
Commun. math. Phys. 32, 167—181 (1973)
© by Springer-Verlag 1973

Quantum Field Theory and the
Coloring Problem of Graphs

Noboru Nakanishi

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

Received February 26, 1973

Abstract. The φk theory is compared with the multilinear theory of scalar fields
Φι,φ29 >Φk having the same mass as that of φ. In particular, it is shown that Feynman
integrals encountered in the φ3 theory are not necessarily present also in the Φιφ2φ3
theory, but they are if they correspond to planar Feynman graphs having no tadpole part.
Furthermore, a necessary and sufficient condition for the presence of a φ3 Feynman integral
in the φιφ\ theory is found. Those considerations are applications of graph theory,
especially of the coloring problem of graphs, to Feynman graphs.

1. Introduction and Results

The main question which we discuss in the present paper is as follows:
Let (/>!, φ2,..., φk be k scalar quantized fields having an identical mass,
which is also equal to the mass of another scalar field φ; then, to what
extent the multilinear theory oϊφί,φ2,...,φk (its interaction Lagrangian
density is JS?jk) = λφ^φ2... Φk) is different from the φk theory
(&j = (λ/fc!):φ*:)? It seems to be generally believed indistinctly that every
Feynman integral of the φk theory would be present also in the φ x φ2 .. φk

theory, that is, every Feynman graph appearing in the φk theory1 could
be renamed as a Feynman graph of the φ± φ2... φk theory. The existence
of counterexamples to this conjecture was pointed out explicitly by the
present author [1] (see Fig. 1) in connection with the proof of divergence

(a) (b)

Fig. 1. Examples of φk Feynman graphs which are not realizable in the φί φ2 ... φk theory
[(a) for k = 3 and (b) for k = 4; for k ̂  5, add k - 4 internal lines and k - 4 external lines to (b)]

1 Hereafter, we abbreviate a Feynman graph appearing in the φk theory as a φk Feyn-
man graph.
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of the perturbation series. Since it is easy to construct non-tadpole
counterexamples for fc^4, in the present paper we concentrate our
attention to the k = 3 case. In this case, we obtain the following results:
(1) Any φ3 Feynman graph involving at least one tadpole part cannot
be renamed as a Φιφ2φ3 Feynman graph. (2) Any planar φ3 Feynman
graph involving no tadpole part can be renamed as a φ1 Φ2φ3 Feynman
graph, provided that the celebrated "four-color conjecture of planar
maps" is valid. (3) There exist some non-planar Feynman graphs involv-
ing no tadpole part which cannot be renamed as φιφ2Φι Feynman
graphs.

As a related topic to the above problem, we investigate what kind of
φ3 Feynman graphs can be realized also in the φ±φ\ theory. Our result
is as follows: A φ3 Feynman graph G can be renamed as a φl φ\ Feynman
graph if and only if G contains no vertex with which two or three tadpole
parts are incident.

The problems stated above are rather academic. It is of more practical
importance to find how many times an arbitrary Feynman integral of
the φk theory appears in the Φιφ2 Φk theory. The relative weight factor
is closely related to a "coloring polynomial", which is well known in
graph theory (for details, see Section 4). We establish a theorem which
states that this factor is expressed in terms of a line-coloring polynomial.
Line-coloring polynomials are calculated for some particular Feynman
graphs, and some physical implication of the result is pointed out.

In the present paper, we have confined ourselves to the scalar-field
case. If our considerations are extended to the Dirac-field case, it may be
closely related to the colored quarks [2] or quarks of parastatistics [3].

In Section 2, notation and terminology are explained. In Section 3,
we discuss what φ3 Feynman graphs are realizable in the Φιφ2φ3

theory. In Section 4, we investigate the relationship between the weight
factor of a Feynman integral in a multilinear theory and the line-coloring
polynomial of the corresponding Feynman graph. Section 5 is devoted
to the consideration on the φ3 and φ^ φ\ theories.

2. Preliminaries

We extensively employ the terminology and notation used in the
present author's book [4]. To be self-contained, however, we briefly
review them below (for complete definitions, see Ref. [4] and [5]).

A graph G consists of lines and vertices', every line is incident with two
vertices. If two vertices with which a line / is incident are identical, / is
called a loop line. Two or more lines which are incident with two common
distinct vertices are called parallel lines. In graph theory [5], a graph
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should contain neither loop lines nor parallel lines; an object which may
contain them is called a pseudograph in graph theory. Since we call a
pseudograph a graph, a graph-theoretical graph is called a genuine graph
in the following.

The number of lines which are incident with a vertex a is called the
degree of a, where each loop line incident with a should be counted twice.
If all vertices of a graph G have the same degree, G is called a homogeneous
graph; if their degree is /c, G is a degree-k homogeneous graph.

For a graph G, the set of its lines and that of its vertices are denoted by
|G| and by ι (G), respectively. The number of the lines and that of the
vertices are denoted by N(G) and by M(G), respectively. If G is a degree-/c
homogeneous graph, we of course have

kM(G) = 2N(G). (2.1)

A circuit C is a set of lines in G such that it topologically makes a
circle. If a set, /, of lines contains a line incident with a vertex α, we say
that / passes through a. The number of lines contained in / is denoted by
N(I). If C is a circuit, C passes through N(C) vertices.

For / e |G|, G — l stands for the graph which is obtained from G by
deleting a line /. Likewise for / C |G|, G - / stands for the graph obtained
by deleting all lines of/. A reduced graph G/l is the graph which is obtained
from G by contracting /; G// is similarly defined.

A connected graph is a graph which is topologically connected. Given
a connected graph G (for a disconnected graph, take its connected com-
ponent), a line / is called a cut-line of G if G — / is disconnected. A line /
is a cut-line if and only if there is no circuit containing /. If a connected
graph G contains no cut-lines, G is called strongly connected.

A planar graph is a graph which can be embedded in a plane. A tree
graph is a connected graph which contains no circuit.

A Feynman graph has two kinds of lines called internal lines and
external lines. An external line is incident with only one vertex. Apart
from external lines, a Feynman graph is analogous to a graph. For a
Feynman graph G, |G| stands for the set of all internal lines and N(G)
is their number. The number of the external lines of G is denoted by
n(G). For a φk Feynman graph, (2.1) is modified as

kM(G) = 2N(G} + n(G). (2.2)

As usual, Feynman graphs with n(G) = 0, n(G) = 1, n(G) = 2, and
n(G) = 3 are called vacuum-polarization graphs, tadpole graphs, self-
energy graphs and vertex graphs, respectively. Vacuum-polarization
graphs are nothing but graphs. For sub-Feynman graphs, "graphs" in
their names should be replaced by parts.
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To open an internal line / incident with two vertices a and b means
to replace / by two external lines incident with a and with b. To link an
external line to another is the operation converse to the above.

A Feynman graph G is planar if the graph G is planar, where G
is obtained from G by introducing a new vertex with which all external
lines of G are incident.

Now, as we shall see below, our problem is essentially the coloring
problem of graphs [6]. Everybody who is interested in mathematics
knows the four-color conjecture of planar maps: In order to color any
planar map in such a way that any country has a color different from the
colors of its adjacent countries, it will be sufficient to use only four
different colors. This proposition remains unproven since about one
hundred years ago, but its validity was checked for all planar maps with
up to 39 countries. In graph theory, it is customary to consider a dual
graph [7] of a planar map; then the coloring of countries becomes to
give colors (or symbols) to all vertices of any planar graph in such a way
that no pair of adjacent vertices have the same color (or symbol). In
general, if all vertices of a graph G can be colored with m different colors
in such a way that no pair of adjacent vertices have the same color, G
is said to be m-colorable. If G is m-colorable but not (m — l)-colorable,
then m is called the chromatic number of G.

Quite analogously to the vertex coloring, we can define the line-
coloring problem. If we can give m colors to all lines of a graph G in such a
way that no adjacent lines have the same color2, where adjacent lines
are lines which are incident with a common vertex, then G is said to be
m-line-colorable. The minimum number of m is called the line-chromatic
number of G, which is denoted by χ(G). The concept of the line-coloring
is straightforwardly extended to Feynman graphs. It is equivalent to the
line-coloring problem to see whether or not a given φk Feynman graph
can be renamed as a Feynman graph of a multilinear theory, because if
the suffices 1,2,..., k oϊφ are regarded as colors the multilinear Lagrangian
exactly represents the condition of the line-coloring. If we consider a
Feynman graph having a loop line, it is evidently impossible to color the
lines of G. Hence, except in Section 5, we forbid the presence of loop
lines; in other words, we take a normal product in the interaction
Lagrangian of the φk theory.

Theorems established in graph theory usually refer to genuine graphs.
In order to apply them to Feynman graphs, we have to make two modi-
fications, namely, to permit parallel lines and to include external lines.
The most convenient way of reducing a Feynman graph G to a graph
is to consider G2, where G2 is obtained from two G's by linking the n(G)
external lines of the first G to the corresponding ones of the second G.

2 Hereafter we always impose this condition in the line-coloring, so that we will not
write it explicitly.
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Theorem 2.1. Given a Feynman graph G, the graph G2 has the follow-
ing properties:

(1) ήG2) = χ(G).
(2) G2 is a degree-k homogeneous graph if and only if G is a φk Feyn-

man graph.

(3) G2 is planar if and only if G is planar.

Thus the line-coloring problem of a Feynman graph G reduces to that
of a graph G2.

Theorem 2.2. [8]. // G is a genuine graph and if d is the maximum
degree of vertices in G, then we have

. (2.3)

We have to note, however, that if parallel lines are present, there is no
upper bound on χ(G) - d\ hence Theorem 2.2 is not very much useful
for our purpose. As for the lower bound, it is evident that for any φk

Feynman graph G we have

. (2.4)

Theorem 2.3. Given a (possibly disconnected) Feynman graph G, let
G1 ?G2,...,GS be connected components, which are strongly connected,
of the Feynman graph which is obtained from G by opening all cut-lines
ofG. Then:

(1) G is k-line-colorable if and only if all G 1,G 2,...,GS are k-line-
colorable.

(2) G is a φk Feynman graph if and only if all G1? G2, ..., Gs are φk

Feynman graphs.

(3) G is planar if and only if all G1? G2, ...,Gsare planar.

Owing to Theorem 2.3, we may confine ourselves to strongly connected
Feynman graphs, provided that we discuss the whole set of φk Feynman
graphs. We cannot, however, omit the possible existence of cut-lines if
we discuss the graphs G2 instead of Feynman graphs G.

3. Line-Coloring Problem of φ3 Feynman Graphs

Since, as shown in Fig. 1, we can easily construct non-tadpole
examples of φk Feynman graphs with χ(G) > k for k ̂  4, in this section
we concentrate our attention to the line-coloring problem of φ3 Feyn-
man graphs.

In order to translate the properties concerning genuine graphs into
those concerning Feynman graphs without loop lines, we have to examine
the effect of the presence of parallel lines in addition to that of external
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Fig. 2. All possibilities of parallel lines in the φ3 theory

lines. Fortunately, in the φ3 theory, there are only three types of possibili-
ties of parallel lines as shown Fig. 2. It is evident that χ(GA) = 3, and GB

reduces to a simpler Feynman graph and the simplest tadpole graph G£
with χ(Gβ) = 4 because of Theorem 2.3. As for Gc, the relevant part is
called the second-order self-energy part as usual.

Theorem 3.1. Given a φ3 Feynman graph G, let G be the φ3 Feynman
graph which is obtained from G by contracting every second-order self-
energy part of G together with one of its two legs. Then we have χ(G) = 3
if and only if χ(G) — 3, ana G is planar if and only if G is planar.

Owing to Theorems 3.1 and 2.1, the line-coloring problem of φ3 Feyn-
man graphs reduces to that of degree-3 homogeneous, genuine graphs.
Hereafter in this section we use the above consideration tacitly whenever
necessary.

Theorem 3.2. Let G be a degree-3 homogeneous graph. A necessary
and sufficient condition for χ(G) — 3 is that there are disjoint circuits

s

C± , C2, . . . , Cs such that N(Cj) is even for every j and (J Cj passes through
J=ι

all vertices of G.

Proof. If G is colored with three colors 1, 2 and 3, delete all lines of
color 3. The resultant graph H is a degree-2 homogeneous graph with
v(H) = υ(G), that is, \H\ is a union of disjoint circuits passing through all
vertices of G. Furthermore, each circuit is of even length because H
is 2-line-colorable. The proof of the converse proceeds exactly con-
versely. q.e.d.

Theorem 3.3. // G is a φ3 tadpole graph, we always have χ(G) = 4.

Proof. From (2.2) we have

whence M(G) is odd. Applying Theorem 3.2 to G2, therefore, we find
χ(G) φ 3 because it is impossible to construct C1 , C2, . . . , Cs as requested.
Hence we obtain χ(G) = 4 because of Theorems 2.1 and 2.2. q.e.d.
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Fig. 3. Given a φ3 self-energy graph G, auxiliary graphs G*, G', and G" are constructed in
connection with Theorem 3.4

Theorem 3.4. Lei G be a φ3 self-energy graph; then we have χ(G) = 3
ί/ αrcd oft/j; z/ χ(G*) = 3, w/zere G* is the degree-3 homogeneous graph
which is obtained from G by linking the two external lines of G (see Fig. 3).
Furthermore, G is planar if and only if G* is planar.

Proof. If χ(G*) = 3, it is evident that χ(G) ̂  3. Hence we have χ(G) = 3
because of (2.4). Conversely, suppose that χ(G) = 3. Then the lines of
G can be colored with three colors 1,2 and 3. If the colors of the two
external lines are different, a graph G' is 3-line-colorable, where G' is
obtained from G by introducing a new vertex e with which the two
external lines of G are incident (see Fig. 3). Therefore, a φ3 tadpole graph
G", which is obtained from G by adding an external line incident with
e, must be 3-line-colorable in contradiction with Theorem 3.3. Therefore,
the two external lines of G must have the same color. Hence G* is 3-line-
colorable, but χ(G*) < 3 is impossible; hence χ(G*) = 3. q.e.d.

If the above consideration is applied to a self-energy part of a φ3

Feynman graph, we obtain a generalization of Theorem 3.1.

Theorem 3.5. Let G be a φ3 vertex graph; then we have χ(G) = 3 if
and only if χ(G') = 3, where G is the degree-!* homogeneous graph which
is obtained from G by introducing a new vertex with which the three
external lines of G are incident (that is, G is the graph considered for
defining the planar ity of G).

Proof. It is evident that χ(G) = 3 follows from χ(G') = 3. Suppose that
χ(G) = 3. In a line-coloring of G with three colors, if there are two external
lines of the same color, a φ3 tadpole graph, which is obtained by linking
them, must be 3-line-colorable in contradiction with Theorem 3.3.
Therefore the color of the three external lines are different from each
other. Hence χ(G') = 3. q.e.d.

The next theorem is a well-known theorem in graph theory.
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Fig. 4. Kuratowski graphs

Theorem 3.6. [9] 3. The four-color conjecture of planar maps is
equivalent to the following proposition: "χ(G) = 3 for any planar, degree-3
homogeneous graph G having no cut-lines."

This theorem can be translated into a statement concerning planar φ3

Feynman graphs.

Theorem 3.7. We have χ(G) = 3 for any planar φ3 Feynman graph G
having no tadpole part, provided that the four-color conjecture is valid.

Proof. Since G2 is a planar, degree-3 homogeneous graph because of
Theorem 2.1, our theorem follows from Theorem 3.6 if we can show
that G2 has no cut-lines. Let R be the reduced graph which is obtained
from G2 by contracting all non-cut-lines of G2; R is obviously a tree
graph. Hence if # is non-trivial, it has a degree-1 vertex a [10]. The part
of G2 which has been contracted to a in R is nothing but a tadpole part
of G2, which is also a tadpole part of G in contradiction with the assump-
tion. Therefore R must be trivial, that is, G2 has no cut-lines, q.e.d.

Thus it is in all probabilities impossible to construct a planar φ3

Feynman graph G having no tadpole part such that χ(G) = 4. In order to
construct examples of χ(G) = 4, we have to consider non-planar φ3

Feynman graphs. According to the celebrated KuratowskΓs theorem
[11], a graph G is non-planar if and only if at least one of the Kuratowski
graphs depicted in Fig. 4 is embedded in G. Some examples of non-planar
φ3 Feynman graphs having no tadpole part which cannot be renamed
as φιφ2φ3 Feynman graphs are shown in Fig. 5. The vacuum-polariza-
tion graph Fig. 5 (a) is known as the Peter sen graph [12]. The self-energy
graph Fig. 5 (b) reduces to Fig. 5 (a) if we consider G* (see Theorem 3.4).
The vertex graph Fig. 5 (c) again reduces to Fig. 5 (a) if we consider G
(see Theorem 3.5).

3 The key to the proof of Theorem 3.6 is to represent the four colors of a map by four
elements of an abelian group {(0,0), (1,0), (0,!),(!, 1): mod. 2}. The border line of two
countries shall be colored by the group-theoretical sum of their colors. Then we obtain a
line-coloring with three colors (1,0), (0,1) and (1,1). [Cut-lines are colored with (0,0) by
the above rule, whence they must be excluded.]
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(b) (c)

Fig. 5. No-tadpole φ3 Feynman graphs which are not realizable in the φιφ2Φι theory

4. Line-Coloring Polynomials

The difference between the φk theory and the φi φ2... φk theory is not
merely the fact that some Feynman integrals of the former do not appear
in the latter, but a more physically significant point is that a φk Feynman
graph generally corresponds to several Φιφ2 -Φk Feynman graphs.
In this section, we investigate this problem by somewhat generalizing
it in the following way.

Let φ l 9 </> 2 , . . . , φm be scalar fields having the same mass as that of φ.
We compare the theory in which the interaction Lagrangian density is
given by

where the summation goes over all possible combinations of k distinct
integers among (1,2,..., m), with the φk theory described by

^(λ/W .φ":. (4.2)

Given a φk Feynman graph G, we denote by QG(m) the number of
ways of coloring the lines of G, where in counting this number not only
external lines but also vertices and internal lines of G are supposed to be
distinguishable. We call QG(m) a line-coloring polynomial, since, as we
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shall see below, it is a polynomial in m. From the definition, we immediately
have

βG(m)>0 for m^χ(G),

QG(m) = Q for m<χ(G).

Theorem 4.1. Given a φk Feynman graph G, let IG be the Feynman
integral corresponding to G. Let WG and w^ be the weights of IG in the
S-matrix of the φk theory and in that of the J£?jm) theory, respectively. Then

βG(m). (4.4)

Proof. In the φk theory, IG is characterized by the external lines, which
are distinguishable, and the topological structure of G, that is, internal
lines and vertices are indistinguishable from each other if their topological
positions relative to the remainder are the same. When we give every
vertex of G a specific name, that is, when the vertices of G are regarded
as distinguishable, we denote G by Gv for defϊniteness. Now, according
to the Feynman rules, we know

wG = l/sGpG, (4.5)

where l/sG is the statistical factor and l/pG is the permutation symmetry
factor of G. More precisely, SG is given by

h=2

where Nh stands for the number of h parallel lines involved in G, while
pG is the number of the vertex permutations of Gv which leave Gv invariant.

In the Jδfjm) theory, there are several Feynman graphs G, which
correspond to IG. As before, we denote the G, having distinguishable
vertices by (Gj)v. The statistical factor of G, is unity because parallel
lines are always colored with different colors in the "colored" Feynman
graph Gj. Let p, be the number of the vertex permutations of (Gj)v which
leave (G invariant. Then we have

(4.7)
J

where the summation goes over all G/s which are obtainable by
coloring G.

It is convenient to replace the summation over G/£ in (4.7) by that
over the colored Feynman graphs, (G% which are what are obtained by
coloring the vertex-distinguishable Feynman graph Gv. We define a
mapping /: {(G^J-^G;} by the operation of abolishing the distin-
guishability of vertices. The mapping / is of course onto but not one-to-



Coloring Problem of Graphs 177

one. The inverse image, / ~ * (G^), of a particular Gj is generated from its
one element (Gv)t by all possible vertex permutations which leave Gv

invariant. Since the vertex permutations which leave (G^ invariant give
no change to any element, the number of the elements of /" 1(Gιy) equals
Po/Pj because of the theorem concerning the order of a factor group.
Therefore (4.7) reduces to

wg ̂ Cg VpG, (4-8)

where C(

G

} denotes the total number of (G '̂s. Since in each (G^ only
the internal lines are mutually indistinguishable, we have

. (4.9)

Thus we obtain (4.4) by collecting (4.5), (4.8) and (4.9). q.e.d.

The coloring polynomial (or chromatic polynomial) PG(m\ which is
well known in graph theory [13], concerns vertex colorings, that is,
PG(m) is the number of ways of coloring the (distinguishable) vertices
of a graph G. We can, however, express QG(m) in terms of the (vertex-)
coloring polynomial; indeed,

QG(rn) = PL[G](m), (4.10)

where L[G~] is the line graph [14] of a Feynman graph G, which is con-
structed in the following way: ϋ(L[G]) consists of vertices which are in
one-to-one correspondence with the internal and external lines of G;
if we denote the vertex corresponding to a line / of G by ah L[G] has a
line connecting al and av if and only if / and /' are incident with a common
vertex in G, where if / and /' are parallel in G,L[G] should have two
parallel lines incident with al and av. By definition, we have

M(L[G]) = ΛΓ(G) + n(G), n(L[G]) = 0, (4.11)

and if G is a φk Feynman graph then

ΛΓ(L[G]) = i k(k - 1) M(G) . (4.12)

Because of (4.10), various properties of PH(m) [13] are transcribed into
those of QG(m). In particular, QG(m) is a polynomial in m of degree
N = N(G) + n(G\ and the coefficient of mN is +1.

When we have a line-coloring of G made with exactly s colors,
we obtain

m(m-l) . . . (m-s+l) (4.13)

destinct line-colorings by permuting the available m colors. We call two
line-colorings which cannot be obtained by a color permutation in-
equivalent. Let cs be the number of inequivalent line-colorings of G made
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with exactly s colors; cs is of course independent of ra. From (4.3) and
(4.13), we obtain

QG(m)= £ c sm(m-l)...(m-s+l), (4.14)
s = χ ( G )

where cN = l. In (4.14), we have cs>0, because we have cχ(G)>0 from
(4.3) and if c s>0 and if s<min(N, m) then c s + 1>0 since an (s+1)-
coloring is obtained from an s-coloring by changing a color of a line
such that there exists another line having the same color as its, into an
(s + l)-th color.

Example 1. If G is a φk tree Feynman graph for which n(G) = (k — 2)
- M(G) + 2, we have

(4.15)
j=o

Example 2. If G is a φk single-loop Feynman graph (i.e. |G| is a
circuit), for which n(G) = (k-2) M(G), we have

QG(m) = [(m - 1)M(G) + ( - 1)M(G) (m - 1)] Π (m -j - 2)M(G) . (4.16)
j = o

Proof. It is sufficient to consider the k = 2 case. Suppose r lines
which are in a row. Fix the color of one end line. Let αr be the number
of line-colorings such that two end lines are colored with different
colors. Then the number of line-colorings such that the two end lines are
colored with the same color is just ur-ι. Hence we have a recurrence
formula

oer = (m-2)α r _ 1 +(m-l)α r _ 2 . (4.17)

Solving the difference equation (4.17) under at = 0 and α2 = m- 1, we find

«r = Km ~ l)r + (- ̂  (m - l)]/m . (4.18)

The number of line-colorings of a single loop (circuit) is equal to mocM(G).
q.e.d.

As seen above, QG(m) increases exponentially when n(G) increases.
This fact physically implies that the multilinear theory predicts that
multiple-production cross sections are very much larger than those in
the φk theory.

5. φ3 Theory and the φ^φ\ Theory

As a symmetric theory of φί9 φ2 and φ3 which should be compared
with the φ3 theory, in addition to the multilinear theory it is also rea-
sonable to consider a theory having an interaction Lagrangian density
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Fig. 6. A φ3 Feynman graph which is not realizable in the φ± φ\ theory

proportional to (φ^ + φ2 + Φ^Y By expanding it, we have three types of
terms: φ3, φt φj (i φj) and φl φ2 φ3. Hence, in this section, we investigate
the relationship between the φ3 theory (^j = (λ/6)φ3) and the φ^φ\
theory (^ί = (λ/2)φiφl). Throughout this section, for generality we do
not necessarily take a normal product in both J 7̂ and JSfj, that is, we
admit the presence of loop lines in Feynman graphs. The problem which
we discuss below is to find what kind of φ3 Feynman graphs can be
renamed as φ^φl Feynman graphs. Of course, any Φιφ2φ3 Feynman
graph is realizable as a φ1 φ\ Feynman graph by identifying φ2 and φ3,
but the converse is not true.

Theorem 5.1. If a φ3 Feynman graph G can be renamed as a φ±φ\
Feynman graph, then the "tail" line of each tadpole part must correspond
to φι.

Proof. If the tail line is of φ2, we meet a contradiction by tracing
adjacent φ2 lines in the tadpole part successively, q.e.d.

From Theorem 5.1, we see that if a φ3 Feynman graph G contains
a vertex with which two or three tadpole-part tails are incident, then G
cannot be renamed as a φί φ\ Feynman graph (see Fig. 6).

Next, we quote Petersen's theorem. As discussed in Section 3, it is
easy to modify it so as to permit the presence of parallel lines and loop
lines.

Theorem 5.2. [15]. Let G be a degree-3 homogeneous graph having
no cut-lines. Then there exist a degree-i homogeneous graph G1 and a
degree-2 homogeneous graph G2 such that

|GιMG2| = |G| (5.1)

and |G t | and |G2| are disjoint.

We translate this theorem into that for Feynman graphs.

Theorem 5.3. In order for a φ3 Feynman graph G to be realizable in
the φiφl theory, it is necessary and sufficient that G has no vertex with
which two or three tadpole-part tails are incident.



180 N. Nakanishi:

(a) (b)

Fig. 7. Some tree Feynman graphs of n(G) = 6 having different values of Q'G

Proof. As remarked above, the necessity follows from Theorem 5.1.
In the following, we prove the sufficiency. By the same reasoning as in
the proof of Theorem 3.7, we see from Theorem 5.2 that if G has no
tadpole part it is realizable in the φ^φl theory. Hence we consider the
case in which G has tadpole parts. Owing to Theorem 5.1, we can discuss
the lines in each tadpole part independently of the remainder. Let T
be a tadpole part which contains no proper sub-tadpole part. Let l±
be the tail of T and 12 and 12 be the two lines adjacent to / t inside T
(if /2 is a loop line, Ϊ2 is not distinct from /2). Since from Theorem 5.1
/! is a φί line, 12 and Γ2 must be φ2 lines. Therefore T is realizable in the
φl φl theory if and only if (T—l^/l2 is so. Since (T— Iι)/l2 is, however,
a 03 Feynman graph having no tadpole part, it is realizable in the φ1 φ\
theory. Thus our problem concerning G reduces to that concerning G//,
where / = |T|u{/} and / is one of the two lines adjacent to / t outside T.
Hence mathematical induction establishes the theorem, q.e.d.

Theorem 5.3 is a complete solution to the problem posed at the
beginning of this section. Our next problem is of course to find the
ratio Q'G of the weight of a Feynman integral IG in the φιφ2 theory to
that in the φ3 theory. Unfortunately, we have no general results on
this problem; hence we here present some examples.

Example L If G is a φ3 multiperipheral graph, we have4

<5 2>
Tree Feynman graphs having the same number of external lines do not
necessarily have the same value of QG. For example, Q'G = 13 for Fig. 7 (a)
as seen from (5.2), but QG = 12 for Fig. 7 (b).

Example 2. If G is a φ3 single-loop graph,

(5.2) is Binet's formula for the Fibonacci sequence.
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The method of the proofs of (5.2) and (5.3) is analogous to that of
Example 2 in Section 4. We again see that Q'G increases exponentially
as n(G) increases.
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