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Abstract. The (non-Lorentz covariant) system consisting of a relativistic scalar Boson
field ¢ interacting with a single spinless particle (relativistic polaron) with kinetic energy
function (m?+ |p|?)*/ is studied in d space demensions, where d=3. The interaction
Hamiltonian is taken to be j Y(x)* ¥(x) p(x) dx where ¢ has a momentum cutoff. The
physical one polaron Hilbert space £}, for this model, corresponding to no cutoff on ¢,
is constructed. The total renormalized Hamiltonian H without cutoff is constructed as a
semibounded self-adjoint operator on ;. The time zero physical Boson field is also
constructed. First order estimates are established for the local (in momentum space)
number operators in terms of H.

1. Introduction

We consider a single polaron (that is, a spinless electron) interacting
with a relativistic scalar Boson field in d space dimensions. We shall be
concerned primarily with the cases d = 3. We take the kinetic energy
function of the polaron to be

E(q)=(m* + |g|})'? (1.1)

where m is the bare mass of the polaron. The total Hamiltonian of the
system in the presence of a momentum cutoff f is

where Hy=H, + H(f) (1.2)
Ho= | Y(p)* E(p) Y(p)dp + | alk)* u(k) a(k) dk (1.3)
Eq4 Eq

Hy(f)= Ef {P(p+k)* ¥(p) a(k)+ ¥(p — k)* ¥(p) ak)*} f(k) dkdp ~ (1.4)

pu(k) = (ug + 1k*)*2, o> 0

and Y(p) and a(k) are the annihilation operators for the polaron and
Boson field respectively. E; is d-dimensional Euclidean space. Our
objective is to construct the one polaron physical Hilbert space £,
associated with this model and to show that the total Hamiltonian
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without cutoff (i.e. with f(k)= Au(k)~*/?) can be defined on this space
as a non-trivial semi-bounded self-adjoint operator with lower bound
equal to the physical mass m,, of the polaron. We also construct the time
zero Boson fields as operators on #,,. This model is well suited for
studying the phenomenon of infinite field strength renormalization.

We outline the procedure here. Let f, denote a sequence of smooth
cutoff functions with compact support. We shall allow f, to converge
in a suitable sense to Au(k)”'/* where A is a real constant. Write H,
for the corresponding total Hamiltonian as given by (1.2). We chose
the bare polaron mass m so that the lower bound of H, is exactly the
physical mass, m, (a given positive constant), of the polaron. As n— o0
the bare mass m (which depends on n) will go to infinity when d > 2.
Thus the model exhibits infinite mass renormalization when d = 2. The
bare Hilbert space for the system is

H =(E)QF (1.5)

where & is the Fock space for the Boson field and E, is momentum
space for the polaron. Since the theory is translation invariant ¢
decomposes into a direct integral of (infinitesimal) subspaces #,, on
which the total momentum of the polaron plus Boson field has the
constant value p, and which reduce H,. Denoting by H,(p) the restriction
of H, to #, we let y, be the unique lowest proper vector for H,(0) in .
The existence and uniqueness of y, was shown in [8, Theorem §8]. We
take 1, to be a unit vector. y, is the physical rest state of the system with
cutoff f, and the corresponding eigenvalue of H,(0) is m,.

When d =2 one expects, on the basis of perturbation theory, as well
as on experience with the external source model [which corresponds
to taking E(p) =m], and as well on the basis of the result of Nelson [10]
for a related model, that H, and v, should converge in some reasonable
sense in 4. It has been shown by Sloan [12] that when d = 2 the vectors
v, lie, in fact, in a norm compact subset of #, and that there is a sub-
sequence n; such that y,, converges in norm while H,, converges in the
sense of generalized strong convergence [9,Chapter 8] to a semi-
bounded self-adjoint operator H on .J#. His methods do not involve
the use of dressing transformations and are therefore quite distinct
from those of [10].

When d = 3 perturbation theory indicates that v, converges weakly
to zero. Thus in three or more space dimensions, the model, in all
likelihood, exhibits infinite polaron field strength renormalization, and
we shall assume this in the following discussion. The weak convergence
of y, to zero is sometimes described by saying that y, moves out of the
Fock space #, and into the physical Hilbert space #, which is orthogonal
to #,. This can be made meaningful in such a way as to give meaning
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to lim H,(0) as an operator on ., while at the same time allowing the
physical fields to be defined. Let .7, be the algebra generated by the

unitary operators _ ,
exp(i Ej (9(k) b(k) + g(k) b(k)*) dk) (1.6)
where b(k) is the pointwise annihilation operator on the zero momentum
space &, (which may be identified with &) and g is a square integrable
function with compact support. We shall show that for each operator
A in o/, there exists a constant c(A) such that

|H,(0) Ay, || £ c(4) foralln. (1.7)

Thus the vectors Ay, change with n so as always to be located in the
“well behaved” part of the domain of H,(0) independently of n. We wish
to include the (informal) limits of the weakly zero-convergent vectors
Ay, in X, also since this will allow o7, to act on X} and &/, largely
determines the physical fields. If one takes for the norm of “lim” Ay, the
natural one, namely lim||Ay,[, then the reader will recognize that
‘meaning can be given to A, by simply defining it as (the completion of)
o, itself modulo the kernel of the semi-norm ||4],=1lim|Ay,|, if
this limit exists.

The formalization of the preceding heuristic discussion underlies
much of the recent progress in the construction of interacting quantum
fields, c.f. [6]. To make this discussion more precise, for any bounded
open set S CE, let &/(S) be the von Neumann algebra generated by the
operators (1.6) where g has support in S. Let .o/ be the closure in norm of
the union of these algebras. Put w,(4)=(4y,,y,) for 4 in o/ There
always exists a weak™ cluster point of the set {w,} of states of .«Z. Choosing
one, say w, we define the zero momentum physical Hilbert space
to be the representation space for o/ determined by w via the Gelfand-
Naimark-Segal construction. Presumably the cluster point w is unique
but we do not have a proof. If ¢ is the natural representation of ./ by
operators on 4, and 1, is the usual cyclic vector for o(.27) then yp, is to be
interpreted as the physical rest state of the polaron. The spaces %,
are naturally isomorphic to %, and, identifying them, the total momentum
decomposition of 4" may be written " =~ I*(R,) ® %, where = denotes
identification, R, is a copy of E; and a point of R, represents total
momentum of polaron plus Boson field rather than merely polaron
momentum. We define the physical Hilbert space to be #,,;, = I*(R) ®@H.

In Theorem 1 we show that for each bounded open set S the re-
strictions w,|2/(S) form a compact set in norm. This implies that w
is the limit of a subsequence, that %, and hence £}, are separable,
and that the restriction of o to 2/(S) is unitarily implementable. We say
that o is locally Fock in momentum space. The spirit involved in this
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type of result is similar to that of [6] although the techniques of carrying
it out are different. Theorem 1 also implies the existence of the time zero
Boson fields ¢(g) and 7(g) as self-adjoint operators on .4, for test
functions g with compact support in momentum space. In Theorem 2
we show that ¢(-) and =n(-) extend by continuity to a larger class of test
functions including the Schwartz space & and in particular smooth
functions with compact support in configuration space. In Theorem 3
we construct the total Hamiltonian via the following procedure, which
we outline here for the zero momentum subspace only. Define a sequence
of sesquilinear forms on 27, by

{A4,B),=(H,0) Ap,, By,).

The inequality (1.7) implies the convergence of some subsequence to a
sesquilinear form { , » on .«7,. We show that the singular set of this form
contains the kernel of the natural injection of .7, into £;. Therefore
the form induces a (densely defined) sesquilinear form on 4}, which we
show to be symmetric, positive definite and separately continuous. The
Friedrichs extension theorem now yields a positive self-adjoint operator
corresponding to this form. Similar considerations apply to the total
space A ,;. Since the resulting total Hamiltonian H on ./, has been
obtained as a rather weak kind of limit of the H, there arises the possibility
that H is in some sense a trivial operator. In addition to showing that the
lower bound of H is m, we show in Theorem 3 that H is actually a
rather strong operator by showing that it dominates the local (in
momentum space) number operators in the first order sense. le,
Ng<C,H(0)+ C, as forms. There is strong evidence that higher order
estimates also hold.

In Section2 we state the main results of the paper. In Section 3
we derive the basic inequalities involving the physical rest state. In
Section 4 we prove the theorems stated in Section 2. The basic inequalities
of Section 3 are all derived as follows. Fixing the cutoff function f,
and suppressing the dependence of the Hamiltonian on it, we have
H(p)=m, [8, Theorem &] for all p in R; and H(0) p=myyp where p
is the rest state. Thus for any reasonable operator A we have

(AH(0) y, Ap)=mo(Ayp, Ay)
<(H(p) Ay, Ay).
Thus ((H(p) A— AH(0))y, Aw)=0. All of the basic inequalities are
obtained from this by specializing 4 in a variety of ways and picking p
appropriately.
The present model is in a class of models called persistent inter-
actions because the physical vacuum and bare vacuum coincide. A wide
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class of persistent interactions have been studied by Eckmann [15] and
by Albeverio [13, 14]. The models they study are less singular than the
present one and do not require a change of Hilbert space. Their methods
are disjoint from the methods used here, partly for this reason. Moreover,
whereas, in [15] the mass renormalization term is determined by second
order perturbation theory up to a finite quantity, in the present model the
mass renormalization must be determined indirectly. This is the case
whether the mass renormalization in the present model is accomplished
as in the body of this paper or as in Remark 5.4. While the main technique
in [15] is a resolvent expansion the main technique in the present paper
is the variational approach sketched above. J. Frohlich has kindly
informed me of related work on persisent interactions recently carried
out by him in [16].

The work of Sloan [12] was based on the inequalities in an early
version of this paper. In turn his work influenced greatly the present
form of this paper. In addition to the influence of Sloan’s doctoral
dissertation I would like to acknowledge helpful discussions with
W. Faris and R. Lavine of the Cornell Mathematics Department and
with T. Kinoshita and K. Wilson of the Cornell Physics Department.
It is a pleasure to thank D. R. Yennie of the Cornell Physics Department
for many illuminating and patient discussions of renormalization theory.

2. Statement of Results

We denote by & the Fock space over I*(E,, dk) where dk is Lebesgue
measure on E,. Specifically, we regard &% as a space of sequences,
u={u,}>-,, of functions, where u,(k,, ..., k,) is a symmetric function on
(Ep)" which is in L*((E,)",dk, ...dk,), uy is a complex number, and

Jul = $ Ju? <co.

The state space for a single polaron is I?(E,) and the state space
A" for a single polaron plus Boson field is given by (1.5). In the usual
way we identify 2#° with a space of sequences y={y,};>, where
Vo=0,(q: ks .. k) is in ((E)"* 1, dgdk, ... dk,). & will denote the
manifold in 27" consisting of those sequences y such thaty, =0 for large n
and v, is in the Schwartz space < ((E;)""') of rapidly decreasing in-
finitely differentiable complex valued functions on (E,)"** for all n.

For each point k in E, let a(k) denote the Boson annihilation operator
defined on &;. Specifically (a(k)y),(q;ki,...k)=0+ D"y, (q;k ky,
...,k,). The polaron annihilation operator ¥(q), defined by (¥(q) v),
(kisees k) =w,(q; kys..., k), is @ linear map from &, into &. We follow the
conventions of [7] in regarding formal products a*(k,)...a*(k;) a(k;,)...
a(k,) as bilinear forms on &, x &, and integrals of such products as
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integrals of bilinear forms. Moreover when such a bilinear form is the
bilinear form of a closed operator with core &; we shall simply denote the
closed operator as the integral of these products as in Egs. (1.3) and (1.4)
above.

As noted in the introduction we take the kinetic energy function
E(q) of the polaron to be given by (1.1) where m is a real constant, the
bare mass of the polaron. The free Hamiltonian H, of the polaron-Boson
system is the self-adjoint operator on J given by (1.3).

By a cutoff function we shall mean a real valued infinitely differ-
entiable function f on E,; with compact support such that f (k)= f(—k).
We take the interaction Hamiltonian with momentum cutoff function f
to be the self-adjoint operator H,(f) given by (1.4).

The total Hamiltonian for the combined system is the operator
H, given by (1.2) which is known [10] to be self-adjoint on its domain.

The total momentum operator M is given by

M; = closure of {Ef ¥Y*(q) q;¥(q) dq + Ej a(ky* k;a(k) dk} .20

M is a d-tuple of commuting self-adjoint operators whose spectral pro-
jections commute with H,. M thus decomposes 4" into a direct integral

decomposition
H = | F,dp (2.2)
Ra

which reduces H,, [8, Propositions 6 and 7], where R, is a copy of E,.
The infinitesimal subspaces #, are isomorphic to % in a natural way
and upon identifying %, with # for all p we may write (2.2) as

H =PR)®F . (2.3)

We note that this tensor product decomposition of " is distinct from
that given in Eq.(1.5). In Eq.(1.5) a point ¢ in E, denotes polaron
momentum while in Eq.(2.3) a point p in R, has the interpretation of
total momentum for the polaron plus Boson field. Properly speaking
A" is not equal to the right side of Eq.(2.3) but is unitarily equivalent
to it in such a way that the total momentum operator M; on 4" corre-
sponds to multiplication by the coordinate function p; in the first factor
on the right of (2.3) while the total Hamiltonian corresponds to multi-
plication by an operator valued function H(p), to be described presently.
We use R, to denote total momentum space (of polaron plus Boson
field) to reduce confusion of the two distinct tensor product decomposi-
tions of #; (1.5) and (2.3).

Moreover we shall write an operator on 2 which in the momentum
decomposition (2.3) of /" decomposes as a product, AQ B, as A®,,B.
Here A acts on L?(R,) while B acts on .
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Let & denote the manifold in & consisting of those sequences
u={u,}> such that u,=0 for sufficiently large n and u, is in ¥ ((E,)")
for all n. For such u define (b(k) u),,(ky,..., k) = (n + D ?u,, (k, ky,..., k).
Upon identifying &, with & the reduced Hamiltonian H(p) i.e. the
restriction of H, to the infinitesimal subspace %, may be written
[8, Proposition 7],

H(p)=E(p—P)+ [ b(k)* u(k) b(k) dk +V (2.9
Eq4
where
Pj= [ bk*kbkydk, j=1,...d (2.5)
Eq
is the restriction of the Boson momentum operator to %, and

V= Ej (b(k) + b*(k)) f (k) dk .

We remark that relative to the decomposition (2.3) the algebraic
tensor product I®,,b(k) has a natural extension to the domain &,
and on this domain it is related to a(k) via the equation

1 ®,b(k)= ( [ P*(q+k) (9 dq) a(k)
Eq4
The factor in parenthesis is a unitary operator.
Proposition 2.1. Let my=0. There exists a unique nonnegative real
number m depending on the cutoff function f such that
inf(spectrum H,)=m,
when the polaron bare mass is taken to be m.

Proof. Suppressing f we observe that, for two different values,
mand m', of the polaron bare mass, the corresponding total Hamiltonians
H™ and H™ have the same domain and the difference H™ — H™ is the
restriction of the bounded operator

[ ¥*(q) {m* +1gl*)'? — (m* + 1g1*)' %} ¥(q) dg

to the domain of H™. Since

m? + 1g1%)!/2 — (m'2 + [q|*) 2| < fm — m|

we have ||[H™— H™|| < |m —m'|. It follows that if s(m)= inf spectrum H™
=inf{(H"x, x); | x| = 1, x e 2(H™)}, then s(m) is a continuous function
of m. It was shown in [8, Corollary 8.1] that s(m) = inf spectrum H™(0)
and that there is a unit vector y,, in & such that H™(0) v,, = s(m) p,,.




32 L. Gross:

If m>m’ then

(H™ (0) Y W) = (H™(0) ¥y, 1)
—(((m* + P2 — (m* + P)'?) p,,, w,,) <s(m).

Hence s is strictly increasing. Since | u(k) b(k)* b(k) dk + V is bounded
below [10] it follows from (2.4) with p =0 that s(m) increases to co as m
increases to co. Now s(m)=m if f =0 with inf spectrum H™(0) achieved
at the bare rest state Q in #. Since (V' Q, Q) =0 it follows that for arbitrary
f in the class considered s(m) <m. Hence the equation s(m)=m, has a
unique positive solution.

Henceforth we shall assume that the bare mass m is chosen so that
inf (spectrum H;) remains fixed at the physical mass m, of the polaron.
Thus m will vary with f and will in fact approach + oo as the cutoff
function f is allowed to approach Au(k)~1/2

For each complex valued function g in I?(E,) put R,(g) for the self-
adjoint operator [2]

Ro(9)= F:f (g(k) bk) + g (k) b(k)*) d . (2.6)
For each bounded open set B in momentum space we denote by </(B)
the von Neumann algebra generated by the operators exp(iRq(g))
where g runs over the functions in I?(E,) with support in B. Let o/ be the
closure in norm of the union U.«/(B) where the union is over all bounded
open sets BC E,.

Each cutoff function f determines a state w, of the C* algebra .o/
as follows. &/ is to be regarded as an algebra of operators on the zero
momentum subspace %,. Let p, be a unit eigenvector of H.(0) in %,
with eigenvalue m,. The existence and uniqueness of 1, was shown in
[8, Theorem &]. Define

o (A)=(Ay,p,), Aesd. 2.7)

Theorem 1. Let f, be a sequence of cutoff functions such that for
each bounded open set B in E, the sequence

VI die+ T 7, )P dk

is bounded, where V| denotes the gradient of f. Then for each bounded
open set B the restrictions of the corresponding states w, to </ (B) form a
relatively compact set in the norm topology of the dual space o/ (B)*.

Now let A be a real constant and let f, be a sequence of cutoff functions
which converge uniformly on bounded sets in E, to Au(k)”'/>. We may
and shall choose the f, so that the gradients Vf, satisfy the boundedness
condition of Theorem 1. For example we may choose f, to be any
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cutoff function which is equal to Au(k)” /> when |k|<n and equal to
zero if |k|=n+ 1. The sequences f, and |V'f,| can both be chosen to be
uniformly bounded. Although we should think of this sequence as being
the typical sequence to which the following theorems apply none of the
results actually depend on such a strong sense of convergence of f,
to Au(k)~/* and we shall state in each case just what we actually require
of the sequence f,.

If w, denotes the corresponding state on .o/ then since the set of
states on .« is weakly compact in the dual space o/* there exists a weak
accumulation point w of the sequence w,. That is, there exists a state
« which lies in the weak* closure of the set {w,,, w,4,...} for all n.
We do not know at the present time whether the state w is unique i.e.
whether there is just one such accumulation point. In fact none of the
following results actually depend crucially on the convergence of the
functions f, but merely (e.g. in Theorem 2) on a slight strengthening of
the hypothesis of Theorem 1. (The hypothesis of Theorem 1 already
implies the existence of a subsequence of the functions f, which is
convergent locally in I2.) In the following corollaries we consider any
such limit state w. w gives rise in a well known manner to a Hilbert
space ¥, a representation ¢ of &/ on ¥, and a unit vector y, in A
which is cyclic for g(of) and such that w(4)=(c(4) e, W) As noted
in the introduction %, is to be interpreted as the physical one polaron
Hilbert space of total momentum zero and v, is the physical rest state
of the polaron. We define the full physical Hilbert space for a single

polaron plus field as A, =ER)® K, (2.8)
» . .

Corollary 1.1. Under the same hypotheses as in Theorem 1 there
exists, for any weak accumulation point w, a subsequence w, such that

1) w, (A) converges to w(A) for every operator A in /.

ii) The restrictions w, |o/(B) converge in norm to w|.2/(B) for every
bounded open set BCE,.

For each bounded open set B the restriction o |.o/(B) is an isomorphism
which is continuous in the strong operator topologies. In fact there is a
(non-unique) unitary operator Uy from F onto Ay which implements
o | o/ (B). Furthermore A, is separable.

In keeping with current terminology the unitary implementability
of o|.«/(B) may be referred to by saying that the representation ¢ is
locally Fock in momentum space.

For each bounded open set B in E, let ¥(B) be the von Neumann
algebra on " generated by the operators C®,,A relative to the total
momentum decomposition (2.3) where C runs over all bounded operators
on I?(R,) and 4 is in </(B). We put % for the closure in norm of U %(B)
where the union is taken over all bounded open sets B in E,.
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We note that ¥ contains all observables corresponding to bounded
functions of the total momentum of polaron plus field.

Corollary 1.2. Under the same hypotheses as in Theorem 1, there
exists, for any weak accumulation point w, a unique * isomorphism &
from € to bounded operators on A, with the following two properties.

a) For any bounded operator C on I?(R,) and any operator A in </
there holds

6(C®uA)=CR0o(A) (2.9

b) For any bounded open set B in E, the restriction of 6 to the unit
ball of €(B) is continuous in the strong operator topology to the weak
operator topology. Moreover

c) the restriction of ¢ to ¥(B) is unitarily implementable for any
bounded open set B and is therefore continuous in the strong operator
topologies.

We wish next to show that the Boson time-zero physical fields ¢(u)
and 7(u) are definable on ¢, for a reasonably large class of test functions
u. The bare time-zero Boson field operators are defined on £ by

o) = | (a(K) (k) + ) a(ky*) )1 dk (210)
d B
o ww) =i [ (@k) a(k) — T a(k)*) (k) dk @1
Eq

where u is a real valued test function on configuration space and #
is its Fourier transform. These bare fields ¢ and = are well defined
self-adjoint operators on % if @(k) u(k)'’* is in I*(E,;, dk). We shall
first show that the physical field versions of ¢ and = are definable on
A, when 1 has compact support in momentum space. This is a conse-
quence of Corollary 1.2 and Proposition 2.2 below. Such functions u
cannot have compact support in configuration space, however, and the
objective of Theorem 2 will be to extend the physical fields so as to be
defined for a test function space large enough to contain at least the
Schwartz space of real valued rapidly decreasing smooth functions on
configuration space.

It will be convenient to deal with the fields ¢ and = simultaneously
by studying instead the self-adjoint operator R(g) on ¢ defined for
any complex valued function g in I?(E,, dk) by

R(9) = | {(g(k)) a(k) + g(k) a(k)*} dk . (2.12)
If g(k) = ti(k) u(k)~*/* then R(g) = ¢(u) and if g(k) = —iii(k) u(k)'*> then

R(g) = n(u). While the operators R(g) act on the bare one polaron space
A, the time-zero physical fields are operators on £,;,. The physical field
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version of R(g) is denoted in Theorem 2 by S(g). The physical ¢ and =
fields may be recovered from S in the same way that the bare ¢ and n
fields were recovered from R.

Proposition 2.2. Let B be a bounded open set in E,. If g is a complex
valued function in I*(E,) with support in B then ¢R® lies in €(B). If h
is a bounded real valued measurable function on E; with support in B
then the self-adjoint operator D, on A defined by

D, = f h(k) a(k)* a(k) dk (2.13)
Eq

has the property that €'+ is in €(B) for all real t.

Remark. In view of Corollary 1.2 and Proposition 2.2 we can now
define the physical fields S(g) by the equation 5@ = g(¢''R®) for all
real ¢, provided g has compact support in momentum space.

Theorem 2. Let w be any weak accumulation point of the w, and let
Ho and A, be as above. Let t be a non-negative real number such that

Ef (k)™ (u(l) ™ 2 /u(k))? dk <o . (2.14)

Assume that the cutoff functions f, are so chosen that | f, (k)| < const u(k)~*/?
and such that the hypothesis of Theorem 1 is satisfied.

a) Let K,= I*(E;, uw(k)* dk). There exists a unique map g— S(g) from
K. to self-adjoint operators on A, such that the following two properties
hold.

i) €59 is a strongly continuous function of g in K, norm for each
real number t.

ii) 6(e"*@) =" for all real t and all g in K with compact support.

Moreover S(g) satisfies the Heisenberg commutation relations in the
bounded form of Weyl:

25 @iS@) _ ,ilm(g,9),iS(g+9) (2.15)

which is valid for g and g’ in K_ where (g, g')= [g(k) g(k)' dk.
b) Let L, be the set of all real valued measurable functions h on E,

such that
|

L. = SUp w(k)® Jh(k)| < oo .

There exists a unique map h—N(h) from L, to self-adjoint operators
on A, such that the following two properties hold.

iii) for each real number t €'"N® is a strongly continuous function of h
on L.-bounded sets in the topology of pointwise convergence of sequences.
(i.e. if || h,| ., < constant and h,(k)— h(k) for each k then e"® converges
strongly to "N for each real t.)
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iv) 6(e'"Pr) = e"N® whenever h is a real bounded measurable function
with compact support, where D, is given by (2.13).

Moreover N(h) is order preserving on L,. The operators N(h), hin L,,
are mutually commuting, and N(oh+ ph')= closure of (aN(h)+ SN(h'))
for o and B real and h and W in L.. Finally

e NS (g) e INW = §(eihg) (2.16)
forall hin L, and g in K.

Corollary 2.1. For any functionu in I*(R,), and hin L,, u®1p, is in the
domain of N(h), where 1, is the physical rest state.

Denote by o7, the set of all finite linear combinations of operators
on F of the form e'Ro@ where g is in I?(E,), g has compact support,
and R,(g) is given by (2.6). Clearly </, is a subalgebra of .o and is ir-
reducible on & In particular, we note that for any rest state y,, <y,
is dense in Z

Theorem 3. Assume the hypotheses and notation of Theorem 2. Let
w be a weak limit point of the w,. There exists a subsequence w,, satisfying
the conclusion of Corollary 1.1 and a self-adjoint operator H on A,
having the following three properties.

i) Jlingo (H,,u®,Ay,), v®,,By, )= (Hu®0c(A) p,), vQ0(B) w,)

for all A and B in o/, and all u and v in C (R,)

ii) inf spectrum H = m,.

iii) Let h be a non-negative measurable function in L_ [c.f. Theorem 2,
partb)]. Assume that h is even, i.e. h(—k)= h(k), and that for all k in
E,; u(k) — h(k) = ¢ >0 for some positive constant c. Let N(h) be the number
like operator on X ,;, described in Theorem 2. Assume, in addition to the
preceding hypotheses, that f,(k) converges to Au(k)~'* for each k, where
A is a non-zero real number. Let
2

dhy= | h(k)[ Ll
Ey4

(k) — h(k)

For any number a with 0 <a we write I?(S,) for the subspace of I*(R,)
consisting of functions g such that g(k)=0 if |k|>a. The subspace
LXS)® Ay of Ay, is invariant under N(h) and H, and in this subspace
there holds

INKY2 | < |(H +d0i)+a) 2y, e (IAS)@Hp)nDH?). (2.17)

Remark. If h is taken as the characteristic function of a bounded
open symmetric set B (i.e., —B = B) times a suitable positive constant «
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then N(h) is formally o times the number operator Ny associated with
the region B and (2.17) reads

INF2y| <o V2| (H +d(h)+a) |, weD(H")N(LA(S)®A). (2.18)

§ 3. The Basic Inequalities

Throughout this section we consider a fixed cutoff function f. We
recall that f is a real valued infinitely differentiable function on E; with
compact support and satisfying f(—k) = f (k). We write

H: Hf—mol
H(p)=H(p) —mol .

Then H and H(0) have lower bound zero, because of the choice of the
bare mass m, and H(p) = 0.

and

Lemma 3.1. For every strictly positive integer n and every non-empty
subset aC{l,...,n} there exists a bounded continuous non-negative
function g(ky, ..., k,) on (E,)" such that for any vector v in & there holds

d ﬂ@)
Mwommmmméﬁg aiiy ) ¥

+Y gk, ..., k) | Alo) HO) v

(3.1)

where the sum runs over all non-empty subsets o of {1,...,n} and

A(@)= T] bik)).

Jjea
Proof. The proof is by induction on n. We first consider the case
n=1. Since E(—k — P) b(k)p = b(k) E(—~ P)y for y in & we have
(H(—k)b(k) —b(k) H(0)) = — u(k) b(k) p — f (k) p .
Now H(—k)=0. Consequently, for any vector y in &,
0 < (H(—K) b(k) w, b(k) )
= ((H(=k) b(k) — b(k) H(0)) , b(k) y) + (b(k) H(0) , b(k) y)

=—u(k) | b(k) w[* — £ (k) (w, b(k) w) + (b(k) H(0) , b(k) ).
Hence

uk) b (> <1 £ R w6k ] + b0 HO) ]| [|bk) ] -
Dividing by ||b(k) y| yields

|f (k)] 1

P lwll + e Ib(k) H(O) ] .

|k w] <
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This is the inequality (3.1) with g{}}(k) = u(k)~*.
Assume (3.1) is valid for n. We show itisvalidforn+ 1. Letk,, ..., k,,

be n+ 1 points in E;. Put A= ﬂ b(kj) and A® =[] b(k). Then A and

Jj¥i
AW take & into & Moreover, since

E(—k;—--—k,,,~P)A— AE(~P)=0 on &
we have, for any v in &,
H(—y — ko) A — AH(O)p = —(z ulk) v
Y fle) A0y
Hence i=1
0= (H(—ky —---—k,11) A, Ap)
(e = — Ky ) A — AH(O) 1, Ap) + (AHO) , Av)
= —(Z u(ki)) | 4wl®~ z S (k) (A%, A) + (AH(O) v, Ay).
Thus

n+1 n+1
(.Zl “‘ki)) [4vl= ¥ 17 [4%9] | 4w
+ [AH©O) w| [ Aw] .
Dividing by | Ay] yields

(Z u(k») l4y]| < z |f (k) | ADw] + | AH©) ] .

Now apply the induction assumption to ||ADy|, yielding

("f i) 4] = (Z 6 TTE) ol

J¥i :u(k)
n+1
+Z’1 Lf (k)| " Z . (n)(kl,..., iseres Kt 1) ”A(“)H(O)‘PH
+|AH©O) v .

Since

n+1 n+1
Z LFG TT 1S () matk )l = (Z 1 k))ﬂlf (kj)/ulk)l

JFi
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the desired inequality follows with

n+1
)= (5 D) O s i)
id¢a

where the last sum should be replaced by one if a={1,...,n+ 1}, and
otherw1se the subscript of g% should be regarded as a subset of
{1,..,4,...,n+1}.

Remark 3.2. Let v(ky,...,k,) be a bounded real valued measurable
function on (E,)". We assert that the equation

B,= | v(ky,....k,) b(k,)* ... blky)* bky) ... b(k,) dk, ... dk,
(Ea

defines a self-adjoint operator on & This means, in accordance with
our convention, that the right side is the bilinear form of a self-adjoint
operator with core &. In fact one computes readily that the right side
is the bilinear form of the operator B on & whose action on an r vector
in & is

r(r .(r=n+1)Poky,....k)pky,....k)r=n (3.3)

r<n

where P, is the symmetrization projection. B is clearly a bounded operator
on r vectors in I* norm with norm at most r"|v| . Hence if y=Zy,
is in & then |By|*<Y |v]2 |N"y,|*>=v|2 |[N"w|* where N is the

number operator. Thus every vector y in & is an analytic vector for B,
which is clearly symmetric, and therefore & is a core for a unique self-
adjoint extension B, of B. Since ||By|| <||v||,, || N"y| for y in & we have
2(N")C 2(B,) and

IBow| £ |v]l [N"w|  fory in 2(N"). (3.4)

This remark is closely related to observations made in [5, 7]. We note
also that if v= 0 then B, =0.

Proposition 3.3. Let y be the physical rest state. l.e., v is a unit
vector in %, satisfying H(O)w=0. Let v be a bounded measurable real
valued function on (E,)* where n is a strictly positive integer. Then v is in
the domain of B, and

n

By, W < [lv(ky, ..., k, ﬂ (k)/uk)?| dky ... dk,. (3.5

Proof. Let K = E(P)+ (Hy), —my. Then H(0)= K + V. We first show
by induction on j that pisin Z((N +1)/2K)for all integers j = 0 (Sloan [12]).
This is so for j=0 because 2(K)= 2(H(0)). Moreover if it is true for
j=n=0 then since Z((N+1)2K)CD((N+ 1) )CD(N+1)+y)
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(the last containment follows from the commutation relations) it follows
from the equation (N + 1)/? Ky = —(N + 1)/ Vy that the left side is
in the domain of (N + 1)!/? since the right side is. This establishes that
v € D((N + 1)/2 K) for all j. Therefore y is also in Z((N + 1)/ (K + 1))
for all j.

If n is the strictly positive integer in the statement of the proposition
then, since (N + 1)" (K + 1) is the closure of its restriction to &, there
exists a sequence y; in & such that y; converges to y in norm and
(N+1)"(K+1)y; converges to (N+1)"(K+1)y in norm. Since
[N+ 1)@ < [(N+1)"(K+1) | for all ¢ in Z(N+1)"(K+1)) it
follows from 3.4) that y is in 2(B,) and B,y = lim B, ;. Moreover since

H , as follows from the commutation
relations, we may conclude that N"H(0) y; converges to N"H(0)y =0.

Assume first that v is non-negative (and bounded). Apply the
inequality (3.1) to y;. Square both sides of (3.1), multiply by v(k,, ..., k,)
and integrate with respect to ki, ..., k, over (E,)" to obtain

[ vlky, ..o k) Hb(k1) .. b(k,) w,.uz dk, ... dk,

f (k) (3.6)

(ot k) s + T 1ot 0.0y
where k=(k, ..., ,,), the sum on « and B runs over the collection of
all pairs of subsets of {1, ...,n} for which at least one of the sets o, f§ is
non-empty, D, = || A(x) H( 0) ;| if o is not empty, D, = ||| is « is empty,

and d, 4(k) is a bounded non-negative measurable function which, if «
or f§ is empty, has compact support in (E,)". We assert that the finite sum

Y. ... goes to zero as j—co. In fact
@B

\f d.. p(k) D, Dydk|* ([ ld, 4(k)| DF dk) ([ Id,, 5(K)| Djdk).

At least one of the two integrals on the right (corresponding to a non-
empty subscript) is of the form (BH(0) y;, H(0) y;) where B is an operator
of the type described in Remark 3.2 of order less than or equal to n.
Hence one of these two integrals is dominated by const. |[N"H(0)y,|
[H(0) ;|| which goes to zero as j—co. The other one is clearly bounded
or also goes to zero.

The left side of (3.6) is (B,y;, ;) which converges to (B,yp, y). This
concludes the proof in case v=0. In the general case write v="1v; — v,
where v, and v, are non-negative and have disjoint support. Then
|v] =v; 4+ v,.Since B,y =limB,y;=lim(B,,y; — B,,y; = B,y — B,,y we
have |(B,y, )| =|(B,,p, ) — (B,,w, p)| = (B,, v, w) + (B,,y, ¥) = (B, v, ¥)
which is dominated by the right side of (3.5), as we have seen. This
concludes the proof.
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Remark 3.4. The preceding proposition implies that in the Schrodinger
representation the rest state y is infinitely differentiable in all directions
in the I? sense. The next corollary will not be used in an essential way
in this paper but we include it here since it belongs here logically and
we anticipate its usefulness in future developments of this theory. It
can be used to show that in the Schrodinger representation the physical
rest state i is an analytic function (in a sense which we shall not make
precise here).

Corollary 3.5. Let h be a bounded, non-negative, measurable function
on E;. Let N, be the non-negative, self-adjoint operator on & given by

N,= j (k) b(k)* b(k) dk .
Eq

The physical rest state  (of unit norm) is in the domain of e™ and

(€M, p) < clh) 3.7

where . ) 5
C(h)=exp{f (("® = 1) f(k)*/u(k) )dk}- (3.8)

Ea
Proof. If zy, ..., z, are any real numbers then ]L[ z;= ﬁ (1+(z—-1)
j=1 i=1
=Y ][ (z;—1) where o runs over all subsets of {1,...,7} and an empty
a jea,

product is interpreted as 1. Thus if |o| denotes the number of elements
in o we have

Tz=3 Y [1G-1. (3.9)
=1

n=0 |a|=n jea

J

Put w,(k,...,k,)= ]I ("®) —1). It follows from equations (3.2) and
j:

(3.3) that if y is an r vector in & then for n<r

(Bw,,lP) (kb (AL kr) =n! ((T——-LV')TV!—') Ps(wn(kl, ceey kn) 1/)(](1, very kr))

=n!'Y {ﬂ (e"ki) — 1)}1p(k1, k).

lal=nljea

h(k;)

Hence, defining B, =1 and using (3.9) with z;=¢""’ we obtain

(z (nz)-lBan) (ks k) = [ @9 ik, ... k).
j=1

n=0
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The left side may be summed to co instead of to r since the additional
terms are zero. The right side is e ™. Thus for any vector i in & we have

NBp=Y () !B, p. (3.10)
n=0

Since both sides of this equation contain only operators which are
bounded on r-particle states the equation clearly holds for these vectors
also.

If y is the physical rest state and v, is its 7 particle component then y
is in the domain of e"*'? for, keeping in mind the non-negativity of B,, ,
as well as the fact that B,, and e™*/? are the direct sums of their restrictions
to the r particle subspaces, we have, in view of (3.5)

5 et = % @v)

~
I

I
Ms
M8

(n)™ By, v, )

~
I
o
=
I
(=]

[\/]8

()" 3, (Buyrv)

x
]
(=]

(n N~ (B, w, )

Il Mg

B3

lIA
M8
’=:

71O = 1) (k) (k) dky"

=c(h)<oo.

X
1]
o

(Recall f has compact support.) Replacing h by 2k shows that y is in
2 (™) and since the left side of the last inequality is (™, y) the corollary
is proved.

The Sobolev Space F'(S). Let S be an open set in E,. Let N(S) denote
the number operator on & associated with S. That is,

N(S)= [ b(ky* b(k) dk .
S
Let D= N(S)*2. & is clearly a core of D and if y is in 2(D) there is a
sequence ¥, in & such that y, converges to y and Dy, converges to Dy.
Since
Do =(N(S) ¢, 9)
=[|bk)@|*dk ¢e&
S
it follows that b(k) y,, as a function from S to & converges in *(S; #)

norm to a function from S to %, which we denote by b(k) v, and which is
well defined up to a set of Lebesgue measure zero in S. Since b(k) p,
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is a continuous function into &, b(k)y is strongly measurable as a
function into &#. Of course

|Dw|?= Hlb k) w||? dk .

Denote by CP(S; &) the space of infinitely differentiable functions
from S to &# with compact support in S. Let v be in Z(D). We say that
b(k)y is weakly differentiable in I*(S; %) if there are functions yi(k)
in I?(S; #),j=1, ...,d, such that for all ¢ in C?(S; %) there holds

j(a“’ (k)bk)zp)dk:i(q)(k),%(k))dk j=1,..,d (3.11)

where k; are the coordinates of k. Such functions y}(k) are unique, up to a
set of Lebesgue measure zero in S, if they exist, since CX(S; &) is dense
in I2(S; #). We shall write

k) - (3.12)

ak

if these weak I? derivatives exist.
We denote by £'(S) the set of elements y in the domain of D such
that b(k)y is weakly differentiable in I?(S; %). For y in %'(S) we put

]2 = vl + D] + z 5H—b k)w” k. (13

Z'(S) is a Hilbert space in this norm. In order to see that #'(S) is
complete note that if y, is Cauchy in the |- |s norm then y, and Dy,
are Cauchy in &. Since D is a closed operator i, converges to an element
v in 2(D) and Dy, converges to Dy in &%. Furthermore,
0

ok;
limit in I2(S; %) which limit, by (3.11) and (3.12) is ——
converges to y in | ||s norm.

Lemma 3.6. Let k and k' be in E; and put b= b(k')— b(k). For any
vector  in & there holds

(k) [|0b) w| <21k — K| oK) w| + £ (k) — f&)| ]
+ [[(6b) HO) v -

is Cauchy in I*(S; %) by assumption, and hence has a

6k b(k)y. Thus p,

(3.14)

Proof. For any vector y in & we have
0= (H(=k)(0b) y,(3b) y)

3.15
= ({H(=k) (0b) — (6b) H(0)} v, (6b) ) + ((6b) H(0) , (6b) ). G
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Since E is even we write its contribution to H(0) as E(P) instead of E(— P).
one computes easily that on &

H(—k)(6b)— (6b) H(0)= E(P + k) (6b) — (6b) E(P)
+ [f u(k") b(k")* b(k") dk",5b] + [V, 6b]
=(E(P + k) — E(P + k")) b(k') — (u(k') b(k') — pu(k) b(k))
—(f(k)— f(k)
=(E(P + k) — E(P + k")) b(k") — u(k) b
+ (k) — u(k) bk') = (f(K') = f(K)).
Since |E(p)— E(p')| £ |p—p'| for all p and p' in E, the operator E(P + k)
— E(P+k') is bounded on its domain with norm at most |k—k’|.
Moreover |u(k)— u(k")| £ |k — k'|. Combining (3.15) and (3.16) we get
0=k =K' [b(K) ] (65 ] — (k) (6b) ]
+lk =K1 [[bK) w] [0D) w| + 1K) = f( [w] D) w]
+ (65 HO) v 66y ]
Upon dividing by |(6b) | we obtain (3.14).
Lemma 3.7. Let c be a fixed vector in E; and let vy be the physical
rest state with || = 1. Then for any open set S in E, there holds

{16tk +0) = bk) | dk <81 | |f e+ o)

(3.16)

s uk)® plk + )
lf(k) = f(k+c)?
R T
Proof. As shown in the proof of Proposition 3.3 we may pick a
sequence ; in & such that y; converges to y, b(k) yp; converges to b(k) p
in I*(E;; ), and b(k) H(0)y converges to zero in I*(E;; #). Apply
Lemma 3.6 with k'=k + ¢ to y; yielding

bk + ) = b(k) w;l| < ulk)~* {2]c| [blk + ) w|
F1F )= [+ 0) ;] + [ (blk + ¢)— bk) HO) ;} -

Since b(k) H(0) w; and b(k + c) H(0) y; converge to zero in *(E;; F)
the last term on the right of (3.18) converges to zero in L*(S). Square
both sides of (3.18), integrate over S, take the limit as j—oo and then
use the inequality (a + b)? <2a*+ 2b? to obtain

g [(b(k + ¢) — b(k)) | ? dk

2 ¢ Ibk+ ) w]?
=8

(3.17)

dk .

(3.18)

(3.19)
|f(k) = f(k +c)?
u(k)?

dk+2] dk.
N
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Let y denote the characteristic function of S. In Proposition 3.3 take
n=1 and v(k)= u(k — ¢)~? y(k — ¢) to obtain
xk =) ||bk) p|? k=) |f (k)]
dks | = dk.
E'de plk—cy? <] plk — o) p(ky?

Translating both integrals in this inequality by ¢ yields an estimate for
the first term on the right of (3.19) which establishes the Lemma.

Proposition 3.8. For any open set S CE, the physical rest state  is
in the Sobolev space F'(S). If v is normalized to one then

k 2 k 2 V 2
Ivls1+ ‘f((k))L k30 ‘f(‘k))l k2] | f;)‘z dk. (320)

Proof. We already know from Proposition3.3 that yp is in
D(N)C2D(N(S)) C2(D). Let ¢ € C2(S; F). Let e; be the jth basis vector
of E,. Then

(40
! [ (@l +se) — 9 (k). b(k) y) di
= fim 5™ {(p(R). (blk — se) = (k) ) di

<(1 lo]? k) tim supls|=* ] (b —se)— bk y|* dk| *.

(3.21)

Put ¢ = —se; in (3.17).We get

limsup s~ 2 [ || (b(k — se;) — b(k)) p|* dk (3.22)
s—0 S )
Lf (k)
< k+2| —~Lt——dk.
=${ o ¢ § 7

Thus the left side of (3.21) is a continuous function of ¢(-) in the norm of

I*(S; #). Hence there is a function y,(-) in I*(S;%) such that
—[(0@/ak;, b(k) p) dk = [(p(k), w;(k)) dk for all ¢(-) in CZ(S; F). More-
over the right side of (3.22) gives an estimate for | |y;(k)|? dk. Therefore
y is weakly differentiable in S and

ZI

j=18

" ak<sd 5 A ((llz))f dk+2 5 'Vé; dk. (323)
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Finally the estimate

If )I2

Jlbtow)* dk = J=

follows from Proposition 3.3 with n=1 and v equal to the characteristic
function of S.

§ 4. Proofs of Theorems

Lemma 4.1. Let r be a strictly positive real number and denote by S
the cube S = {k e E;; |s;)| <r,j=1, ..., d} where s; denotes the j th coordinate
of k. Let F denote Fock space over I*(S) and let F'(L*(S)) denote the set
of vectors p in Fg which are in the domain of the square root of the number

0
operator N on Fg and such that the weak derivative B b(k)y exists and is
J
in [2(S; %),j=1, ...,d. For such y put
2

— b(k dk . (4.1)

d
lwlif = llwl? + N2 + ._Zl g

There exists a positive operator L on F with a compact inverse such that
D(L)=F'([*(S)) and

vl =Lyl (4.2)
for all y in F'(L*(S)).

Proof. We first remark that this lemma is an extension of Rellich’s
lemma [1] and is valid for any set S with smooth boundary. We have
chosen to state it only for a cube since the proof of Rellich’s lemma is
elementary in that case and we shall include a proof of it here.

We write % instead of #'(L*(S)) throughout this proof. One may
verify as in the discussion preceding Lemma 3.6 that &' is a Hilbert
space in the norm | |;.

The functions cos(nms/(2r)), n=0,1,2,... form an orthogonal basis
of I*(0,2r) and therefore the functions u,(s) = c, cos(nn(s + r)/(2r)) form
an orthonormal basis of I?(—r, ) for suitable constants c,. The u, are
eigenfunctions of the operator 1—d?/ds* with eigenvalues 1+ (nm/r)?
and satisfy the boundary conditions du,/ds=0at s= +r. Ilf k=(sy, ..., S,)
is in the cube S put

Wy oondSts ooes S)) = Uy (1) o uy (50), 1,20, j=1,...,d.

The functions w,, . form an orthonormal basis of L*(S), are eigen-
functions of the operator 1— 4, where 4 denotes the Laplacian, and
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these functions have normal derivative equal to zero on each face of
the cube S. We enumerate them v, v,, ... and denote by A; the corre-
sponding eigenvalue: (1 —4)v;=A;v;. Clearly A;—00 as j— o0 and 4;2 1
for all j, since each 4; is a sum of d of the eigenvalues given above.

We now construct an orthonormal basis of g from the v; in the
usual way (cf. [2]). Specifically, for each finite non-decreasing sequence o
of positive integers put "
Qukyy ..., k)=c,P n1 Uiy (k) 4.3)

=

where n is the length of the sequence a, P is the symmetrization projec-
tion and c, is a normalization constant chosen to make the {¢,} an
orthonormal set. If, for the empty sequence o, we define ¢, to be the
rank zero tensor 1 then the ¢, form an orthonormal basis of %. The
functions ¢, are clearly in %".

Let A be the (unique) self-adjoint operator in Z2(S) which is diagonal
on the basis v; and multiplies v; by 4;. Thus 4 coincides with the operator
1 — 4 on the v; (and is in fact the self-adjoint version of the differential
operator 1 — A corresponding to the Neumann boundary condition:
normal derivative =0 on 0S). Let M be the quantization of A. That is,
M is the closure of the operator which on algebraic » tensors is given by
ARI® - ®I+ - +1®---®I® A. One computes easily that the above
described basis vector ¢, is an eigenvector for M with eigenvalue
Iy =Y Aq(;- Any real number clearly exceeds at most finitely many of the

(non-;legative) numbers p, and therefore I + M has a compact inverse.
If L=(I + M)'? then L also has a compact inverse and we shall show
that this operator satisfies the requirements of the lemma.

Suppose that y is in #'. We assert that

((Pw 1/))1 = ((1 + M) (pw IP) . (44)

The principle technical point in this lemma consists in justifying the
integration by parts involved in (4.4). Denote by 0;S that portion of the
boundary of S consisting of the two closed faces perpendicular to the jth
coordinate axis. Let g,, be a sequence of uniformly bounded real valued
functions in C®(S) such that g, (k) =1 if dist(k, 6S) =m~!, and such that
for some constant ¢ and each j=1, ...,d, [(0/0s)g,,(k)| =0 if dist(k, J;S)
>m~"' while |(0/0s))g,(K)| < cm if dist(k, 0;S) < m~!. The existence of
such a sequence is clear if S is one dimensional and a product function
will work if S is d dimensional.

NOW (o )1 = (@0 0) + | (B(K) 0, b(R)p) dk
5 4.5)

0 0
+ g(a*sjb(k)coa, —as—jb(k)w> dk

Jj=1
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where s, ..., s; are the coordinates of k. In view of the known form of ¢,

(’)s b(k)p, are in CP(S; ). Therefore by the

Jj

the functions g,,(k) —

. . 0
dominated convergence theorem and the definition of — b(k)y we have

0s;
0 0
I 090, - bow)a
0 0
= Jim J0,00( 5 be.. b
-~ lim g( e (UL CTANTCTT
az
-~ lim igmw)(—a—;b(l«)%, bl | d 46
, Ogm(k)
- tim 20 (L bty ity |k

-~ ([ bwr0s). btk ax

i IR

MmO dist(k,d,S)<m" L 0s;

bl blky | dk.

J

. 0 . .
Now from the form of ¢, it follows that a5 b(k) ¢, is zero at all points
j
of 9;S. Moreover all second derivatives of each function v; are bounded on

0
—b(k
s, (k) @,
of k from ¢;S. In particular there is a constant ¢’ such that
0
—b(k
s, (k) @,
last integral is dominated by cm-c¢'m™!||b(k)y| which is a fixed L
function. Therefore the last limit on m in (4.6) is zero.

[—r,7] so that increases at most linearly with the distance

<cm™' if dist(k, 9;S) <m™"'. Hence the integrand of the

It follows then from (4.5) that
(@ W) = (@0 )+ f (1= 4) b(k)p,, b(k)y) dk
=(¢a,w)+nf L=41) @ ki, ko, s k) walkys Ky, - k) dky . dk
5

where 4; denotes the Laplacian acting in the k; variable.
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Since ¢, and v, are both symmetric functions 4; may be replaced
by 4; in the last integral yielding

((pa’ 1/’)1 —((pa’ W)+ j( Z 1 _A_]) (pa(kh ’kn)> wn(kla ""kn) dkl’ --'9dkn

=1+ Mo, p).

This establishes (4.4).

It now follows from (4.4) that the ¢, form an orthogonal basis of #'.
For (9, 91 = (1 + M), 9) = (1 + 1) (¢, @p) = (1 + )3, , and if
is in &' and (¢@,, v), =0 for all « then (1 + u,) (¢@,, wv)=0 for all « and
therefore y =0. Hence the vectors (1 + p,)~*/? @, form an orthonormal
basis of #'. Thus p is in &' if and only if p has the form

=2all+uw) o, (4.7)

where Z |c,|> < oo and the convergence is in &' and therefore also in &
norm. Since L is a closed operator which is diagonal on {¢,} and
Lo, =1+ u,)'? ¢, it follows from (4.7) that the domain of L is exactly &’
and for the above vector y [Ly|?= Z|c)* = |pll?.

The following lemma is a slight, but essential, modification of a
lemma used in [6].

Lemma 4.2. Let I be a family of non-negative trace class operators
on a Hilbert space X and let L be a positive self-adjoint operator on X
with compact inverse such that

1. LTL is densely defined and bounded for all T in I and its closure
(LTL)™ is trace class.

2. There is a real number a such that trace (LTL) )<a forall T in 7.
Then I is relatively compact in trace class norm.

Proof. We show that Z is totally bounded in trace class norm.
Let £>0. Let b= | L™ !|. Choose ¢>0 such that max(b"'c¢ 'a,c 2a)
<¢/12. Let E, be the spectral projection of L for the interval [0, c]. Let
E,=1 ——El. Let T be in J and let A be the closure of LTL. Then
T=L"'AL "' and E,TE;=L""E;AL'E; for all i, j. Denoting the
trace class norm by l| ll, we have I|E; TE il = L YE;| 4], | L~ Ejf.
Since |[L™'E,|<c™?, |L'E,<b7Y, and || [,<a, it follows that
|E;TE;|, <e/12ifiorjis2and |E, TE,|,<b *a. Since L™ ' is compact
E,is ﬁnite dimensional. Hence the set ¥ ={E, TE, : T € 7 } is relatively
compact in trace class norm. Thus there exists a finite set of operators

., T,in  such that {E, T, E,};-, is an ¢/2 net for &. If T is any
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operator in J then
2

IT=Tl, = Y |E(T—TYEl,
ij=1
S|E(T-TYE |+ )Y (IETE|,+|ET.El,)
(L, )*(1,1)

<|E\(T—TYE,[,+3-2-¢/12.

Hence for some k|| T — T,||, <e. Thus J is totally bounded.

Proof of Theorem 1. 1f U is a bounded open set in E; and S is a cube
containing U then &7 (U)C.</(S). Since the norm of a linear functional
on /(S) does not increase when restricted to the subspace .&/(U) it
suffices to show that the set of restrictions w,|.<Z(S) is relatively compact
in norm when S is a cube of the type described in Lemma 4.1. We choose
a fixed cube S henceforth.

Denote by S the complement of S in E; and by . the Fock space
over [*(S°). As is known, there is a Hilbert space isomorphism between
the Fock space & over I*(E,) and the tensor product %3® F. which
preserves the form of annihilation operators. In this decomposition of #
the algebra .&/(S) is exactly B(%5)®1 where #(F;) is the algebra of all
bounded operators on Zs.

Now if X and Y are Hilbert spaces and v is a unit vector in X ® Y,
then, to the state w on #(X) given by w(B)=(B® Iy, y) for B in #(X),
there corresponds a unique density matrix T on X, i.e., a non-negative
trace class operator with trace equal to one, such that

w(B)=trace(TB) Be%(X).
For if y is any vector in X® Y then yp may be written p= ) x,®y,

where the y, are orthonormal and X ||x,[|* < oo, so that (BRI, y)
=Y (Bx,, x,)=trace(TB) where T=) |x,|*P, and P, is the one-

dimensional projection onto the span of x,. Clearly trace T = Z [lx,]1%

= |w|®. Moreover if L is a self-adjoint operator on X with bounded
inverse and if i is in the domain of the self-adjoint operator L® I then
LTL is densely defined and bounded and its closure is the trace class
operator on X corresponding as above to the vector (L® I)y. For if we
define A to be the trace class operator on X corresponding to (L& I)y
then for any B in 4(X) we have
trace(BL ' AL ')=trace(L ' BL ! 4)

=(L'BL @D LDy, (LODY)

=((BRDy, )

=trace(BT).
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Since #(X) is the dual space of the Banach space of trace class operators
in the pairing (B, T) =trace(BT) it follows that T=L"'AL"! and
therefore LTL is densely defined with closure A.

To prove the theorem it suffices to show that the sequence T, of
density matrices on g corresponding to v, as in the preceding discussion
is compact in trace class norm. In view of Lemma 4.2 and the preceding
discussion it suffices to prove that there is a positive self-adjoint operator
L on # with compact inverse and a real number a such that y, is in
2(L®I)forallnand (LR I)y,|| < afor all n. Choose L as in Lemma 4.1.
In view of Lemma 4.1, Egs. (4.1), (4.2), Proposition 3.8, Egs. (3.13) and
(3.20) it follows that

2 | £ (k) | f(R)I?
(L&D, <1+j 02 dk+8dj R dk
V2
L2

Since S is bounded and each of the integrals on the right of (4.8) is, by
assumption, uniformly bounded in n on S the theorem is proved.

(4.8)
+2 j

Proof of Corollary 1.1. The proof is a slight variant of arguments
used in [6]. Choose an increasing sequence S, of bounded open sets in E,
whose union is E,. For any bounded open set SCE,, &(S)C(S,,)
for some m. For each m the norm closure A4,, of the set of restrictions
{w,| A (S,)}2 is norm compact by Theorem 1, therefore weakly com-
pact and therefore weakly closed. Hence w]|.s7(S,,) lies in A4,, and is a
norm limit of some subsequence. By diagonalization there is a subse-
quence w, such that for every m w, |</(S,) converges in norm to
w|L(S,,) Then w, IM (S) converges in norm to w|.(S) for any bounded
open set S in E; and since o, (A) converges to w(A) for each operator 4
in a norm dense subset of .o/ it converges to w(A) for all 4 in /.

Factoring # = %3 ® . as in the proof of Theorem 1, and putting T;
for the trace class operator on #g corresponding to w, |.</(S) we note that
Theorem 1 implies that T; converges in trace class norm to a density
matrix T on g corresponding to w|Z(S). Of course w|.2/(S) is also
given by a (non-unique) density matrix Tg on % which may be con-
structed from T and any unit vector u in Fg via the prescription
Tsx= Y (x, x,®@u)y,®u for x in 7, where Tz= Y (z, x,)y, for z in F

and X |x,|? <o and Z |y,||* < co. Clearly w(A)=trace(ATy) for A in
2/ (S) and hence w|.<Z(S) is ultraweakly continuous. Thus if SC S,, and C
and D are in &/(S,,) then the map A—(a(A4) a(C)y,, o(D)y,) is ultra-
weakly continuous on the unit ball of .&/(S) since (6(A) 6(C)wy, o(D)w,)
= w(D*AC)=trace(C Ty, D* A). Since {a(C)y,; Ceu,,H#(S,)} is dense
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in Ay, (w(A)v, w) is ultraweakly continuous for all v and w in A, on the
unit ball of 2/(S) and therefore, by [4, Theorem 1 (ii), p. 40], (o(4)v, w)
is ultraweakly continuous on all of &/(S). Since 2/(S,,) has a countable
dense set in the ultraweak topology (e.g. operators corresponding to
matrices with finitely non-zero complex rational entries relative to some
fixed O.N. basis of Z ), and the map A—(a(A4)y,, w) is ultraweakly
continuous on &(S,,) for any vector w in ¥, A, is separable. Since the
type I factor «/(S) contains no ultraweakly closed proper two sided
ideals, o|.%7(S) is an isomorphism. Moreover since the unit ball of 2/(S)
is ultraweakly compact its image under o, which we have shown to be
ultraweakly-weakly continuous, is weakly compact and therefore weakly
closed. Hence a(<7(S)) is weakly closed by [4, Theorem 2, p. 43]. Thus
a((S)) is also a factor of type I. Now /(S) has countably infinite
multiplicity on &%. If S,, contains S properly then 2/(S) has infinite
multiplicity in /(S,,). Hence o(.«(S)) has infinite multiplicity in ¢(<(S,,)).
Thus o(2/(S)) has (necessarily countable) infinite multiplicity on %,.
Therefore there exists a unitary operator Us from & to #, which
implements o |.<7(S).

Proof of Corollary 1.2. For any bounded open set Bin E, let Ug be a
unitary operator from & to 4, implementing o |.«/(B) as in Corollary 1.1.
Define 6 on %(B) by 6(D)=(I®,,Ug) D(I®,,Ug)~*. Then clearly (2.9)
holds for all ¥ in #(I*(R,)) and A in </(B). ¢ is strongly continuous on
the unit ball of ¥(B) to the weak operator topology. Since the algebra
generated by {C® A : C e B([*(R,)), A € «/(B)} is ultrastrongly dense in
%(B) and any strongly continuous linear functional on the unit ball of
%(B) is ultrastrongly continuous on % (B) [4, p. 38] &|¥(B) is uniquely
determined by conditions a) and b) of the corollary. Thus ¢ is independent
of the choice of Uy. Consequently ¢ is now a well defined isometric
isomorphism on Uy % (B) and extends uniquely to an isomorphism on €.

Proof of Proposition 2.2. We write & = %3 ® Fg. as in the proof of
Theorem 1. In the decomposition # = (I*(R,) ® F5)® Fp. the algebra
%(B) is exactly B(L*(E;)® #5)®]I. To show that a bounded operator C
is in ¥(B) it suffices to prove that C commutes with all bounded operators
of the form I® I ® A where A runs over the bounded operators on Zp.
or at least over an irreducible set. Let g be a complex function in I*(E,).
For each vector x in configuration space E; denote by S,(g) the self-
adjoint operator on & given by

S.(9)= | (¢¥*g(k) b(k)+ e~ *"*g(k) b(k)*) dk . 4.9
Eq

Relative to the total momentum decomposition (2.3) put

T(9)=1®,S.(9).
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Then in view of the known irreducibility properties [2, Theorem 9]
of the creation and annihilation operators it suffices to prove that C
commutes with all operators of the form ¢'T* where g has support in B°.

In order to show that ¢®¥? and ¢'7® commute when g and ¢’ have
disjoint supports it will be necessary to make explicit the relation between
the two decompositions (1.5) and (2.3) of A in terms of which the
operators R(g’) and T(g) have been defined. First of all, via a Fourier
transformation on the first factor in (1.5) we may identify /" with
I*(E)® F or, equivalently, with functions 1(x) on E, with values in &,
where E) is configuration space (i.e. the dual space of E,). &, is carried
into a similarly defined submanifold &; of I*(E;)® %. We regard a(k)
as defined on &7.

In order to make the argument clearer we first outline the rest of the
proof in an informal style ignoring all domain questions. Denote by
I®,,b(k) the operator on ¢ defined with respect to the decomposition
(2.3). The subscript m refers to the total momentum decomposition (2.3)
of A as noted before. Identifying L*(Ej)® # with functions y(-) from
E, to & a(k) is given by

(a(k)y) (x) =b(k) (p(x)) - (4.10)
The identification map W from the momentum decomposition
I>(R)®F =I*(R;; F) to A =I*(E,; F) is given by Wy =1y where

Y(x)=Q2m)" e [ e7*y(p)dp (4.11)

Ra

and y is a function from R, to #. By definition (I ®,,b(k))x)(p)=b(k) (x(p))-
Consequently, since

> Pp(k)=e'**b(k)e'** 4.12)
we have

(I®nb(R)y) (x) = 2m) =42 e [ ™7 b(k) x(p) dp
= e b(k) (w(x)) -

Comparing this with (4.10) we see that if k is in B and k' is in B¢ then a(k’)
commutes with both I ®,,b(k) and its adjoint:

(1 @p bk))* w) (x) =™ =¥ b(k)* (1p(x)).

This informally proves the first assertion of the proposition.

We shall now repeat the preceding argument in a formal style.
Since R(g') acts only on the second factor 'R operates only on the
values of p(x):

(e p) (x) = &'5°@)(yp(x)) for each x in Ej. (4.13)
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Denote by F Fourier transform regarded as a unitary operator from
I*(R,) to I*(E}). Let G denote the operator on I?(E})® Z to itself given
by (Gy) (x) = €™ P(1p(x)) where P is the total Boson momentum operator.
Then the unitary operator

W=GF®I)

from I?(R,)® F onto I*(E,)® F gives the total momentum decomposi-
tion of # i.., is the map by means of which we identify I*(R,)® # with
A [8, Proposition 6]. Thus, as an operator on I*(E))® % the operator
eT¥ is given by WelI®5%@ 1= GFRI)e!®W(F1)G !
=G ®eSW)G™ 1, All three of these factors act only on the values of
w(x). Thus

(WeiT(g) W— 1 1/)) (x) — eix~PeiSo(g)e~ix~Pw(x)
=l TS @ e () (4.14)

— ein(y)lp(x) .

The last equation follows from the Eq. (4.12), which is valid on &. Since
€'%0@) commutes with ¢'5*@ for every x when ¢’ is supported in B and g
is supported in B¢ the first assertion of the proposition now follows from
(4.13) and (4.14).

In order to prove the second assertion of the proposition let & be a
bounded real valued measurable function with support in B. The self-
adjoint operator

B, = | h(k) b(k)* b(k) dk
Eq

on Z has the property that ¢''B» lies in .o/ (B) and so e"'®mBn = [ ), o'
lies in € (B). Denote by &7 the set of functions y(-) from R, to & such that
1D, k1, ..., k,) is zero for large n and in & (R, x (E,)") for all n. One sees
readily that W takes &7 onto &7. For ¢ and y in &{ one sees from (4.10),
(4.11) and (4.12) and from the unitarity of e/*'¥ and unitarity of the
Fourier transform that

([ h(k) atky* a(k) dk Wy, Wo) = | h(k) (a(k) Wy, a(k) W ¢) dk
= ,5 h(k) Rj (k) 2(p), b(K) o(p)) dp dk

= ([ ®.B)Wx, Wo)

for any bounded real valued measurable function i on E,. Since &
is a core for | h(k) a(ky* a(k) dk we have

D, = [ h(k) a(k)* a(k) dk =1®, B, . (4.15)

Hence e''P» lies in ¥(B) when h is supported in B.
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Proof of Theorem 2. We first prove part a). If g is a complex valued
square integrable function with compact support in E, then by Proposi-
tion 2.2 and Corollary 1.2 (b) 6(e"R¥) is a weakly continuous function
of ¢. Hence by Stone’s theorem there exists a unique self-adjoint operator
S(g) on A, such that ii) holds. Since ¢ is an isomorphism the operators
S(g) satisfy the same commutation relations that the R(g) do — namely
(2.15), when g and ¢’ have compact support.

Now let g be an arbitrary function in K. Let g,(k)=g(k) if |k|<n
and zero otherwise. Then S(g,) is well defined by the preceding paragraph
and we shall show that the unitary groups €5 converge strongly on
A, and uniformly with respect to ¢ on bounded ¢ sets. To this end it
suffices to prove that for any bounded open set Bin E, and any operator 4
in o/(B) and any strictly positive number ¢ and any vector u in I*(E,)
and any positive real number T there is an integer n, such that

”(eitS(gn) _ eits(g’"))u®O'(A)lP0” <g (416)

whenever n and m are greater than n, and |t/ < T. For finite linear com-
binations of vectors of the form u®a(4)y, (with B varying) are dense
in A, so that the validity of (4.16) would show that the unitary groups
'S converge on a dense set uniformly on bounded ¢ sets and con-
sequently converge everywhere on 4, uniformly on bounded ¢ sets.
The limit will therefore be a strongly continuous unitary group. We may
and shall define S(g) as the infinitesimal generator of this group.
Suppose n=m. Then (g,,g,,) = lg./> which is real. Hence by (2.15)

”(eits(gn) — eitS(gm))u®g'(A)lp0”

. 4.17
= ("7 — Du@ o (A) | - @

If n=m>sup{|k|; ke B} then the support of g, —g,, is disjoint from B
and by the proof of Proposition 2.2 /"R~ commutes with 1®,, 4,
this product being defined relative to the decomposition (2.3). Hence
e''Sn=9m commutes with I ® o(4) and we have

itS(gn) __ ,itS(gm)
li(e | 8_ Ju®ao(A)w,ll (4.18)
< Al (e — Du @l

for all sufficiently large n and m.
In order to estimate the right side of (4.18) we first show that if B,
is any bounded open set in E, and D is in ¥(B,) then

D@y uByo) = im(Du@y,, udp,)  (“19)

where y, is the sequence of physical rest states whose C* algebra limit
is the state w of .o/ with respect to which #;, and %, have been defined.
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Eq. (4.19) clearly holds if D is of the form D=C® A4 where C is in
A(L*(R,)) and A is in o/(B,) by Eq. (2.9). Consequently it holds also for
finite sums of such products. Such finite sums are strongly dense in (B, )
while the left side of (4.19) is strongly continuous on bounded sets in
%(B,) by Corollary (1.2b). Thus if D is in ¥(B,) there is a bounded net
D, of finite sums of products, by the Kaplansky density theorem, such
that D,— D strongly. Thus

(6(D)u®wo, u® o) =lim lim(D,u® vy, u®vyy,)- (4.20)

Since the states of .«/(B) determined by the vectors v, converge in trace
class norm, the (unnormalized) states of ¥(B,) determined by the vectors
u®p, also converge in trace class norm. Thus, since the operators D,
are bounded, the two limits on the right of (4.20) may be interchanged,
yielding (4.19).
Replacing D by D*D in (4.19) we get [|6(D)u®p,ll =lim [Du®wp, ||
J

and consequently, for any function 4 in K, with compact support we have
(e —Du@po| =lim ||(e"*? ~ Du®p, || . (4.21)
Let ’
Z= | u(k)~*a(ky* a(k) dk .
Ea

Then in view of Eq. (4.15) and Proposition 3.3 u®1w, is in the domain
of Z for each physical rest state y, and arbitrary u in I*(E,). Hence

I — Du@w,|

. 422
S[ERP=D(EZ+ D2 NZ + D u®w, - @2

We now estimate the first factor on the right of the last inequality. Since
the domain of R(h) contains the range of (Z + 1)~ '/* we have

20— D) (Z+ )7 2] =

t
j‘eisR(h)iR(h) (Z+ 1)_1/21,Ud5
[

(4.23)
S TIRM(Z+ 1))yl
whenever |t| £ T and for all p in A
We assert that for any g in K,
IR(9)(Z +1)""2|| < const|g]. (4.24)

where |g|, = (j lg(k)|* u(k)* dk) 12 and the constant depends only on y,
Ea
and t. For in fact if we put a(g)= [ g(k) a(k) dk then for any y in &,



Relativistic Polaron 57

we have Ja(g)*v|* = lla(g)w]®+1gl5 lwl* so that [a(g)*w| < lla(g)w]|
+1glo llwll and [[R(g)y| = li(alg) + a(@)*)wl £ 2llalg)w] + Iglo llpll. But

lat@)wll = If g(k) atk)yp dk]|
< Jlgk)l lla(k)p| dk
Slgl(f uk)~" llakyp | dk)*'?
=lgl. 1Z' 2] .
0

Since |glo < po *lgl. we have

IR(g)w| < constlgl.(|Z' | + |wl))
< constlgl, [I(Z + 1) 2]l .

Replacing y by (Z + 1)~ 2y (which is again in &,) yields (4.24) (cf. [7]
on N, estimates).
Combining (4.18), (4.21)—(4.24), (4.15), and (3.5) we have

(€5 — e156m) 4@ () o

< || A lim sup [|(e" R~ — Nu @y |
i (4.25)

<const A Tlg,— Gnl. limJ.SUP I(Z + 1)*u®y;]

= const | A]| Tlg, — gl |ull limjsup(f p() " | iR m(k)* k)12 .

The last factor is finite by an assumption of the theorem while |g, — g,,l.— 0
as n and m— oo. Hence the left side of (4.25) goes to zero uniformly for
|t) T as n and m go to infinity. This proves the existence of a well
defined self-adjoint operator S(g). We note incidentally that taking the
limit on n in (4.25) yields

(5@ — &S u® a(A) o || = Clg — gl (4.26)

for all m such that B C {k : |k| £ m} where the constant C does not depend
on g or m.

In order to prove strong continuity of the map g — ¢"**@ we consider
a sequence h; in K, which converges in K, norm to h. It suffices to prove
e"5S™) ¢ converges strongly to €™ ¢ when ¢ =u® a(A), is an element
of the form considered above since finite linear combinations of these
vectors are dense in #,,. Let ¢ > 0. Choose m so large that B C {k : |k| < m}
and such that C ( I 1h())? plky dk) 12 <¢, where C is the constant

|kl >m

appearing in (4.26). Put h;=v;+w; and h=v+w where v;(k) = h;(k) for
|k} <m and is zero otherwise and v(k)=h(k) for |k|<m and is zero
otherwise. Then since C|w|, <¢ and |w—w|,—0 we have C|wj|, < 2¢ for
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all sufficiently large j. It follows from (4.26) that
H(eitS(h,) _ eizS(h))(p” é ||(eils(hj) _ eitS(Uj))(p”
+ ”(eitS(v,) _ eitS(v))(p” + ”(eitS(u) _ eitS(h))(pH (427)
é 38 + ”(eitS(Uj) _ eitS(u))(p“

for all sufficiently large j and for || < T. Now |v; — v|,—0 so v; converges
to v in I*(E,, dk). It is known [11] that the map g— ¢"R@ is a strongly
continuous map from I*(E,, dk) and since e''5"? = G(e"®™¥) and ¢ is
unitarily implementable on €({k: [k| =m}) by Corollary 1.2, it follows
that the last term on the right of (4.27) goes to zero as j— co. This
establishes the strong continuity of the map g— e'*59.

The uniqueness of S(g) follows immediately from i) and ii) since ii)
determines S(g) uniquely when g has compact support and i) determines
€5 uniquely for each ¢ for all g in K, because the functions in K, with
compact support are dense in K..

The validity of (2.15) for all g and ¢’ in K, follows from the fact that
both sides are strongly (jointly) continuous functions of g and ¢’ and the
equality is valid, as has already been observed, when g and g’ have
compact support.

The proof of part b) is similar to that of part a) and somewhat simpler.
If h is a bounded measurable real valued function on E, with compact
support then e''P» lies in %(B) for some bounded open set B by Proposi-
tion 2.2 and by Corollary 1.2b) or ¢) and Stone’s theorem the equation iv)
determines a unique self-adjoint operator N(h) on #,,. The operators
N(h) commute with each other because the operators D, do and ¢ is an
isomorphism. If now h is any element of L, let h,(k)= h(k) if |k| =n and
be zero otherwise. We show that "N converges strongly on #,, and
uniformly with respect to t on bounded ¢ sets. Since

@itV ) _ gitN (i) — GitN Uim) (pitN(n=lm) _ J)

(because this identity is valid for the operators D,) it suffices, as before,
to show that lim ("Nt — [y ®1p,)| =0 uniformly for [¢|<T.

For this purpose we need only show that [|(e"®m ™) — u®1p;| goes
to zero uniformly in j and [t| < T as n, m— 00, as noted before. But by
Proposition 3.3 and Eq. (4.15) we have

, I
[(e*Pre =1 — Du@y;l| < | 1Dy, -1, u@w;l ds
0
= Tull | By, -, il -
Since
B,fzpj=vaj+B,,zwj (4.28)
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where v(k,, k,) = h(k,) h(k,) (see Remark 3.2 for notation) it follows from
3.5) that
= 1By, il1* = (] 1 (k) — By ()] | £3(k) () dk)?

+ [ (k) = By (k)2 | fR) (k)| dk

< const (] (k) — hy, (k)] () ()™~} dk)?

+ const | [k, (k) — h,(k)* (k) {u(k) ===} dk .
The last two integrals converge to zero by the dominated convergence
theorem since the expressions in braces are integrable and the other
factor under each integral converges to zero pointwise and boundedly.

This establishes the existence of self-adjoint operators N(h). We note
that it follows from the preceding inequalities that

("N — "Ny @ 6 (A) ol
< Al el ful [Cl( ) lh(k)lu(k)’ﬂ(k)_’_3dk>2 (4.29)

[k >m
+Co J R k) pll) ™ k| 1
k| >m

where C, and C, are constants. The proof that ¢¥® is a strongly
continuous function of h in the indicated topology now follows from
(4.29) in exactly the same way as i) followed from (4.26). This establishes
properties iii) and iv) for the operators N(h) and uniqueness follows from
these properties because the functions of compact support in L, are
dense in L, in the indicated topology.

The linearity, commutativity and order preserving character of the
operators N(h) as well as the Eq. (2.16) follow for functions with compact
support from the corresponding properties for the operators D, because o
is unitarily implementable on each algebra %(B). For general h and /'
in L. and g in K, and real o« and f the equation "N @ A1) = pitaN(h) pit AN ()
follows by taking strong limits as & and k" are approximated by functions
with compact support. This establishes the commutativity of N(h) and
N(I) as well as the linearity. The Eq. (2.16) also follows by taking strong
limits over approximations to & and g by functions of compact support.
It remains to prove that N(h)=0if h=0and hisin L. If h,(k) = h(k) for
|k £n and zero otherwise then N(h,)=0. If f is a C* function on the
line with compact support in (—c0,0) and f is its Fourier transform
then for any vectors ¢ and y in X,

(fIN o, p)=Cm)~" | (e "™ Po,y) (1) dt
—lim @)t | (@Y, y) ) di

= lim (f(N (1) 9. w)
=0
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since f(N(h,))=0 for each n. Hence f(N(h))=0 and therefore N(h)=0.
This concludes the proof of Theorem 2.

Proof of Corollary 2.1. If A is a self-adjoint operator on a Hilbert
space then a vector v is in Z(A4) if ||t~ (e”"4 — 1)y is uniformly bounded
for t & 0. This follows from the spectral theorem and the equation
ith _ 12

d(E,v,v) (4.30)

n

[ A?d(E,v,v)=lim lim

© t=0 L,

where E(-) is the spectral resolution of A. If 4 has compact support then,
in virtue of (4.19), the equation e"?* =1 ®,e"®* and Eq. (4.28), as well
as Proposition 3.3, we have

lt™ 1™ — Du@yo | * =lim sup [t~} (P — 1)u®, v,
=lim sup lull? Ilt"(e“B"j— Dw;l?
< lim sup lull? 1 Byw;l®
< [lufl? lim sup {(J1h(O) (f(k)/u(k))* dk)*

+ [ h(k)> (f;(k)/pu(k))* dk}
< const ul| > {(f |h(k)| u(k) =2 dk)* + [ h(k)* u(k)~> dk} .

If h is a general element in L, and h,(k) =h(k) for |k|<n and is zero
otherwise, then (4.31) applies to h,, and in view of Theorem 2 (iii) and the
dominated convergence theorem we may take the limit as n—co and
obtain the validity of (4.31) for any h in L.. This establishes the corollary.

The next two lemmas are preparatory to the proof of Theorem 3.
We recall that H,(p) denotes the restriction of the total Hamiltonian H,
with cutoff function f, to the infinitesimal subspace of total momentum p.

(4.31)

Lemma 4.3. Let P=(P,,...,P) denote the vector of momentum
operators for the Boson field [cf. Eq. (2.5)] and let E(P)=(m*+ P?)'/2.
Let S be a bounded open set in E; and let A be in <Z(S). Denote by
P'=(Py,..., P) the vector of self-adjoint operators given by

Pj= [ k;b(k)* b(k)dk
keS
where k=(k,, ..., k;). Suppose that v and Ay are in the domains of
P, P and (P})* for j=1,...,d. Then v is in the domain of [E(P), A] and

I[EP), Alpl = ?1’17 {IPY Ayl + Al (P}
a (4.32)
+2 .;1 {IP; Awll + (Al 1P}

I

d
where (P')* = ) (P)*.
j=1
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Proof. Since E(p)<m+|p,|+ -+ +|p, for all real p,,...,p,, and
Py, ..., P, commute it follows that y and Ay are in the domain of E(P)
and hence v is in the domain of [E(P), A]. Let

Q;= | kibly*bkydk j=1,....d.

k¢S

If B, C, and D are three self-adjoint operators with a common core &
then the equation Bo + Co =D¢ for all ¢ in & implies that D is the
closure of B+ C. For denoting closure by a bar and restriction to &
by a subscript e we have

(A+B)" >(4,+B,) =C,=C
(A+B*>A*+B*=A*+B*>A4,+B,=C,
(A+B)"cC¥=C.

Thus since P;=P;+ Q; on &, P; is the closure of P; + Q; and Q; is the
closure of P;—Pj. In particular ¢ and Ay are in the domain of Q;,
j=1,...,dand hence in the domain of E(Q). Since A4 is in .27 (S) it commutes
with any function of the Q;. In particular [E(Q), AJy =0. Therefore

LE(P), Aly =[E(P)— E(Q), A]y .
Now if p,p’, and q are vectors in E; with p=p’' + ¢ then

while

so that

M+ + gD —m*+141?)
E(p)—E(g) = E()+ Eq)

d
=(EQ)+E@) 1+ 3 24,(E@)+ Bl@)™" 55

Since the operators P;, P}, Q; are commuting self-adjoint operators with

P,=closure of P/+Q; and since |(E(P)+E(Q) ' <(2m)"' while
IQ(E(P)+E(Q))~'| =1 it follows that

ILEP), ATwl = |LE(P) - E(Q), A1y
< |(E(P)— E(Q@) Ayl + | A(E(P)— EQ@)w]
<@m)H (PP Ap] +23 [ PAy]

d
+ 1A @m)~ (Pl +2] 4] ‘_Zl 1Pl -

This proves the Lemma.

The next lemma was first proved rigorously in [3, Theorem 1].
We give a short proof. If U is any unitary operator on the one Boson
Hilbert space # = I*(E,) then, regarding % as the space of all symmetric
tensors over J#, we denote by I'(U) the unitary operator on & which is
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URU®:--®U on symmetric n-tensors for n=1 and is the identity on
zero rank tensors. If D is a self-adjoint operator on s# then dI'(D) denotes
the self-adjoint operator on & defined via Stone’s theorem by the
equation I'(e"'?)=exp(it dI'(D)) for all real numbers t. R,(g) is defined
by Eq. (2.6).

Lemma 4.4. Let D be a self-adjoint operator on # and let g be in the
domain of D. If vy is in 2(dI"(D)) "D (N''?) where N is the number operator
on F then v is in the domain of dI'(D)e'®°® and

dr(D)e'™ @y =" {dr(D)y +(Dg. g)y + Ro(iDg)p} . (4.33)

Proof. We start with a well known and simple to prove identity:
T'(U)Ry(g) T'(U)"* =R,(Ug) [2, Theorem 4] which by the functional
calculus yields I'(U)exp(iRy(g9)) =exp(iRo(Ug)) I'(U). Substituting
U =¢"? and using the commutation relation

eiRoUg) _ ,iRo(g) oiRo(U—1)g) ilm(Ug,9)

(cf. 2.15) we obtain
F(ei’D)eiRO(g’zp — eiRo(g)eiRo(e“Dg—g)eilm(ef‘Dg,g) F(eitD)w . (434)

By Stone’s theorem the lemma will be proved if we can show that the
derivative of the right side exists at t=0 and takes the appropriate
value. Thus it clearly suffices to prove that the derivative of e!Ro(?9=9)y,
exists at t =0 and equals iR,(iDg)y. But, using (2.15) again, we have

iRo(eitPg—g) =eiRo((e“D—I—itD)g)eiRo(ith)

e Yy

. itD_7_: .
e ilm((eit I uD)g,tth)w.

The assertion now follows from the inequality
e~ (exp [iRo((e"*” — I — itD)g)] = I)y| < [[t ™" Ro((e""” — I - itD)g) ||
<74~ Dg—iDg| (N + 1)y

which goes to zero as t—0, showing that the derivative of
exp[iR,((e"® —1 —itD)g)] ¢ is zero at t=0. This proves the lemma.
Remark 4.1. The lemma implies thatif B=dI'(D)+ (Dg, g)I + R,(iDg)
then the closure B of B equals e ~*°@ dI'(D)e'Re@ which is the assertion
of Theorem 1 of [3]. For any vector v in Z(B) can be approximated in B
graph norm by vectors in Z(N'?)n2(dI'(D)) (e.g. by finite particle
vectors) so that (4.33) implies B C e~ *Ro@ g (D)e'Ro®. However by the
spectral theorem we may write D =D, + D, where D, and D, are com-
muting self-adjoint operators with D; =21, D, < —1, ge Z(D,)n2(D,)
and dI'(D) = closure of (dI'(D,) + dI'(D,)). The corresponding operators
B, and B, are self-adjoint on their domains since R (iD;g) is infinitesimal
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with respect to dI'(D), j=1,2, and so B;=e~ ®@ dI'(D)e'®@, j=1,2.
Since B, + B, C B we have ™ "*9(dI'(D,) + dI'(D,))¢'**¥ = B, + B, C B.
Hence e Re@ dr(D)e'Ro@ ¢ B.

Lemma 4.5. If f, satisfies the hypotheses of Theorem 2 and v, denotes
the rest state of H, with unit norm then for each operator A in o, there
is a real number c(A) such that

|H,(0) Ay, =c(4) forall n. (4.35)

Proof. Since H,(0)y, =myp, we may write H,(0) Ay, = [H,(0), 4]y,
+my Ay, provided Ay, is in the domain of H,(0) and we shall show
this in the course of the proof. We will thus obtain

[1H,0) Aw,ll = [ILH,(0), A1, | +mq | Al - (4.36)

Since A is a finite linear combination of operators of the form e'Ro®@

where g has compact support it suffices to prove the lemma in case
A = ¢'Ro@ when ¢ is an I? function with support in a bounded open set S.
We prove that each of the three terms in [H,(0), A] corresponding to the
three terms in (2.4) gives a uniformly bounded contribution to the right
side of inequality (4.36). First we consider the middle term of (2.4). This
term, in the notation of Lemma 4.4, is dI'(D) where D is the self-adjoint
operator of multiplication by u(k) on L*(E,).

Since y, is in the domain of H, we may apply Lemma 4.4 to obtain

[ (k) b(k)* b(k) dk, ¢'Re®

w“

= [le®D{(ug, g)w, + Roling)w,|
=(ug, g9)+ IR, (ing) w,l
<(ug. 9)+ 2| ugl II(Ns+ 1), |

where
Ng= f b(k)* b(k) dk .
s

Proposition 3.3 shows that

”(NS + l)l/zwnnz = (Nswn’ lpn) +1
= ilfn(k)/#(k)lz dk+1

which is uniformly bounded in n.
Next we consider the first term in (2.4). We must show that
[|LE(P), e®o@ ]y, || is uniformly bounded in n. Putting P;= | k;b(k)* b(k)dk,
N

j=1,...,d, we note first that in view of the proof of Proposition 2.1, in
particular the equation s(m) < m, we have m = m, > 0 so that by inequality
(4.32) it suffices to show that |[(P})*e @y, |, [[Pje®@p,[, [(P})*w,l
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and ||P;y,|| remain uniformly bounded as n—co for each j. (Actually
m— oo in all interesting cases.) In the notation of Lemma 4.4 P} is dI'(D)
where D is multiplication by the bounded function k;ys(k) and s is the
characteristic function of S. Hence by Lemma 4.4

[(P))* eRo@rp, || = [ RO {P; + (k;g, g) I + Ro(ik;g)} ,ll
=[l{P; + (k;g, 9) I + Ry (ik;9)} w,ll

for a=1 or 2. All of the operators appearing are dominated by a power
of (Ng+ 1)}2 in the following specific sense:

IPiwl =b[(Ns+ Dyl
b=sup{lk;:ke S}
1P wll <b* (N5 + 1)
1P} Ro(ik;g)wll < 2b kgl (Ns+1)* 2
IRo(ik;9)* wll < 8lk;gl* |(Ns + Dl -

where

Thus for some constant C independent of n we have
ICE(P), &% @], | < C||(Ns + 1)* w, ||
S2C| sy, (4.37)
s2C eXp{f (€ = ) | fulk)/ulk)? dk}
S

by Corollary 3.5. This is uniformly bounded in view of the assumptions
on the sequence f,. We remark that ||(Ng + 1), could also be estimated
easily using just Proposition 3.3 and the commutation relations for the
b(k).

Finally the potential V, in %, is V,=R,(f,) and the commutation
relations show that

[Vm eiRo(g)] = _-2i Im(g, fn)eiRo(g) )

Hence R
IV, €@, | <2[Im(g, £,)] -

Since g has compact support the right side is uniformly bounded in n.
Thus we have shown that each term on the right of the inequality

ILH,(0), A1y, | = ILE(P), A]w,| + [ éf (k) b(ky* b(k) dk, A} Yy

+ 10V Alwil

is uniformly bounded in n when A4 =¢'®o@, This concludes the proof
of the lemma.
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All tensor products in the remainder of the paper will refer to the
total momentum decomposition (2.3) and we shall henceforth write ®
instead of ®,,.

Lemma 4.6. If f, satisfies the hypotheses of Theorem 2 and v, denotes
the rest state of H, with unit norm then, for each operator A in £, and each
function u in I*(R,) with compact support in total momentum space R,
there is a real number c(A, u) such that

|H,u® Ap,)| Sc(4,u) forall n. (4.38)

Proof. Keeping in mind the discussion of Egs. (2.3) and (2.4) we may
write

IH,u®Ap)lI* = [ [u@)|® |H,(p)Aw,|* dp. (4.39)

But H,(p)— H,(0) is a bounded operator of norm at most |p|. Hence,
in view of Lemma 4.5, we may write

IH,u®Aw,)|? < [ lu@) {1 H0) Aw,ll +pl [Aw,[1}* dp
< [ lu@)? {c(A) + Ipl 141}> dp

which is finite since u has compact support.

Proof of Theorem 3. Let S, be the open ball of radius »n in E,.
Identifying L*(S,) with functions in I?(E,) vanishing off S, we let .Z,
be a countable dense set in I?(S,) and put .4 = | | #,. Then .4 is a

countable dense set in I*(E,).
Given a weak accumulation point w of the w, choose a subsequence #;
as indicated in Corollary 1.1.

If u,v,g and h are in .# then by Lemma 4.6 (H, (u®e @y, ),
v@eFoMy, )is a bounded sequence. Therefore we may find a convergent
subsequence. Since # x .4 x .# x ./ is countable there exists, by
diagonalization, a sequence n; —co such that (H, u®e*@y, ),
v®e oMy, ) converges for all u, v, g and h in .#. We shall be concerned
henceforth only with this subsequence to which we now restrict our
consideration.

We therefore change notation, writing y;, ®;, H; and we assume that
w; converges to w in the two senses indicated in Corollary 1.1 while

(Hu®eRDyp), v@eRo®y)) (4.40)

converges whenever u, v, g, h are in /.

We assert that (4.40) converges for all u, v, g, and h in I*(E,) with
compact support. In order to see this let u and g be in .4 and let v and h
be in [*(E,) with support in S,, say. Choose v, and h, in .#, and put
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wi=Hu®e*Pyp), a,=v@e®Py, and f;=v,@e "y, Then
since (W), o) — Wy, ol SIwyn o) —(wy, Bl +1w;, B) — W Bl
+ (W, Bi) — (Wi, )| we may write, estimating ||w;|| < const by Lemma 4.6,

I(w;, OCj) — (W, ) = ConSt(”aj - ﬁ,” + llowe = Bil))
+ 1w, Bj) — (Wi, Bl -

Hence

lim sup|(w;, o) = (Wi o4)| < const. lim sup(fla;— fll + llaw. — Bl)

But fo;— Il £ Hv —voll + [[v] [(e'Re™ — eiRo®)yy | By the definition
of w and v, Tim [lo; — Bl| < [lv — v + [v]| [|a(e iRt _ e®o®) |l Now
the map h— e'Ro™ s strongly continuous on I*(E,) and by Corollary 1.1
the restriction of ¢ to 2/(S,) is unitarily implementable. Hence the map
h—a(e'®®) is strongly continuous on L*(S,). Therefore if h, is chosen
to be sufficiently close to h and in I*(S,) then |o(eiRo™® — giRothal)y, i
can be made arbitrarily small. Choosing v, in .#, such that |[v—uv,] is
small shows that lirri. iupf(wj, ;) — (wy, o)l =0. This shows that (4.40)

converges for all u and g in ./ and all v and h in L*(E,) with compact
support. Bringing the self-adjoint operator H; over to the other side of
the inner product in (4.40) we may now repeat the preceding argument,
holding v and h fixed, to obtain the assertion following (4.40).

Since each operator in o, is a finite linear combination of the
operators e'®@ g e [2(S,) it follows that, for any 4 and B in ./, and u
and v of compact support, (H(u® Ayp;), v®By);) converges as j— co.

Denote by I2(R,) the space of functions in I*(R,) with compact
support. Let # be the linear space in £, consisting of all vectors a
of the form

n

a= Y u®ac(A)wo (4.41)

k=1

where u, is in I2(R,) and A, is in o7, for k=1, ..., n and the sum is finite.
We assert that £ is dense in #,,. To this end it suffices to show that
a(Z,)p, is dense in #,. But for any bounded open set S C E;.</(S) is the
strong closure of .o, N.«/(S) and since ¢ is unitarily implementable on
</ (S) it follows that the strong closure of (. N2/ (S)) is (< (S)). Thus
the closure of a(ﬂo)tpo contains o (o (S))zp0 for all bounded open sets S.
Since U (Z(S))p, is dense in K, so is o(,)wo. Therefore & is dense

m9£/p.

Let m
B= 3. v,®a(B)y, (4.42)
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be another element in .. We have seen that the limit defining the
following sesquilinear form F on the algebraic tensor product
I2(R)® o, exists:

F( Y u;®A;, k; vk®Bk>

=1

. . (4.43)
=Jhm (Hj Z uk®Akw1~>, Z Ur®quJj).
- k=1 r=1
Now we note that
}irg I1Z,0,®B,y,|*= Jlljg Y. (v, v5) (B,y;, Bow)

= Z (Uw Us) (G(Br)wOa G(Bs) 1/-)0)

=Bi*.
By Lemma 4.6 there exists a constant C depending on iy, ..., U,, Ay, ..., 4,

but not on j such that < C for all j. It follows that

H; (kz uk®Aktpj)

=1

m

z vr®Brwj

r=1

|F(-,-)| £C lim (4.44)
j— o

ZCIBI-

Similarly, bringing the operator H; to the other side of the inner product
in (4.43) it follows that there is a constant C’ depending only on vy, ..., B,,
such that

[FC = Clall . (4.45)

This inequality shows first that if v,,...,B, are held fixed then
F(-,2v,®B,) defines a linear functional on L%(R,)® ./, whose null
space contains the kernel of the map Zu,®A,— 2u,@a(4,)w, =2,
so that F(-, Zv,® B,) defines a linear functional on . Secondly it shows
that the linear functional is continuous on .

Similarly the inequality (4.44) shows that if the first argument of F
is held fixed in I2(R,)® «/, then F defines a continuous anti-linear
functional on %. Hence F defines a separately continuous sesquilinear
form {a, f) on & x & given by

<0(> ﬁ>=F<ki uk®Ak, i U,@Br)

=1 r=1

where « and f are given by (4.41) and (4.42).
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Since {-,-> is separately continuous on . x .# there is an operator H’
on %, with domain % such that

o, By =(H'ar, )

for « and f in &. It follows from the self-adjointness of the operators H;
and Eq. (4.43) that {a, > =<{B,ay. Consequently H' is a symmetric
operator on #. Moreover, since H; =m, I for all j we have

Con o) =Him(H(Zu, @A), T, ® A1)
2 limmo |1 2,14, ® Ay,
= mg |lol|? .

Therefore H' =2 m,I. Let H denote the Friedrichs extension of H'. Then
H is self-adjoint and H = m, .

Conclusion i) of Theorem 3 is satisfied. Now taking A4 equal to the
identity operator in Eq. (4.39) we have

|lHJ'u®wj“2 = éf |“(p)|2 ||(Hj(p) - Hj(O) + mo)leﬂz dp
= Rf lu(p)* (I(H;(p) — H}0))w;]| + mo)* dp

< [lu(p)* (mo + Ip)* dp .

Thus if ¢>0 and | [u(p)l* dp=1 and u(p)=0 for |p| >¢ then |H;u®1y;]
=<(m, +¢). Hence

(Hu®y, u®yp)<my+e forall j.

It follows that (H' u®uwp,, u®py)=my,+e¢ and since [u®@pyl =1 we
have inf spectrum (H) <m, + ¢. Since ¢ is arbitrary, conclusion ii) of the
theorem follows.

In order to prove part iii) of the theorem we first note that the operator
D, = { h(k) a(k)* a(k) dk was shown in the proof of Proposition 2.2 to be
equal to I ®,, B, [cf. Eq. (4.15)]. We first restrict our attention to the zero
momentum subspace.

Note that if 4 and C are self-adjoint operators such that 4 =0, and
2(C)>9(A), and A — C is self-adjoint and bounded below, and y is a
unit eigenvector of A — C with eigenvalue equal to inf spectrum (4 — C),

then
C=A+(Cy,p). (4.46)

For A—Cz(A—Cy,yp)= (A, p)—(Cyp,p)= —(Cy, p). We apply this
with 4 = H;(0) and C = B,,. Thus

A-C= Ef (u(k) — h(k)) b(k)* b(k) dk + E(— P) + ¢,(0)
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where ¢;(0) = | fi(k) (b(k) + b(k)*) dk and the mass in E(—P) has been
chosen so as to make m, the bottom of the spectrum of H;(0). Since
u(k) — h(k) is a real and even positive function bounded away from ZE10
we may apply Theorem 8 of [8] to obtain a unit eigenvector p for A — C
with eigenvalue lying at the bottom of the spectrum of the semi-bounded
operator A — C. Proposition 3.3 is applicable to yield an estimate of
(B, w, ) except, of course, that u(k) must be replaced by u(k) — h(k). Thus
(3.5) yields

k 2
(B 1)< | hit 2| .
Hence inequality (4.46) yields
B, < H{(0)+ [ h(k) 'm dk . (4.47)

Now E(—q) =< E(p— q) + |p| for all vectors p and ¢ in E,. Hence E(—P)
< E(p— P)+|p| and consequently H;(0) < H;(p) + |p|. Therefore

B, < H;(p) +d;(h) + |p| (4.48)

where d;(h) = [ h(k) | f;(k)/(u(k) — h(k))|* dk
Suppose that the functlons u, in Eq. (4.41) have support in S,. Put

wi= Y @ Agyp; and wi(p)= Y. u(p) Ap;. Then

K=1 k=1
(Dyw;, w) = (I ®,By)w;, w))
[ Buwi(p). wi(p) dp

|pl<a
él II ((H;(p) +d;() + Ipl) w;(p), wi(p)) dp ~ (4.49)
=(Hj+dm)wyw)+ [ Ipllw;l*dp

|pl<a

S((H+d;(h)+a)w;, w)).

i
We wish to take the limit j— oo in this inequality to obtain
(N(h)o, ) ((H' + d(h) + a)os, o) . (4.50)

However while the right side of (4.49) does indeed converge to the right
side of (4.50) by the definition of H' and d;(h), we do not know that the
left side converges. Thus we proceed as follows. First restrict 4 to have
compact support (in addition to the previous restrictions) in some
bounded open set S. Let ¢ be a non-negative, continuous, bounded
function on (— 00, oo) such that ¢(t) <t for all ¢ in [0, c0), and assume
further that ¢ is the Fourier transform of an integrable function .
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Then ¢(D,) = D, and therefore
(@(DYw;, w) = ((H;+d(h)+ a)w;, w)) . (4.51)

Now ¢(D,) =1®,,¢(B,) is in €(S) since ¢ is bounded and h has compact

support. Thus in view of Eq. (4.19) and the definition of o and w; we

have lim(p(D,)w;, w;) = (6(p(D,)), o). Since 6 is unitarily implementable
J

on %(S) by a unitary operator which takes D, to N(h) (cf. Theorem 2, iv)
it follows that 6(¢(D,)) = @(N(h)). Hence taking the limit j— co in (4.51)

we obtain
(PN (W), ) = ((H' + () + a)t, ) (4.52)

for all functions ¢ of the indicated type. Now we may remove the restric-
tion that h have compact support. For if 4 merely satisfies the hypothesis
of the theorem and h,(k)=h(k) for |k| <n and is zero otherwise then
d(h,)—d(h) by dominated convergence, as n— oo, and, since e''N(

converges to e’V strongly, the equation o(N(h,))a = | &"™V" o (1) dt

shows that ¢(N(h,)) converges to ¢(N(h)) strongly. Hence (4.52) holds
without a compact support restriction on h. Next we shall remove the
function ¢.

We note incidentally that by Corollary 2.1, o is in the domain of N (h).
However we shall not use this fact. The domain of (H +d(h) + a)*/? is,
by the definition of the Friedrichs extension, the closure of Z(H’) in the
norm given by the square root of the right side of inequality (4.52). Since
the left side of (4.52) is continuous in this norm (in fact in %, norm since
¢ is bounded) the inequality persists for all o in 2(HY*)nI*(S,)® #,

R T (N gl < 1 () + ) (453)
ve Z(H")NI*(S)R A, -

Letting ¢ increase to the function ¢(t)=t through a pointwise con-
vergent sequence of functions of the indicated type, now shows, with
the help of the spectral theorem for N(h) and the monotone convergence
theorem, that (2.17) holds. We remark that the subspace I*(S,)® 4,
is invariant under H. This is clearly the case for H' as follows from (4.43),
the form of H; and the definition of H'. Since HC H'* and H'* leaves
[*(S,)® H invariant so does H. This concludes the proof of Theorem 3.

§ 5. Concluding Remarks

5.1. Tt is clear from the definition of ¢, that the operators corre-
sponding to the total momentum of polaron plus Boson field are
definable as self-adjoint operators on .#,,. Newton-Wigner polaron
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position operators also act on .#,,. Evidence indicates, however, that
the polaron momentum operators and Boson momentum operators are
not separately definable on ¢, in any reasonable way. This is in keeping
with the current view that certain bare observables should not be
definable on the physical Hilbert space.

5.2. We have used Fock space methods in this article but it is illu-
minating to consider the meaning of some of our inequalities in the
Schrédinger representation (Q space representation) of the zero momen-
tum subspace. The use of Fock space is in many ways analogous to the
use of the Fourier transform in the study of partial differential operators.
In the Schrodinger representation of the zero momentum subspace the
Hamiltonian with cutoff is a second order elliptic differential operator
(in infinitely many variables) plus a first order pseudo-differential
operator (that comes from the polaron kinetic energy term) plus a
multiplication operator (that comes from H;). The rest state is thus an
eigenfunction of an elliptic differential operator, and our basic inequalities
amount to estimates on the derivatives (of all orders) of this eigenfunction.
In fact our estimates can be used to show that the rest state is, in a certain
classical sense, an analytic function in the Schrédinger representation.

5.3. Our treatment of this model is incomplete in many fundamental
respects. We do not prove convergence of the states w,, and in fact we
have not even used the fact that the cutoff functions f,(k) converge to
Ju(k)"*? in any crucial way. We do not prove the existence of the
renormalized polaron field as an operator from the one polaron physical
Hilbert space to the zero polaron physical Hilbert space (which is just
Fock space), although I have little doubt of its existence, and some of its
properties are easy to conjecture. We do not have a proof of the irre-
ducibility of the physical one polaron Hilbert space under the Boson
field and the other relevant operators (total momentum and polaron
position). Moreover we do not discuss the many polaron physical
Hilbert space at all.

Nevertheless the three problems that we have solved — the norm
compactness of states (Theorem 1), the extendability of the physical
Boson fields from test functions which have compact support in mo-
mentum space to all of the Schwartz space & (Theorem 2), and the
construction of the total Hamiltonian (Theorem 3) — seem to us to be
basic to any complete treatment of this model as well as other related
models with a momentum divergence.

54. The mass renormalization has been carried out in the present
model by inserting a bare mass m =m,+ dm (m, = physical mass) into
the kinetic energy function (m*+ [p|*)!/? of the nucleon. ém is chosen
(depending on the cutoff function) so as to maintain the lower bound
of the one nucleon Hamiltonian at the (fixed) physical mass m, as the
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cutoff is removed. This is in keeping with the spirit of mass renormaliza-
tion in relativistic theories. However the theorems and techniques we
have described in this paper are equally applicable with no changes of
proof if one accomplishes the mass renormalization by defining the
renormalized one nucleon Hamiltonian in the total momentum p
subspace as

H(p) =(Ho)y + (m§ +(p — P)*)"* + V +(6m)I (5.1)

where dm is again chosen so as to make m, the lower bound of the
spectrum of H(p =0). Frohlich has pointed out in a note [17] that the
first method of renormalizing the model leads in the no cutoff limit to a
model whose dynamics is that of the scalar field model. (I wish to thank
J. Frohlich for an advance copy of his work.) His suggestion that the
renormalization method (5.1) be used in order to achieve a non-trivial
dynamics seems compelling.
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