations of */. We refer to the image τ^(R) of R under such a
homomorphism as a dynamical group for ,/. We say that a dynamical
folium (,/, τ,) is ίocα/fy normal if ./ C JSf . Let (./, τy) and (./', τ,,) be two
dynamical folia. We say that these dynamical folia are mutually com-
patible if either J and </' are mutually disjoint or if τ^(ί) and ι>(ί)
coincide on J r\J>' , for all ί 6 .R. We term («/, τ^) a dynamical subfolium
of (,/',τ,0 if ,/C./' and τ,(f) = τ>(ί)|,,, V ί e K .

Let («/, TJZT) be a dynamical folium. We define the one-parameter group
{τj(ί)|f eft} of transformations of [*/]*, dual to τ^ί-R), by the formula

<τJ(ί)F;0> = <F;τ^(ί)^>9 V ί e t f , 0e./, Fe[^]*. (2.3)

It follows from this definition and a theorem due to Kadison [8 Corol-
lary 4.7] that τ%(R) is a group of C*-automorphisms of the C*-algebra
[,/]*, i.e. that

and τ*(t)F2 = (τ^(i)F)\ Vί6R,Fe[./]* .(2.4)

On the other hand, the transformations τJ(J^) are not, in general, auto-
morphisms of [,/]*. In those cases where τJ(.R)cAut [«/]*, we shall
term the dynamical folium (,/, τ^) canonical. Thus, by Ref. [8; Theo-
rem 3.4], («/, τ^) is canonical in cases where J> is generated by a mutually
disjoint set of factor states and where the map t(eR)^{F;
is continuous, for all φ e J> , F e [,/]*.

3. Physical Folia

We now seek to characterise those dynamical folia which correspond
to physical states and time-translations of the system. For this purpose,
we introduce a construction leading to a definition of a physical dynamical
group for the infinitely extended system as a limiting form of a corre-
sponding dynamical group for a finite system of particles of the same
species, endowed with given forces.

Thus, for each A e L, we define HA to be the self-adjoint operator
in 2tfA corresponding to the Hamiltonian for an assembly of particles
of the given species and with prescribed interactions, confined to the
region A and subjected to some definite ^-independent boundary con-
ditions, e.g., those corresponding to rigid walls. It is assumed that, for
each ΛeL and teR, the transformation A(e^)->eiHΛtAe~iHΛt
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corresponds to an automorphism of s$A. Thus, for each A e L, we may
define an homomorphism τ*A of R into Aut^' by the formula

τ^(t)Λ = eίHΛtAe-iHΛt

9 V ί e t f , Aε^Λ. (3.1)

Let φe<£. Then 0(yl is normal for all ΛeL and consequently 0μ
may be extended by continuity from stfA to s$A. This extension thus serves
to define <0; τ\(f)A) for all ί e R, A e s$A. Therefore, since s$A is isotonic
with respect to A, it follows that for each A€£/L, φe^ and ί e #, the
quantity (φ\τ^(t)Ay is well-defined for sufficiently large A.

Definition 3.1. Let («/, τ^) be a dynamical folium in j/J. We say that
(«/, TJZT) is a physical folium if it is locally normal and if

<τ,(t)0M>=lim<ψ;τ3(ίμ>, V f ε R , ψε./, X e j^ , (3.2)
A-* oo

where lim refers to the limit over an increasing absorbing sequence of
Λ-+OO

regions Λ(εL\ whose forms may be subjected to some prescribed
restriction (e.g., that of Fisher [9]).

Note. Eq. (3.2) signifies precisely that, for each Λ0 e L,

where τA(R) is the group of transformations of the normal linear func-
tionals on £0'Λ, dual to τ^(R).

In order to prescribe a constructive method of specifying the physical
folia, we introduce the following definition.

Definition 3.2. (i) We define 5̂ 0 to be the set of elements φ in J§? such
that lim <</>;r$(f)^4> exists for all Ae s$L, teR< where lim is taken in

Λ^xx) Λ-χχ)

the same sense as in Definition 3.1. Thus, for each t εR, we may define
τ(ί):^0^j/ί by the formula

(3.3)

(ii) We define

^ = {φ\φe^ τ(t)φe^ VtεR; τ ( t , ) τ ( t 2 ) φ

= τ(ί1+ί2)0, V ί l s ί 2 e Λ } .

(iii) We define £fn, for integers n>ί, by the following recursion
formula:

(iv) We define Sf - f) ^n. Thus, ̂  is stable under α(>4) and
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(v) We define τ^ to be the map from R into the transformations of £f
given by the formula τy(t) = τ(ί)(^, for all t in R. The following Proposi-
tion will be proved in Appendix 1.

Proposition 3.1. (i) ̂  is a folium, τ^(R) is a dynamical group for £f,
ana (6f, τ^) is a physical folium.

(ii) If (,/, if) is a dynamical folium of the system, then (J>, τ^) is a
physical folium if and only if it is a dynamical subfolium of (̂  τ^).

In view of this Proposition, we term £f the set of physical states of
the system and represent its dynamics by the group τ^(R\ The physical
folia of the system are simply the dynamical subfolia of (£f, τ^). Thus, the
physical folia are mutually compatible, in the sense specified in Section 2.

Note. In cases where the system satisfies the HHW postulate that
for all 16 R and A e J^L, τ%(t)A converges norm wise as Λ-> oo, it follows
from Definition 3.2 that &* = &. Thus, in these cases, the physical states
are the locally normal ones.

Note. In cases where the system satisfies the DS postulates, the DS
scheme is the restriction of the present one to the folia generated by the
Gibbs states. For, if φ is a Gibbs state on «$/, as defined in DS, then it
follows easily from postulates (III) and (IV) of DS that the folium J>
generated by φ is stable under τ^(R). Thus, defining τ>(£) = τ&(t)\s, it
follows that (J>, τ^) is a physical folium. Further, it is easily shown that
Tj(R) is precisely3 the dynamical group for the Gibbs folium ,/ that is
obtained from the DS postulates. Hence the present scheme is a gener-
alisation of that of DS.

Appendix 1

Proof of Proposition 3.1. (i) It follows from Definition 3.2 (i) that 5̂ 0

is a convex set; and thence by Definition 3.2 (ii), (iii) that yn is convex for
all n e Z+. Thus, by Definition 3.2 (iv), ̂  is convex. Further, by Defini-
tion 3.2(iii), if φe^n, then α(j/)φ C ίfn-\ and therefore, by Definition 3.2
(iv), £f is stable under α («£/). Thus in order to prove that ̂  is a folium, it
suffices to establish that £f is norm-complete. This we shall do by
showing that 9*n is norm-complete for all neZ+.

Let {φl\leZ+} be a sequence in ^0 which converges normwise to
φ(etfϊ). Then since, by Eq. (3.1), \\τ$(t)A\\ = \\A\\, it follows that
lim <</>,; τ^(ί) Ay = <φ; τ J(ί) A} V A e s$Λ, the convergence being uniform
ί->oo

3 Specifically, if (Jj?φ, πφt Ωφ) is the GNS triple induced by φ, then each ψ(e«/) corre-
sponds to a unique normal state ψ on πφ(jf), with ψ = ψ°πφ; and (τ^(t)ψ; A)
= (ψ; Uφ(t) πφ(A) Uφ(-φ, where Uφ(R) is the unitary group denoted by {Ut\teR} in DS,
Proposition 3.
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with respect to t and A. Hence, since {Φι}e&o, it follows easily from
Definition 3.2 (i) that φe^0. Hence, <5̂ 0 is norm-complete.

It also follows from the above, together with Definition 3.2 (i), that

(A 1.1)
-+CQ

Hence, since ||τj(ί)^4|| = \\A\\, it follows that

It is a simple consequence of this inequality, together with Defini-
tion 3.2(ii), (iii), that 5̂  is norm-complete, for all neZ+. Hence, by
Definition 3.2 (iv), 5̂  is norm-complete and therefore ϊf is a folium.
Further, by Definition 3.2 (i), (iv), ^CJ^; and by Definition 3.1(i)-(v),
τy is a homomorphism of R into the affϊne norm-preserving trans-
formations of 5̂ , i.e. τ^(R) is a dynamical group for ^. Consequently,
by Definitions 3.1, 3.2(i), (v), (£f, τ^) is a physical folium.

(ii) Suppose that (</, τ^) is a dynamical subfolium of (y, τ^). Then
it follows directly from Definitions 3.1 and 3.2(i), (v) that (*/, τ^) is a
physical folium.

Conversely, suppose that (f, τ^) is a physical folium. Then it follows
from Definitions 3.1 and 3.2 (i) that J C ̂ 0 and that τ,(t) = τ(ί), ̂  , Vί e #.
Further, in view of the group property of τ^(R\ it follows from Defini-
tion 3.2 (ii) that SC&Ί, and from Definition 3.2 (iii) that ./ C «9^, V n e Z + .
Hence, by Definition 3.2 (iv), J e f f * . Thus we have proved that Jc&
and that τj(t) = τ(t)^9 i.e. by Definition 3.2(v), that τ^(f) = τ^(t)^. In
other words, (*/, τ^) is a dynamical subfolium of (̂ , τ^). Q.E.D.

Appendix 2

We shall now apply the above scheme to the simple model of an
ideal bose gas. Specifically, we shall show that if ̂  is generated by a
Weyl algebra over the Schwartz space ^(Γ), then the dynamics of certain
physical folia correspond to quasi-free evolutions (as defined in Ref. [10])
of a Weyl algebra over a certain subset J>(Γ)(D^(Γ)) of L2(Γ). This
represents a generalisation of the corresponding result obtained by DS
(Appendix 1) for the islands of Gibbs states.

Let us first note that the Fock-Hilbert space 2tf for an assembly
of bosons may be uniquely specified, up to unitary equivalence, by the
following conditions (cf. [11]).

(a) There exists a map W from L2(Γ] into the unitary operators in 2tf
such that

W(f) W(g) = W(f + g) exp(ii Im(/, </)), V/, g e L2(Γ)
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where (/, g) denotes the L2 (Γ) inner product of / with g: thus, W is a
Weyl representation of L2(Γ) in ̂ (^\

(b) There exists a vector Ω in J4? which is cyclical with respect to the
C*-algebra generated by W(L2(Γ)) and which possesses the property that

(β, W(/)Q) = exp-i l l/ | | 2 , V/eL 2(Γ). (A2.2)

For each /t e L, we define J^ to be the strongly closed linear span of
W(L2(Λ))Ω, and dA to be the C*-algebra generated by W(@(Λ))9 with
@(Λ) = { f \ f e @(Γ\ suppf CA}. It follows from these definitions
that J3/, the norm closure of (J jtfΛ9 is simply the C*-algebra generated

ΛeL

by W(2(Γ)\ and that ^A=@(3?Λ) = {W(L2(A))}".
We assume that, for each A eL, the group τ^(.R) of automorphisms

of <stf'A corresponds to a quasi-free evolution of jtf'A9 i.e., that τ'Λ(R) is
induced by a unitary representation UΛ oϊ R in L2(A\ with

Vί E Λ, /6 L2(/t) . (A2.3)

We also assume that, if Λ0eL9 uΛ(f) converges strongly on L2(Λ0), as
A -> oo, for each t e #, i.e., that there exists a unique unitary representation
M of R in L2(Γ), such that

L . (A 2.4)

We also assume that u(R) maps ^(Γ) into the Schwartz space
These assumptions are satisfied if, for example, uΛ(i) = elAΛt and
u(t) = eiΔ\ where ΔΛ is the Laplacian over A with rigid or periodic
boundary conditions, and where A is the Laplacian over Γ. In this case
u(R)9t$2 (cf. [1; Appendix 1]).

Let (f, τy) be a physical folium and define Wj : 2 -> ̂ ^ by the
formula

(A2.5)

We shall confine our attention to those folia possessing the following
properties.

(i) If / is an element of the Schwartz space £f(Γ) and if {/„} is a
sequence in 2(Γ) which converges (,9ί?)-wise to /, then σ([</]*>
— lim Wj(fn) exists and is independent of the sequence { f j in

yl->oo

which is chosen to approach /. We define the above limit to be
thereby extending Wj from @(Γ) to «^(Γ).

(ii) lϊΛeL,ge L2(A) and {gn} is a sequence in ®(/l) which converges
L2(yl)-wise to g, then σ([J^]*, [«/]) — lim W^(g^ exists and is independent

Λ-+CQ

of the sequence {^fM} chosen to approach g. We define the above limit to
be Wj(g\ thereby extending W, from 3t(Λ) to L2(A\
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(iii) σ([,/]*, [</])- lim W,(
Λ-XXI

(iv) («/, τ^) is canonical, in the sense defined at the end of Section 2.
Let J>(Γ) be the vector space of finite linear combinations of

{u(t)f\teR, fe®(Γ)}. Then 2(Γ) is a subset of Sf(Γ) and is stable
under u(R). Thus, it follows from Eqs. (A 2.1, 3, 4), together with Defini-
tion 3.1 and assumptions (i)-(iv), that:

(a) Wj(9t(Γ)} is stable under τJ(R) and that

(b) FF, is a Weyl representation of &(Γ) in [</]*; and
(c) jtf> is the C*-algebra generated by W^(2)(Γ)\
Hence, by Eqs. (A 2.1, 3, 4), time-translations in J> correspond to the

quasi-free evolution of the Weyl algebra Wj(@(Γ)\ induced by the one-
parameter transformations u(R) of
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