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Abstract. The (non-Lorentz covariant) system consisting of a relativistic scalar Boson
field φ interacting with a single spinless particle (relativistic polaron) with kinetic energy
function (m2 + |p|2)1/2 is studied in d space demensions, where d^3. The interaction
Hamiltonian is taken to be \ Ψ(x)* Ψ(x)φ(x)dx where φ has a momentum cutoff. The
physical one polaron Hubert space Jfph for this model, corresponding to no cutoff on φ,
is constructed. The total renormalized Hamiltonian H without cutoff is constructed as a
semibounded self-adjoint operator on Jfph. The time zero physical Boson field is also
constructed. First order estimates are established for the local (in momentum space)
number operators in terms of H.

1. Introduction

We consider a single polaron (that is, a spinless electron) interacting
with a relativistic scalar Boson field in d space dimensions. We shall be
concerned primarily with the cases d^3. We take the kinetic energy
function of the polaron to be

E(q) = (m2 + \q\2^2 (1.1)

where m is the bare mass of the polaron. The total Hamiltonian of the
system in the presence of a momentum cutoff/ is

(1.2)
where

H0 = f ψ(p)* E(p) Ψ(p) dp + J α(fc)* μ(k) a(k) dk (1.3)
Ed Ed

W) = ί (Ψ(P + fc)* Ψ(P) a(k) + Ψ(P - *)* Ψ(P) Φ)*} f(k) dkdp (1.4)
Ed

and Ψ(p) and a(k) are the annihilation operators for the polaron and
Boson field respectively. Ed is d-dimensional Euclidean space. Our
objective is to construct the one polaron physical Hubert space Jfph

associated with this model and to show that the total Hamiltonian
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without cutoff (i.e. with f(k) = λμ(k)~1/2) can be defined on this space
as a non-trivial semi-bounded self-adjoint operator with lower bound
equal to the physical mass m0 of the polaron. We also construct the time
zero Boson fields as operators on tfph. This model is well suited for
studying the phenomenon of infinite field strength renormalization.

We outline the procedure here. Let /„ denote a sequence of smooth
cutoff functions with compact support. We shall allow /„ to converge
in a suitable sense to λμ(k)~l/2 where A is a real constant. Write Hn

for the corresponding total Hamiltonian as given by (1.2). We chose
the bare polaron mass m so that the lower bound of Hn is exactly the
physical mass, m0 (a given positive constant), of the polaron. As n->oo
the bare mass m (which depends on ή) will go to infinity when d ̂  2.
Thus the model exhibits infinite mass renormalization when d^2. The
bare Hubert space for the system is

Jf = L2(Ed)®3F (1.5)

where 2F is the Fock space for the Boson field and Ed is momentum
space for the polaron. Since the theory is translation invariant Jf
decomposes into a direct integral of (infinitesimal) subspaces J^, on
which the total momentum of the polaron plus Boson field has the
constant value p, and which reduce Hn. Denoting by Hn(p) the restriction
of Hn to «^p we let ψn be the unique lowest proper vector for Hn(0) in Jv
The existence and uniqueness of ψn was shown in [8, Theorem 8]. We
take ψn to be a unit vector. ψn is the physical rest state of the system with
cutoff fn and the corresponding eigenvalue of Hn(0) is m0.

When d = 2 one expects, on the basis of perturbation theory, as well
as on experience with the external source model [which corresponds
to taking E(p) = m], and as well on the basis of the result of Nelson [10]
for a related model, that Hn and ψn should converge in some reasonable
sense in 3C. It has been shown by Sloan [12] that when d = 2 the vectors
ψn lie, in fact, in a norm compact subset of ̂ 0 and that there is a sub-
sequence rij such that ψn. converges in norm while Hn. converges in the
sense of generalized strong convergence [9, Chapter 8] to a semi-
bounded self-adjoint operator H on Jf] His methods do not involve
the use of dressing transformations and are therefore quite distinct
from those of [10].

When d ̂  3 perturbation theory indicates that ψn converges weakly
to zero. Thus in three or more space dimensions, the model, in all
likelihood, exhibits infinite polaron field strength renormalization, and
we shall assume this in the following discussion. The weak convergence

of ψn to zero is sometimes described by saying that ψn moves out of the
Fock space J^ and into the physical Hilbert space Jf0 which is orthogonal
to JV This can be made meaningful in such a way as to give meaning
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to lim #„(()) as an operator on Jf0 while at the same time allowing the
physical fields to be defined. Let £/0 be the algebra generated by the
unitary operators , „ _ v

exp i j (g(k) b(k) + g(k) b(k)*) dk\ (1.6)

where b(k) is the pointwise annihilation operator on the zero momentum
space ^o (which may be identified with 3F) and g is a square integrable
function with compact support. We shall show that for each operator
A in j/o there exists a constant c(A) such that

\\Hn(Q)Aψn\\£c(A) for all n. (1.7)

Thus the vectors Aψn change with n so as always to be located in the
"well behaved" part of the domain of Hn(0) independently of n. We wish
to include the (informal) limits of the weakly zero-convergent vectors
Aιpn in jf0 also since this will allow ja/0 to act on Jf0

 and ^o largely
determines the physical fields. If one takes for the norm of "Km" Aιpn the
natural one, namely lim||^4ι/;w||, then the reader will recognize that
meaning can be given to JΓ0 by simply defining it as (the completion of)
S/Q itself modulo the kernel of the semi-norm ||^4||0 = lim||^4τ/; l l | |, if
this limit exists.

The formalization of the preceding heuristic discussion underlies
much of the recent progress in the construction of interacting quantum
fields, c.f. [6]. To make this discussion more precise, for any bounded
open set S c Ed let j/(S) be the von Neumann algebra generated by the
operators (1.6) where g has support in S. Let s/ be the closure in norm of
the union of these algebras. Put ωn(A) = (Aιpn,ψn) for A in s/. There
always exists a weak* cluster point of the set {ωn} of states of si. Choosing
one, say ω, we define the zero momentum physical Hubert space JΓ0

to be the representation space for si determined by ω via the Gelfand-
Naimark-Segal construction. Presumably the cluster point ω is unique
but we do not have a proof. If σ is the natural representation of si by
operators on Jf0 and ιp0 is the usual cyclic vector for σ(s/) then ψ0 is to be
interpreted as the physical rest state of the polaron. The spaces ^p

are naturally isomorphic to 3FQ and, identifying them, the total momentum
decomposition of Jf may be written JΓ^L2^)®^ where ^ denotes
identification, Rd is a copy of Ed and a point of Rd represents total
momentum of polaron plus Boson field rather than merely polaron
momentum. We define the physical Hubert space to be Jffph = Z?ORd)(x) Jf0.

In Theorem 1 we show that for each bounded open set S the re-
strictions ωn\s/(S) form a compact set in norm. This implies that ω
is the limit of a subsequence, that JΓ0 and hence tfph are separable,
and that the restriction of σ to s/(S) is unitarily implementable. We say
that σ is locally Fock in momentum space. The spirit involved in this
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type of result is similar to that of [6] although the techniques of carrying
it out are different. Theorem 1 also implies the existence of the time zero
Boson fields φ(g) and π(g) as self-adjoint operators on Jίfph for test
functions g with compact support in momentum space. In Theorem 2
we show that φ(-) and π( ) extend by continuity to a larger class of test
functions including the Schwartz space £f and in particular smooth
functions with compact support in configuration space. In Theorem 3
we construct the total Hamiltonian via the following procedure, which
we outline here for the zero momentum subspace only. Define a sequence
of sesquilinear forms on ja/0 by

The inequality (1.7) implies the convergence of some subsequence to a
sesquilinear form < , > on j/0. We show that the singular set of this form
contains the kernel of the natural injection of s/0 into JΓ0. Therefore
the form induces a (densely defined) sesquilinear form on Jf0, which we
show to be symmetric, positive definite and separately continuous. The
Friedrichs extension theorem now yields a positive self-adjoint operator
corresponding to this form. Similar considerations apply to the total
space Jfp,,. Since the resulting total Hamiltonian H on tfph has been
obtained as a rather weak kind of limit of the Hn there arises the possibility
that H is in some sense a trivial operator. In addition to showing that the
lower bound of H is m0 we show in Theorem 3 that H is actually a
rather strong operator by showing that it dominates the local (in
momentum space) number operators in the first order sense. I.e.,
Ns^CίH(0)-\- C2 as forms. There is strong evidence that higher order
estimates also hold.

In Section 2 we state the main results of the paper. In Section 3
we derive the basic inequalities involving the physical rest state. In
Section 4 we prove the theorems stated in Section 2. The basic inequalities
of Section 3 are all derived as follows. Fixing the cutoff function /,
and suppressing the dependence of the Hamiltonian on it, we have
H(p) ^ m0 [8, Theorem 8] for all p in Rd and H(0) ψ = m0ιp where ψ
is the rest state. Thus for any reasonable operator A we have

(AH(0) ιp,Aψ) = m0(Aψ, Aψ)

Thus ((H(p)A — AH(0))ψ,Aψ)^.0. All of the basic inequalities are
obtained from this by specializing A in a variety of ways and picking p
appropriately.

The present model is in a class of models called persistent inter-
actions because the physical vacuum and bare vacuum coincide. A wide
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class of persistent interactions have been studied by Eckmann [15] and
by Albeverio [13,14]. The models they study are less singular than the
present one and do not require a change of Hubert space. Their methods
are disjoint from the methods used here, partly for this reason. Moreover,
whereas, in [15] the mass renormalization term is determined by second
order perturbation theory up to a finite quantity, in the present model the
mass renormalization must be determined indirectly. This is the case
whether the mass renormalization in the present model is accomplished
as in the body of this paper or as in Remark 5.4. While the main technique
in [15] is a resolvent expansion the main technique in the present paper
is the variational approach sketched above. J. Frόhlich has kindly
informed me of related work on persisent interactions recently carried
out by him in [16].

The work of Sloan [12] was based on the inequalities in an early
version of this paper. In turn his work influenced greatly the present
form of this paper. In addition to the influence of Sloan's doctoral
dissertation I would like to acknowledge helpful discussions with
W. Paris and R. Lavine of the Cornell Mathematics Department and
with T. Kinoshita and K. Wilson of the Cornell Physics Department.
It is a pleasure to thank D. R. Yennie of the Cornell Physics Department
for many illuminating and patient discussions of renormalization theory.

2. Statement of Results

We denote by ̂  the Fock space over L2(Ed, dk) where dk is Lebesgue
measure on Ed. Specifically, we regard 3F as a space of sequences,
u = {un}™=0, of functions, where un(kl9..., kn) is a symmetric function on
(Ed)

n which is in L2((Ed)
n,dkv ...dkn), u0 is a complex number, and

!HI 2 =Σ Ikl2<°°.
n = 0

The state space for a single polar on is L2(Ed) and the state space
3f for a single polaron plus Boson field is given by (1.5). In the usual
way we identify jf with a space of sequences ψ = {ψn}?=o where
Ψn = Ψn(<ί''>kι> ' >kJ is in L2((Ed)

n+\dqdki...dkn). g± will denote the
manifold in Jf consisting of those sequences ψ such thatφn = 0 for large n
and ψn is in the Schwartz space ^((Ed)

n+l) of rapidly decreasing in-
finitely differentiable complex valued functions on (Ed}

n+1 for all n.
For each point k in Ed let a(k) denote the Boson annihilation operator

defined on δ^ Specifically (a(k)ψ)n(qιk1,...,kn) = (n+l)ί/2ιpn+ί(q;k,k1,
...,kn). The polaron annihilation operator Ψ(q), defined by (Ψ(q)ψ)n

•(fclv.., kn) = ιpn(q; kl9..., fcw), is a linear map from S1 into ^.WQ follow the
conventions of [7] in regarding formal products a*(k1)..fa*(kj)a(kj+1)...
a(kn) as bilinear forms on δi x δ^ and integrals of such products as
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integrals of bilinear forms. Moreover when such a bilinear form is the
bilinear form of a closed operator with core δγ we shall simply denote the
closed operator as the integral of these products as in Eqs. (1.3) and (1.4)
above.

As noted in the introduction we take the kinetic energy function
E(q) of the polar on to be given by (1.1) where m is a real constant, the
bare mass of the polaron. The free Hamiltonian HQ of the polaron-Boson
system is the self-adjoint operator on Jf given by (1.3).

By a cutoff function we shall mean a real valued infinitely differ-
entiable function / on Ed with compact support such that f(k) = /(- fc).
We take the interaction Hamiltonian with momentum cutoff function /
to be the self-adjoint operator ///(/) given by (1.4).

The total Hamiltonian for the combined system is the operator
Hf given by (1.2) which is known [10] to be self-adjoint on its domain.

The total momentum operator M is given by

Mj = closure of / J ψ*(q) qjψ(q) dq + J a(k)* k^k) dk\ . (2.1)
Ud Ed }

M is a d-tuple of commuting self-adjoint operators whose spectral pro-
jections commute with Hf. M thus decomposes tf into a direct integral
decomposition

J f = f ^ d p (2.2)
Rd

which reduces Hf, [8, Propositions 6 and 7], where Rd is a copy of Ed.
The infinitesimal subspaces 2Fp are isomorphic to ̂  in a natural way
and upon identifying 3Fp with 2F for all p we may write (2.2) as

(2.3)

We note that this tensor product decomposition of Jf is distinct from
that given in Eq. (1.5). In Eq. (1.5) a point q in Ed denotes polaron
momentum while in Eq. (2.3) a point p in Rd has the interpretation of
total momentum for the polaron plus Boson field. Properly speaking
Jf is not equal to the right side of Eq. (2.3) but is unitarily equivalent
to it in such a way that the total momentum operator Mj on Jf corre-
sponds to multiplication by the coordinate function PJ in the first factor
on the right of (2.3) while the total Hamiltonian corresponds to multi-
plication by an operator valued function H(p\ to be described presently.
We use Rd to denote total momentum space (of polaron plus Boson
field) to reduce confusion of the two distinct tensor product decomposi-
tions of JfJ (1.5) and (2.3).

Moreover we shall write an operator on JΓ which in the momentum
decomposition (2.3) of Jf decomposes as a product, A®B, as A®mB.
Here A acts on L2(Rd) while B acts on 3F.
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Let $ denote the manifold in 3F consisting of those sequences
u= {un}™=Q such that un = Q for sufficiently large n and un is in ^((Ed)

n)
for all n. For such u define (b(k) w)w(/c l9 . . . , kn) = (n + 1)1/2 un+ ± (/c, fel5 . . . , fcn).
Upon identifying J^ with J^ the reduced Hamiltonian H(p) i.e. the
restriction of Hf to the infinitesimal subspace J^, may be written
[8, Proposition 7],

H(p) = E(p - P) + j b(fc)* μ(fc) b(/c) d/c 4- V (2.4)
£d

where
k, 7=l, . . . ,d (2.5)

is the restriction of the Boson momentum operator to 3Fp and

V= l ( b ( k ) + b * ( k ) ) f ( k ) d k .
Ed

We remark that relative to the decomposition (2.3) the algebraic
tensor product I®mb(k] has a natural extension to the domain $±
and on this domain it is related to α(fc) via the equation

/ ®mb(k) = ί $ Ψ*(q + k) Ψ(q) dq\ a(k)
\Ed I

The factor in parenthesis is a unitary operator.

Proposition 2.1. Let m0^0. There exists a unique nonnegatiυe real
number m depending on the cutoff function f such that

inf (spectrum Hf) = m0

when the polaron bare mass is taken to be m.

Proof. Suppressing / we observe that, for two different values,
m and m', of the polaron bare mass, the corresponding total Hamiltonians
Hm ana Hm' have the same domain and the difference Hm - Hm is the
restriction of the bounded operator

j ψ*(q) {(m2 + M2)1'2 - (m'2 + \q\2)112} Ψ(q) dq

to the domain of Hm. Since

m2 - (m'2 + \q\ψ2\ g \m - m'\

we have \\Hm - Hm'\\ ^ |m - m'|. It follows that if s(m) = inf spectrum Hm

= inf{(Hmx, x); ||x|| = l,XE@(Hm)}, then s(m) is a continuous function
of m. It was shown in [8, Corollary 8.1] that s(m) = inf spectrum Hm(0)
and that there is a unit vector ιpm in 3F such that Hm(Q}ψm = s(m)ψm.



32 L. Gross:

If m > m' then

-(((m2 + P2)1/2 - (m'2 + P2)1/2) ψm, ψm) < s(m) .

Hence s is strictly increasing. Since Jμ(fc)b(fc)* b(k)dk+ V is bounded
below [10] it follows from (2.4) with p = 0 that s(m) increases to oo as m
increases to oo. Now s(m) = m if / = 0 with inf spectrum Hm(0) achieved
at the bare rest state Ωin^. Since (VΩ, Ω) = 0 it follows that for arbitrary
/ in the class considered s(m) :g m. Hence the equation s(m) = m0 has a
unique positive solution.

Henceforth we shall assume that the bare mass m is chosen so that
inf (spectrum Hf) remains fixed at the physical mass m0 of the polaron.
Thus m will vary with / and will in fact approach + oo as the cutoff
function / is allowed to approach λμ(k)~1/2.

For each complex valued function g in L2(Ed) put R0(g) for the self-
adjoint operator [2]

Ro(g) = ί (βW) b(k) + g(k) b(k)*) dk . (2.6)

For each bounded open set B in momentum space we denote by
the von Neumann algebra generated by the operators e\p(iR0(g))
where g runs over the functions in L2(Ed) with support in B. Let s/ be the
closure in norm of the union vjtf(B) where the union is over all bounded
open sets BcEd.

Each cutoff function / determines a state ωf of the C* algebra j/
as follows. <$# is to be regarded as an algebra of operators on the zero
momentum subspace Jv Let ψf be a unit eigenvector of Hf(0) in ̂ 0

with eigenvalue m0. The existence and uniqueness of ιpf was shown in
[8, Theorem 8]. Define

ωf(A) = (Aψf9 ψf), Ae^. (2.7)

Theorem 1. Let fn be a sequence of cutoff functions such that for
each bounded open set B in Ed the sequence

is bounded, where Vf denotes the gradient of f. Then for each bounded
open set B the restrictions of the corresponding states ωn to <$/(B) form a
relatively compact set in the norm topology of the dual space jtf(B)*.

Now let λ be a real constant and let/π be a sequence of cutoff functions
which converge uniformly on bounded sets in Ed to λμ(k)~1/2. We may
and shall choose the fn so that the gradients Vfn satisfy the boundedness
condition of Theorem 1. For example we may choose /„ to be any
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cutoff function which is equal to λμ(k)~1/2 when \k\^n and equal to
zero if \k\ ̂  n + 1. The sequences /„ and |F/J can both be chosen to be
uniformly bounded. Although we should think of this sequence as being
the typical sequence to which the following theorems apply none of the
results actually depend on such a strong sense of convergence of /„
to λμ(k)~1/2 and we shall state in each case just what we actually require
of the sequence/„.

If ωn denotes the corresponding state on si then since the set of
states on si is weakly compact in the dual space si* there exists a weak
accumulation point ω of the sequence ωn. That is, there exists a state
ω which lies in the weak* closure of the set {ωm,ωw+1,...} for all n.
We do not know at the present time whether the state ω is unique i.e.
whether there is just one such accumulation point. In fact none of the
following results actually depend crucially on the convergence of the
functions /„ but merely (e.g. in Theorem 2) on a slight strengthening of
the hypothesis of Theorem 1. (The hypothesis of Theorem 1 already
implies the existence of a subsequence of the functions fn which is
convergent locally in L2.) In the following corollaries we consider any
such limit state ω. ω gives rise in a well known manner to a Hubert
space JΓ0, a representation σ of si on JΓ0, and a unit vector ψ0 in Jf0

which is cyclic for σ(si) and such that ω(A) = (σ(A)ψQ,ιpQ). As noted
in the introduction JΓ0 is to be interpreted as the physical one polaron
Hubert space of total momentum zero and ψ0 is the physical rest state
of the polaron. We define the full physical Hubert space for a single
polaron plus field as ^ = L2(^d)(x)jf0 . (2.8)

Corollary 1.1. Under the same hypotheses as in Theorem! there
exists, for any weak accumulation point ω, a subsequence ωn. such that

i) ωnj(A) converges to ω(A) for every operator A in si.
ii) The restrictions ωn\si(B) converge in norm to ω\sί(B) for every

bounded open set BcEd.
For each bounded open set B the restriction σ \ s/(B) is an isomorphism

which is continuous in the strong operator topologies. In fact there is a
(non-unique) unitary operator UB from 3F onto JΓ0 which implements
σ I stf(B). Furthermore JΓ0 is separable.

In keeping with current terminology the unitary implementability
of σ|j/(£) may be referred to by saying that the representation σ is
locally Fock in momentum space.

For each bounded open set B in Ed let %>(B) be the von Neumann
algebra on Jf generated by the operators C®mA relative to the total
momentum decomposition (2.3) where C runs over all bounded operators
on L2(Rd) and A is in jtf(B). We put # for the closure in norm of u <β(B)
where the union is taken over all bounded open sets B in Ed.



34 L. Gross:

We note that # contains all observables corresponding to bounded
functions of the total momentum of polaron plus field.

Corollary 1.2. Under the same hypotheses as in Theorem 1, there

exists, for any weak accumulation point ω, a unique * isomorphism σ
from %> to bounded operators on tfph with the following two properties.

a) For any bounded operator C on I?(Rd) and any operator A in <$#
there holds

σ(C®mA) = C®σ(A) (2.9)

b) For any bounded open set B in Ed the restriction of σ to the unit

ball of y>(B) is continuous in the strong operator topology to the weak

operator topology. Moreover
c) the restriction of σ to ^(B) is unίtarily implementable for any

bounded open set B and is therefore continuous in the strong operator
topologies.

We wish next to show that the Boson time-zero physical fields φ(u)
and π(u) are definable on j f p h for a reasonably large class of test functions
u. The bare time-zero Boson field operators are defined on jf by

φ(u) = j (fl(fc) a(k) + ύ(k) a(Kf) μ(k)~1/2 dk (2.10)

and d

π(u) = ί~i j (u(k) a(k) - ύ(k) a(k)*) μ(/c)1/2 dk (2.11)

where u is a real valued test function on configuration space and ύ
is its Fourier transform. These bare fields φ and π are well defined
self-adjoint operators on tf if ύ(k)μ(k)ί/2 is in L2(Ed,dk). We shall
first show that the physical field versions of φ and π are definable on
Jfp,, when ύ has compact support in momentum space. This is a conse-
quence of Corollary 1.2 and Proposition 2.2 below. Such functions u
cannot have compact support in configuration space, however, and the
objective of Theorem 2 will be to extend the physical fields so as to be
defined for a test function space large enough to contain at least the
Schwartz space of real valued rapidly decreasing smooth functions on
configuration space.

It will be convenient to deal with the fields φ and π simultaneously
by studying instead the self-adjoint operator R(g) on Jf defined for
any complex valued function g in L2(Ed, dk) by

R(9) = ί {« *(*) + 9(k) Φ)*} dk . (2.12)
Ed

If'g(kj = ύ(k)μ(kΓ1/2 then R(g) = φ(u) and if g(k)= -iύ(k) μ(k)1/2 then
R(g) = π(u). While the operators R(g) act on the bare one polaron space
JΓ, the time-zero physical fields are operators on jfpf l. The physical field
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version of R(g) is denoted in Theorem 2 by S(g). The physical φ and π
fields may be recovered from S in the same way that the bare φ and π
fields were recovered from jR.

Proposition 2.2. Let B be a bounded open set in Ed. If g is a complex
valued function in L2(Ed) with support in B then eίR(9} lies in <β(B). If h
is a bounded real valued measurable function on Ed with support in B
then the self -adjoint operator Dh on tf defined by

Dh= $h(k)a(k)*a(k)dk (2.13)
Ed

has the property that eltDh is in ^(E) for all real t.

Remark. In view of Corollary 1.2 and Proposition 2.2 we can now
define the physical fields S(g) by the equation eίts(g) = σ(eitR(9}) for all
real ί, provided g has compact support in momentum space.

Theorem 2. Let ω be any weak accumulation point of the ωn and let
JΓ0 and Jf^ be as above. Let τ be a non-negative real number such that

$μ(kΓτ(μ(kΓll2/μ(k))2 dk<oo. (2.14)
Ed

Assume that the cutoff functions fn are so chosen that \fn(k)\ <> const μ(/c)~1/2

and such that the hypothesis of Theorem i is satisfied.

a) Let Kτ = L2(Ed,μ(k)τ dk). There exists a unique map g-+S(g) from
Kτ to self -adjoint operators on 3Cph such that the following two properties
hold.

i) elts(0) is a strongly continuous function of g in Kτ norm for each
real number t.

ii) σ(eitR(g}] = eits(9} for all real t and all g in Kτ with compact support.
Moreover S(g) satisfies the Heisenberg commutation relations in the

bounded form of Weyl:

(2.15)

which is valid for g and g' in Kτ where (g, g') = \g(k) g(k)' dk.

b) Let Lτ be the set of all real valued measurable functions h on Ed

such that

There exists a unique map h-*N(h) from Lτ to self -adjoint operators
on 3£ph such that the following two properties hold.

iii) for each real number t eltN(h} is a strongly continuous function of h
on Lτ-bounded sets in the topology of pointwise convergence of sequences.
(i.e. if \\hn\\Lτ^ constant and hn(k)-+h(k) for each k then eltN(hn} converges
strongly to eltN(h} for each real t.)
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iv) σ(eltDh) = eίtN(h\ whenever h is a real bounded measurable function
with compact support, where Dh is given by (2.13).

Moreover N(h) is order preserving on Lτ. The operators N(h), h in Lτ,
are mutually commuting, and N(oth + βhf) = closure of (uN(h) + βN(h'))
for α and β real and h and h in Lτ. Finally

) (2.16)

for all h in Lτ and g in Kτ.

Corollary 2.1. For any function u in L2(Rd), and h in Lτ, u (x)φ0 is in the
domain of N(h\ where tp0 is the physical rest state.

Denote by j/0 the set of all finite linear combinations of operators
on 2F of the form eίκ°(9} where g is in L2(Ed), g has compact support,
and R0(g) is given by (2.6). Clearly j/0 is a subalgebra of jtf and is ir-
reducible on 3F. In particular, we note that for any rest state ψn, ̂ Oιpn

is dense in 2F.

Theorem 3. Assume the hypotheses and notation of Theorem 2. Let
ω be a weak limit point of the ωn. There exists a subsequence ωn. satisfying
the conclusion of Corollary 1.1 and a self-adjoint operator H on $fph

having the following three properties.

i) lim (H (u,®mA\pn\ v®mB\pn) = (H(u®σ(A) ψQ), v®σ(B) ψ0)
J-+00 J J J

for all A and B in jtf0 and all u and v in Cc(Rd)
ii) inf spectrum H = mQ .

iii) Let h be a non-negative measurable function in Lτ [c.f. Theorem 2,
part b)y. Assume that h is even, i.e. h(~ k) = h(k\ and that for all k in
Ed μ(k) — h(k) ^ c> 0 for some positive constant c. Let N(h) be the number
like operator on 3Cph described in Theorem 2. Assume, in addition to the
preceding hypotheses, that fn(k) converges to λμ(k)~112 for each /c, where
λ is a non-zero real number. Let

For any number a with 0<α we write L2(Sa) for the subspace of L2(Rd)
consisting of functions g such that g(k] = 0 if \k\ > a. The subspace
£2(Sα)®<^o of tfph is invariant under N(h) and H, and in this subspace
there holds

| |N(Λ) 1 / 2

V | |^ | |(// + d(Λ) + α) 1 / 2

V | | , Ve(I?(SJ(8)jro)n^(H1/2). (2.17)

Remark. If h is taken as the characteristic function of a bounded
open symmetric set B (i.e., —B = B) times a suitable positive constant α
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then N(h) is formally α times the number operator NB associated with
the region B and (2.17) reads

(2.18)

§ 3. The Basic Inequalities

Throughout this section we consider a fixed cutoff function /. We
recall that / is a real valued infinitely differentiable function on Ed with
compact support and satisfying f(—k) = f(k). We write

H = Hf-mQI
and

Then H and H(0) have lower bound zero, because of the choice of the
bare mass m, and H(p) ^ 0.

Lemma 3.1. For every strictly positive integer n and every non-empty
subset αC {!,..., n} there exists a bounded continuous non-negative
function g(^(kl,..., kn) on (Ed)

n such that for any vector ψ in $ there holds

)̂M
(3.1)

^ π

where the sum runs over all non-empty subsets α of (1, ...,n} and
A(«)=Y[b(kj).

jet

Proof. The proof is by induction on n. We first consider the case
n = 1. Since E(- k-P) b(k) ψ = b(k) E(- P) ψ for ψ in <f we have

(H(- k) b(k) - b(k) H(ϋ)} ψ=- μ(k) b(k) ψ-f(k)ψ.

Now H(— k) ̂  0. Consequently, for any vector ψ in <$,

0^(H(~k)b(k)ψ,b(k)ψ)

= ((H(- k) b(k) - b(k) H(Q)) ψ, b(k) φ) + (fe(fc) H(0) ψ, b(k) ip)

= -μ(fe) \\b(k) ψ\\2- f(k) (ψ, b(k) ψ) + (b(k) H(0) ψ, b(k) ψ).
Hence

μ(/c)|b(/c)φ||2<;|/(/c)| H v l l \\b(k)ψ\\ + \\b(k)H(Q)ψ\\ \\b(k)ψ\\ .

Dividing by | |b(k)tp|| yields
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This is the inequality (3.1) with g(

({](k) = μ(k)~ 1.
Assume (3.1) is valid for n. We show it is valid for n+L Let fc1? . . ., kn+1

n + l

be n + 1 points in Ed. Put A = Π b(k) and A(i) = f] fc(/c7 ). Then A and
j = l j*i

A(l} take <f into <f . Moreover, since

E(-kι ----- kn+ί-P)A-AE(-P) = Q on δ

we have, for any ψ in ,̂

i = l

Hence

^ίfίί-fe! ----- kn + 1)Aιp,Aιp)

i = l

Thus

^ Σ i/wi M ( IVII

Dividing by ||^ιp|| yields

μ(ki)\ \\Aψ\\ ϊ

Now apply the induction assumption to ||^4(ί)ιp||, yielding

,.) μv|| ̂

Since

Π
j φ i

1=1 αc{l,...,t ,«+1}

+ \\AH(0)ψ\\.

"Σ ι/(fci)i π ) π I/(
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the desired inequality follows with

"

where the last sum should be replaced by one i f α = { l , . . . , n + l } , and
otherwise the subscript of g(£* should be regarded as a subset of
{l,...,ί,...,n+l}.

Remark 3 2. Let v(k1,...ίkn) be a bounded real valued measurable
function on (Ed)

n. We assert that the equation

Bv= I v(k1,...,kn)b(kn)*...b(kιrb(kί)...b(kjdkί...dkn
(EdΓ

defines a self-adjoint operator on g*. This means, in accordance with
our convention, that the right side is the bilinear form of a self-adjoint
operator with core S. In fact one computes readily that the right side
is the bilinear form of the operator B on δ whose action on an r vector ip
in S is

r<n

where Ps is the symmetrization projection. B is clearly a bounded operator
on r vectors in L2 norm with norm at most r"||ι> 00. Hence if ψ = Σψr

is in β then \\Bψ\\2^Σ ||ι;||^ \\Nnψr\\2 = \\v\\Z \\Nnψ 2 where N is the
r

number operator. Thus every vector ψ in δ is an analytic vector for B,
which is clearly symmetric, and therefore § is a core for a unique self-
adjoint extension Bv of B. Since \\B\p\\ ^ l^l^ \\Nnψ\\ for φ in δ we have

n) C &(BΌ) and

IIB^II ^ H a l l o o ||^V>|| for φ in ^(AΓ") . (3.4)

This remark is closely related to observations made in [5,7]. We note
also that if v ̂  0 then B ^ 0.v

Proposition 3.3. Let ψ be the physical rest state. I.e., ψ is a unit
vector in 2F$ satisfying H(0)ψ = 0. Let v be a bounded measurable real
valued function on (Ed)

n where n is a strictly positive integer. Then ψ is in
the domain of Bv and

\(Bvψ, ψ)\ ^ J H/q, . . ., kn) fl (f(kj)Mkj))2\ dk,... dkn . (3.5)
j = ι

Proof. Let K = E(P) + (H0)b - m0. Then H(0) = K + V. We first show
by induction on; that ψ is in &((N + l)j/2K) for all integers; ̂  0 (Sloan [12]).
This is so for / = 0 because 3>(K) = @(H(0)}. Moreover if it is true for
j -π^O then' since ®((N+ l)jl2 K)c2((N + l)i+1)C@((N +
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(the last containment follows from the commutation relations) it follows
from the equation (JV+ l)j/2 Kψ = -(N+ l)j/2 Vψ that the left side is
in the domain of (N +1)1/2 since the right side is. This establishes that
ψ e 3((N + iy/2 K) for all j. Therefore ψ is also in 9((N + l)j/2 (K + 1))
for all j.

If n is the strictly positive integer in the statement of the proposition
then, since (N + 1)" (K + 1) is the closure of its restriction to S9 there
exists a sequence ψj in cί such that ψj converges to ψ in norm and
(N+ΐ)n(K+ΐ)ψj converges to (N+ϊ)n(K+l)ψ in norm. Since
\ \ ( N + ΐ ) n φ \ \ £ \ \ ( N + i γ ( K + l ) φ \ \ for all φ in 3((N + l)n(K + 1)) it
follows from 3.4) that φ is in S>(BV) and Bυιp = lim Bυψj. Moreover since

|| Nn Vφ || ̂  const || (JV+!)"(£+ l)<p| | , as follows from the commutation
relations, we may conclude that NnH(tyψj converges to NnH(0)ψ = 0.

Assume first that v is non-negative (and bounded). Apply the
inequality (3.1) to ψj. Square both sides of (3.1), multiply by v(kl9..., kn)
and integrate with respect to ki9..., kn over (Ed)

n to obtain

$v(k,,...,kn)\\b(k,)...b(kn)ψj\\2dkί...dkn

where fc = (fc1,..., fcj, the sum on α and j8 runs over the collection of
all pairs of subsets of {1,..., n} for which at least one of the sets α,β is
non-empty, Dα = ||^4(α) H(0) ψj\\ if α is not empty, DΛ = \\ψj\\ is α is empty,
and dΛ β(k) is a bounded non-negative measurable function which, if α
or β is empty, has compact support in (Ed)

n. We assert that the finite sum
]Γ ... goes to zero as ;->oo. In fact
«,0

I j dβf ,(fc) D.D^fel2 ^ (J |dβt/,(fc)| Dα

2dfe) (j K^fe)! D2

βdk).

At least one of the two integrals on the right (corresponding to a non-
empty subscript) is of the form (BH(0) ψj, H(0) ψ^ where B is an operator
of the type described in Remark 3.2 of order less than or equal to n.
Hence one of these two integrals is dominated by const. \\NnH(0)ψj\\
\\H(ty ψj\\ which goes to zero as7*->oo. The other one is clearly bounded
or also goes to zero.

The left side of (3.6) is (Bvψj9ψj) which converges to (Bυψ,ψ). This
concludes the proof in case v ̂  0. In the general case write v = vί — v2

where υί and v2 are non-negative and have disjoint support. Then
\v\ = vί + v2. Since Bvψ = \imBvψj = l i m ( B V ί ψ j - BV2ψ) = BVlψ - BV2ψ we
have \(Bvψ9 ψ)\ = \(BΌlψ9 ψ) - (BV2ψ, ψ)\ ^ (BΌίψ, ψ) + (BV2ψ, ψ) = (B\υ{ψ, ψ)
which is dominated by the right side of (3.5), as we have seen. This
concludes the proof.
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Remark 3.4. The preceding proposition implies that in the Schrodinger
representation the rest state ψ is infinitely differentiable in all directions
in the L2 sense. The next corollary will not be used in an essential way
in this paper but we include it here since it belongs here logically and
we anticipate its usefulness in future developments of this theory. It
can be used to show that in the Schrodinger representation the physical
rest state ψ is an analytic function (in a sense which we shall not make
precise here).

Corollary 3.5. Let h be a bounded, non-negative, measurable function
on Ed. Let Nh be the non-negative, self-adjoint operator on ̂  given by

Nh= j h ( k ) b ( k ) * b ( k ) d k .
Ed

The physical rest state ψ (of unit norm) is in the domain of eNh and

where
c(h) = exp j f ((«»<*> - 1) f(k)2/μ(k)2) dk\. (3.8)

(Ed J

r r

Proof. If z l5..., zr are any real numbers then fl zj~ Π (1 +(zj~ 1))
j=ι j=ι

= Σ Π (Z7~~ 1) where α runs over all subsets of {1,..., r} and an empty
α 7'eα,

product is interpreted as 1. Thus if |α| denotes the number of elements
in α we have

FH= Σ Σ ΓKvD W
7=1 n = 0 |α |=n jeα

Put w n (fc l 9 . . . , fc j= Π (eh(kj]-l\ It follows from equations (3.2) and

(3.3) that if ψ is an r vector in <ί then for n ̂  r

ι, ..Λ) = "ί((n^)!w!)fi^

Hence, defining BWo = I and using (3.9) with Zj = eh(kj} we obtain

(n!)-1BW nφ> |(fc1,...,fcΓ)= Π
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The left side may be summed to oo instead of to r since the additional
terms are zero. The right side is eN(h}ψ. Thus for any vector ψ in δ we have

^Wφ= £ (nlΓ^^ψ. (3.10)
n = 0

Since both sides of this equation contain only operators which are
bounded on r-particle states the equation clearly holds for these vectors
also.

If ψ is the physical rest state and ιpr is its r particle component then ψ
is in the domain of eNhl2 for, keeping in mind the non-negativity of BWn,
as well as the fact that BWn and eNh/2 are the direct sums of their restrictions
to the r particle subspaces, we have, in view of (3.5)

r=0

00 00

= Σ Σ

ί X (n!)-1 (J(e**>- l)/(/c)2/μ(k)2 dk)"
n = 0

= c(h) < oo .

(Recall / has compact support.) Replacing h by 2h shows that ψ is in
@(eNh) and since the left side of the last inequality is (eNhψ, ψ) the corollary
is proved.

The Sobolev Space &'($). Let S be an open set in Ed. Let N(S) denote
the number operator on OF associated with S. That is,

N(S) = J fc(fc)* b(k) dk .
s

Let D = N(S)i/2. δ is clearly a core of D and if φ is in 3f(D) there is a
sequence φw in ̂  such that \pn converges to ψ and Dψn converges to Dip.
Since

= \\\b(k)φ\\2dk
s

it follows that b(k) ψn, as a function from S to ̂  converges in L2(S',^)
norm to a function from 5 to 3F, which we denote by b(k) ψ, and which is
well defined up to a set of Lebesgue measure zero in S. Since b(k) ψn
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is a continuous function into JF, b(k)ψ is strongly measurable as a
function into <F. Of course

Denote by C?(S\&) the space of infinitely differentiable functions
from S to J^ with compact support in S. Let ψ be in @(D). We say that
b(k)ιp is weakly differentiable in L2(S; J*) if there are functions ψj(fc)
in L2(S; &),j=l, ...,d, such that for all φ in Q°(S; &) there holds

j=l,...,d (3.11)

where /c; are the coordinates of fe. Such functions ι/^ (/c) are unique, up to a
set of Lebesgue measure zero in S, if they exist, since Q°(S; <F) is dense
in L2(S; &). We shall write

ψ'j(k) ~ (3.12)

if these weak I2 derivatives exist.
We denote by <F'(S) the set of elements ψ in the domain of D such

that b(k)ιp is weakly differentiable in L2(S; 2F\ For ψ in ^"'(S) we put

dk. (3.13)

^'(S) is a Hubert space in this norm. In order to see that 3F'(S) is
complete note that if ψn is Cauchy in the || ||s norm then ψn and Dψn

are Cauchy in 3F. Since D is a closed operator ψn converges to an element
ψ in ®(D) and Dψn converges to Dip in 3F . Furthermore,

—r-b(k)wn is Cauchy in L2(S',^) by assumption, and hence has a

limit in L2(S; 3?) which limit, by (3.11) and (3.12) is — - b(k) ψ. Thus ιpn

converges to ψ in || ||s norm. j

Lemma 3.6. Let k and k' be in Ed and put δb = b(kf) — b(k). For any
vector ψ in S there holds

μ(k) \\(δb) ψ\\ ί 2\k - k'\ \\b(k')ψ\\ + \f(k) - f(k')\ \\ψ\\

Proof. For any vector ψ in <f we have

Q£(H(-k)(δb)ψ,(δb)ψ)

= ({H(-k)(δb)-(δb)H(Q)}ψ,(δb)ψ)
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Since E is even we write its contribution to H(0) as E(P) instead of £(— P).
one computes easily that on S

H(- k) (δb) - (δb) H(0) = E(P + k) (δb) - (δb) E(P)

+ [jμ(k") b(k")* b(k") dk", δb] + IV, δb]

= (E(P + k)- E(P + k')) b(k') - (μ(k) b(k) - μ(k) b(k)}
(3.16)

- ( f ( k ' ) - f ( k ) )

= (E(P + fc) - E(P + k')) b(k) - μ(k) δb

Since \E(p) - E(p')\ ^\p- p'\ for all p and p' in Ed the operator E(P + k)
— E(P + k') is bounded on its domain with norm at most \k — k'\.
Moreover \μ(k) - μ(k')\ ^ |/c - k'\. Combining (3.15) and (3.16) we get

0 g l/c - k'\ || W) ψ\\ \\(δb) ψ\{ - μ(k) \\(δb) ψ\\2

+ \k-k'\ \\b(k')ψ\\ \\(δb)Ψ\\ + \fW-f(k)\ \\ψ\\ \\(δb)ψ\\
+ \(δb)H(Q)ψ\\\\(δb)ψ\\.

Upon dividing by \\(δb) ψ\\ we obtain (3.14).

Lemma 3.7. Let c be a fixed vector in Ed and let ψ be the physical
rest state with \\ψ\\ = 1. Then for any open set S in Ed there holds

s
Proof. As shown in the proof of Proposition 3.3 we may pick a

sequence ψj in S such that ψj converges to ψ, b(k) ψj converges to b(k) ψ
in L2(£d;^), and b(k)H(0)ψ converges to zero in L2(£d;J^). Apply
Lemma 3.6 with k = k -f c to ψj yielding

- f(k + c)\ Ψj\\ + || (b(k + c)- b(k)) H(0) ψj\\ } .

Since b(k}H(U)\pj and b(k + c)H(Q)ψj converge to zero in L2(£d;^)
the last term on the right of (3.18) converges to zero in L2(S). Square
both sides of (3.18), integrate over S, take the limit as ;-»oo and then
use the inequality (α + b)2 ̂  2a2 + 2b2 to obtain
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Let χ denote the characteristic function of S. In Proposition 3.3 take
n=l and v(k) = μ(k — c)~2 χ(k — c) to obtain

χ(k-c)\\b(k)Ψ\\2 ,,^sχ(k-

I μ(k-c)2 dk = * μ(k-

Translating both integrals in this inequality by c yields an estimate for
the first term on the right of (3.19) which establishes the Lemma.

Proposition 3.8. For any open set S C Ed the physical rest state ip is
in the Sobolev space ^'(S). If ψ is normalized to one then

(3.20)
μ(k)2

μ(kΓ μ(k)2

Proof. We already know from Proposition 3.3 that ψ is in
®(N) C ®(N(S)) C ®(D). Let φ e C?(S; &). Let ej be the jth basis vector
of Ed. Then

(3.21)
lim s 11 (φ(k + se^ — φ(k), b(k) φ) dk

lim s-11 (φ(k), (b(k - sej - b(k)) ψ) dfc|

S(J \\φ(k)\\2 dkV>2 lim sup\s\~ 1 (f \\(b(k - se)- b(k)) ψ\\2 dkV'2 .

Put c = -sβj in (3.17).We get

lim sup s- 2 ί I] (b(k - se..) - b(k)) φ||2 dk
s^O s

(3.22)

df
J

-dk.
μ(k)2

Thus the left side of (3.21) is a continuous function of φ( ) in the norm of
L2(S;^). Hence there is a function φ/ ) in L2(S;^) such that

-l(dφ/8kί,b(k)ψ)dk = S(φ(k),ψj(k))dk for all φ( ) in Cf(S;^). More-
over the right side of (3.22) gives an estimate for j |jφj(/c)||2 dk. Therefore
φ is weakly differentiable in S and

d

Σί
j = ι s

- b(fc)φ
μ(/c)4 μ(kγ

(3.23)
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Finally the estimate

follows from Proposition 3.3 with n = 1 and υ equal to the characteristic
function of S.

§ 4. Proofs of Theorems

Lemma 4.1. Let r be a strictly positive real number and denote by S
the cube S = {k e Ed \Sj\ < r, j = 1,..., d} where Sj denotes thej th coordinate
of k. Let 3?s denote Fock space over L2(S) and let ^'(L2(S)) denote the set
of vectors ψ in J ŝ which are in the domain of the square root of the number

operator N on J^ and such that the weak derivative —— b(k)ψ exists and is

in L2(S;^r

s)J= 1, ...,d. For such ψ put

2

dk. (4.1)
j=ι

There exists a positive operator L on J^ with a compact inverse such that

Proof. We first remark that this lemma is an extension of Rellich's
lemma [1] and is valid for any set S with smooth boundary. We have
chosen to state it only for a cube since the proof of Rellich's lemma is
elementary in that case and we shall include a proof of it here.

We write 2F1 instead of ^f(L2(S)) throughout this proof. One may
verify as in the discussion preceding Lemma 3.6 that 3F' is a Hubert
space in the norm || \γ.

The functions cos(rcπ>s/(2r)), w = 0, 1, 2, ... form an orthogonal basis
of L2(0, 2r) and therefore the functions un(s) = cn cos(nπ(s + r)/(2r)) form
an orthonormal basis of L2( — r, r) for suitable constants cn. The un are
eigenfunctions of the operator 1 — d2/ds2 with eigenvalues 1 4- (nπ/r)2

and satisfy the boundary conditions dujds = 0 at s = ± r. If k = (sl9 . . . , sd)
is in the cube S put

The functions vvπι .. nd form an orthonormal basis of L2(S\ are eigen-
functions of the operator I — A , where A denotes the Laplacian, and
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these functions have normal derivative equal to zero on each face of
the cube S. We enumerate them vi9 υ2, ... and denote by λj the corre-
sponding eigenvalue: (1 —A)Vj = λjVj. Clearly λj-+ oo as j-> oo and λj ̂  1
for all j, since each λj is a sum of d of the eigenvalues given above.

We now construct an orthonormal basis of J^ from the Vj in the
usual way (cf. [2]). Specifically, for each finite non-decreasing sequence α
of positive integers put „

φΛ(kι9...,kJ = cΛP ΓKω(*j) (4 3)
j=ί

where n is the length of the sequence α, P is the symmetrization projec-
tion and cα is a normalization constant chosen to make the {φα} an
orthonormal set. If, for the empty sequence α, we define φα to be the
rank zero tensor 1 then the φΛ form an orthonormal basis of J^. The
functions φΛ are clearly in 3F' .

Let A be the (unique) self-adjoint operator in L2(S) which is diagonal
on the basis vj and multiplies Vj by λj. Thus A coincides with the operator
1 — A on the Vj (and is in fact the self-adjoint version of the differential
operator I — A corresponding to the Neumann boundary condition:
normal derivative = 0 on dS). Let M be the quantization of A. That is,
M is the closure of the operator which on algebraic n tensors is given by
A®I® -®I -\ ----- h / ® ®/(x)A One computes easily that the above
described basis vector φα is an eigenvector for M with eigenvalue
μα = Σ λxov Any real number clearly exceeds at most finitely many of the

j
(non-negative) numbers μα and therefore I + M has a compact inverse.
If L = (I + M)1/2 then L also has a compact inverse and we shall show
that this operator satisfies the requirements of the lemma.

Suppose that ψ is in 3F' . We assert that

ιp). (4.4)

The principle technical point in this lemma consists in justifying the
integration by parts involved in (4.4). Denote by djS that portion of the
boundary of S consisting of the two closed faces perpendicular to the jth
coordinate axis. Let gm be a sequence of uniformly bounded real valued
functions in CC°°(S) such that gm(k) = 1 if dist(/c, dS) ̂  m~ \ and such that
for some constant c and each j = 1, ..., d, \(d/dsj)gm(k)\ =0 if dist(/c, djS)
>m~ί while \(d/dSj)gm(k)\^cm if dist(k9djS)^m~1. The existence of
such a sequence is clear if S is one dimensional and a product function
will work if S is d dimensional.

(φa, V)ι = (φ,, Ψ) + j (b(k)φ., b(k)ψ) dk
(4 5)
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where s1,..., sd are the coordinates of k. In view of the known form of φα

the functions gm(k)——b(k)φΛ are in Cc°°(5;^). Therefore by the
dSj

dominated convergence theorem and the definition of—— b(k)ψ we have

= lim J gm(k)
~*

α? dsj
b(k)ψ] dk

= -lim ll — lgn(k) — b(k)φΛLb(k)ψ}dk
m-oo J

s\dSj \ dSj } }

--lim \gm(k) — - γ b ( k ) φ a , b ( k ) ψ } d k
m^co s \ dSj /

— lim
m->oo S

δ2

— lim
m-»oo

^(/c)^, fc(fc)φjdfc

, '8gm(k) / δ
J P^Γ

(4.6)

-6(/c)φα,M/c)φμ/c.

Now from the form of φa it follows that ——b(k)φa is zero at all points
CSj

of djS. Moreover all second derivatives of each function vt are bounded on
d

[ — r, r] so that ds, -b(k)φΛ
increases at most linearly with the distance

of k from djS. In particular there is a constant d such that

— b(k)φa ^c'm~l if dist(/c, djS)^m~1. Hence the integrand of the
Sj

last integral is dominated by cm- c'm~1 \\b(k)ιp\\ which is a fixed L2

function. Therefore the last limit on m in (4.6) is zero.

It follows then from (4.5) that

(<PΛ, V)ι = (9., Ψ) + ί ((1 - Λ) b(k)φΛ, b(k)ψ) dk
s

where Aj denotes the Laplacian acting in the kj variable.
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Since φα and ψn are both symmetric functions Δ^ may be replaced
by Aj in the last integral yielding

/ «
ί Σ (ί-Aj)φΛ(kί9...9
s \ j = ι

This establishes (4.4).
It now follows from (4.4) that the φα form an orthogonal basis of J '̂.

For (φα, φβ)1=((l + M) φΛ9 φβ) = (1 + μα) (φα, φ/,) = (1 + μα) <5α>/? and if \p
is in 3F' and (φα,φ)ι =0 for all α then (1 + μα)(φα,φ) = 0 for all α and
therefore ψ = 0. Hence the vectors (1 + μα)~1 / 2Φα form an orthonormal
basis of J '̂. Thus φ is in 3F1 if and only if ψ has the form

V=Σc.(l + /O-1/2Φ. (4.7)
α

where Σ |cα|2 < oo and the convergence is in 3F' and therefore also in 3F
norm. Since L is a closed operator which is diagonal on {φj and
LφΛ = (1 + μα)1/2 φα it follows from (4.7) that the domain of L is exactly J*'
and for the above vector ψ \\Lip\\2 = Σ|cα | 2= ||φ||2.

The following lemma is a slight, but essential, modification of a
lemma used in [6].

Lemma 4.2. Let 3~ be a family of non-negative trace class operators
on a Hubert space X and let L be a positive self -adjoint operator on X
with compact inverse such that

1. LTL is densely defined and bounded for all T in ^~ and its closure
(LTL)~ is trace class.

2. There is a real number a such that trace ((LTL)") < a for all T in &~.
Then &~ is relatively compact in trace class norm.

Proof. We show that 9~ is totally bounded in trace class norm.
Let ε>0. Let b= HIT 1 ! ! - Choose c>0 such that max(b~1c~1a9 c~2a)
< ε/12. Let E^ be the spectral projection of L for the interval [0, c]. Let
E2 = 1-E1. Let T be in y and let A be the closure of LTL. Then
T - L- 1 A L- 1 and Ei TEj = L~1EiAL-ί Ej for all i, j. Denoting the
trace class norm by || ||t we have ^TE^ HL'1^!! \\A\\t\\L~l E^.
Since \\L~lE2\\^c~^9 \\LΓ^E^\\ ^ZΓ1, and \\A\\t^α, it follows that
|| £i TEj\\t < ε/12 if i or j is 2 and \\E1 TE1 \\t^b~2α. Since L~ ί is compact
E1 is finite dimensional. Hence the set £f = {E1 TE^ : Te 3~] is relatively
compact in trace class norm. Thus there exists a finite set of operators
T1? ..., Tn in ̂  such that [E! TkEί}

n

k = 1 is an ε/2 net for y. If T is any
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operator in ?Γ then

\\T-Tk\\t^ X llE

^ \\E,(T- Tk)E1\\t+ X

Hence for some k\\T— Tk\\t <ε. Thus ̂  is totally bounded.
Proof of Theorem 1. If U is a bounded open set in Ed and 5 is a cube

containing U then j^(C/)CJ^(S). Since the norm of a linear functional
on jtf(S) does not increase when restricted to the subspace j/(l/) it
suffices to show that the set of restrictions ωw|«β/(S) is relatively compact
in norm when S is a cube of the type described in Lemma 4.1. We choose
a fixed cube S henceforth.

Denote by Sc the complement of S in Ed and by J^c the Fock space
over L2(SC). As is known, there is a Hubert space isomorphism between
the Fock space 3F over L2(Ed) and the tensor product ^s®^sc which
preserves the form of annihilation operators. In this decomposition of 2F
the algebra jtf(S) is exactly ^(^S)®I where J*( ŝ) is the algebra of all
bounded operators on ^s.

Now if X and Y are Hubert spaces and ψ is a unit vector in X (x) 7,
then, to the state ω on J*(X) given by ω(B) = (B®I\p,\p) for B in J*pΓ),
there corresponds a unique density matrix T on X, i.e., a non-negative
trace class operator with trace equal to one, such that

ω(B) = trace (TB)

For if ψ is any vector in X (x) Y then φ may be written ψ= X xn (x) ywH
where the yπ are orthonormal and Σ | |xJ2<oo, so that ((B®I)ψ,ψ)

where T= X \\xn\\2Pn and Pn is the one-

dimensional projection onto the span of xn. Clearly trace T— X ||xn | |2

n

= \\ψ\\2. Moreover if L is a self-adjoint operator on X with bounded
inverse and if ψ is in the domain of the self-adjoint operator L®I then
LTL is densely defined and bounded and its closure is the trace class
operator on X corresponding as above to the vector (L®I)ψ. For if we
define A to be the trace class operator on X corresponding to (L®/)ι/?
then for any B in <%(X) we have

trace (EL" iAL~1) = trace (L" ί BLΓ 1 A)

= trace (BT) .
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Since &(X) is the dual space of the Banach space of trace class operators
in the pairing <£, T> = trace (BT) it follows that T = L~1AL~1 and
therefore LTL is densely defined with closure A.

To prove the theorem it suffices to show that the sequence Tn of
density matrices on J^ corresponding to ψn as in the preceding discussion
is compact in trace class norm. In view of Lemma 4.2 and the preceding
discussion it suffices to prove that there is a positive self-adjoint operator
L on ̂ s with compact inverse and a real number a such that ψn is in
Sι(L®T) for all n and \\(L®I)ψn\\ fg a for all n. Choose L as in Lemma 4.1.
In view of Lemma 4.1, Eqs. (4.1), (4.2), Proposition 3.8, Eqs. (3.13) and
(3.20) it follows that

'

Since S is bounded and each of the integrals on the right of (4.8) is, by
assumption, uniformly bounded in n on S the theorem is proved.

Proof of Corollary 1.1. The proof is a slight variant of arguments
used in [6]. Choose an increasing sequence Sm of bounded open sets in Ed

whose union is Ed. For any bounded open set ScEd, <stf(S)Cjtf(Sm)
for some m. For each m the norm closure Am of the set of restrictions
{ωn\jtf(Sm)}™=1 is norm compact by Theorem 1, therefore weakly com-
pact and therefore weakly closed. Hence ω\£#(Sm) lies in Am and is a
norm limit of some subsequence. By diagonalization there is a subse-
quence ωnj such that for every m ωn.\£/(Sm) converges in norm to
ω I ̂ (Sm). Then ωn. \ jtf(S) converges in norm to ω \ ^(S) for any bounded
open set S in Ed and since ωn.(A) converges to ω(A) for each operator A
in a norm dense subset of sϋ it converges to ω(A) for all A in s#.

Factoring ̂  = J^ (x) J^c as in the proof of Theorem 1, and putting 7}
for the trace class operator on J ŝ corresponding to ωn. \ jtf(S) we note that
Theorem 1 implies that 7} converges in trace class norm to a density
matrix T on J^ corresponding to ω\jtf(S). Of course ω\jtf(S) is also
given by a (non-unique) density matrix Ts on 3F which may be con-
structed from T and any unit vector u in J^c via the prescription
Tsx = Σ (x, xn®ύ)yn®u for x in ̂ , where Tz = Σ (z? χ

n)yn f°r z in ^s
n n

and Σ ||xj2 < oo and Σ ||yn||
2 < oo. Clearly ω(A) = tτace(ATs) for A in

J2/(S) and hence ω\jtf(S) is ultraweakly continuous. Thus if S C Sm and C
and D are in £/(Sm) then the map A^>(σ(A)σ(C)ψQ9σ(D)ψ0) is ultra-
weakly continuous on the unit ball of j/(S) since (σ(y4) σ(C)tp0, σ(D)φ0)
= ω(D*AC) = trace (CTSwD*^[). Since {σ(C)ψ0;C6umj^(SJ} is dense
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in Jf0, (ω(A)v, w) is ultra weakly continuous for all v and w in Jf0 on the
unit ball of s/(S) and therefore, by [4, Theorem 1 (ii), p. 40], (σ(A)v9 w)
is ultraweakly continuous on all of j/(S). Since jtf(Sm) has a countable
dense set in the ultraweak topology (e.g. operators corresponding to
matrices with finitely non-zero complex rational entries relative to some
fixed O.N. basis of <^sj, and the map A-+(σ(A)ψQ, w) is ultraweakly
continuous on jtf(Sm) for any vector w in Jf0, Jf0 is separable. Since the
type I factor s/(S) contains no ultraweakly closed proper two sided
ideals, σ\jtf(S) is an isomorphism. Moreover since the unit ball of j/(5)
is ultraweakly compact its image under σ, which we have shown to be
ultraweakly-weakly continuous, is weakly compact and therefore weakly
closed. Hence σ(^(S)} is weakly closed by [4, Theorem 2, p. 43]. Thus
σ(^(S)} is also a factor of type I. Now <$tf(S) has countably infinite
multiplicity on ^. If Sm contains S properly then jtf(S) has infinite
multiplicity in £#(Sm). Hence σ(stf(S)} has infinite multiplicity in σ(j/(5w)).
Thus σ(j/(5)) has (necessarily countable) infinite multiplicity on Jf0.
Therefore there exists a unitary operator Us from 3F to Jf0 which
implements σ|j/(S).

Proof of Corollary i.2. For any bounded open set B in Ed let UB be a
unitary operator from 3F to Jf0 implementing σ | <$tf(B) as in Corollary 1.1.
Define σ on <g(B) by σ(D) = (I®mUB)D(I®mVBΓ

l. Then clearly (2.9)
holds for all # in &(L2(Rd)) and A in <$/(B). σ is strongly continuous on
the unit ball of ^(B) to the weak operator topology. Since the algebra
generated by {C®A : C e &(L2(Rd)\ A e ^(B)} is ultrastrongly dense in

and any strongly continuous linear functional on the unit ball of
is ultrastrongly continuous on ^(B) [4, p. 38] σ\Ή(B) is uniquely

determined by conditions a) and b) of the corollary. Thus σ is independent
of the choice of UB. Consequently σ is now a well defined isometric
isomorphism on uβ^(£) and extends uniquely to an isomorphism on #.

Proof of Proposition 2.2. We write 2F = ̂ B®^BC as in the proof of
Theorem 1. In the decomposition Jf =(L2(Rd)0^'B)(S)^r

Bc the algebra
ί?(β) is exactly a(L2(Ed)®^B)®L To show that a bounded operator C
is in ^(B) it suffices to prove that C commutes with all bounded operators
of the form / ® / (x) A where A runs over the bounded operators on ̂ BC

or at least over an irreducible set. Let g be a complex function in L2(Ed).
For each vector x in configuration space Ed denote by Sx(g) the self-
adjoint operator on 3F given by

Sx(g) = J (eίx'kg(k) b(k) + e~ix'k g(k) b(k)*) dk. (4.9)
Ed

Relative to the total momentum decomposition (2.3) put
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Then in view of the known irreducibility properties [2, Theorem 9]
of the creation and annihilation operators it suffices to prove that C
commutes with all operators of the form eiτ(9} where g has support in Bc.

In order to show that eiR(9>} and eiτ(9) commute when g and gf have
disjoint supports it will be necessary to make explicit the relation between
the two decompositions (1.5) and (2.3) of Jf in terms of which the
operators R(g') and T(g) have been defined. First of all, via a Fourier
transformation on the first factor in (1.5) we may identify Jf with
L2(Ed)(S)^r or, equivalently, with functions ψ(x) on E'd with values in 3F,
where E'd is configuration space (i.e. the dual space of Ed). $± is carried
into a similarly defined submanifold $[ of L2(Ef

d)(S)^. We regard a(k)
as defined on § [ .

In order to make the argument clearer we first outline the rest of the
proof in an informal style ignoring all domain questions. Denote by
I®mb(k) the operator on Jf defined with respect to the decomposition
(2.3). The subscript m refers to the total momentum decomposition (2.3)
of Jf as noted before. Identifying L2(E'd)® & with functions ιp(-) from
E'd to ̂  a(k) is given by

(a(k)ψ)(x) = b(k)(v(x)). (4.10)

The identification map W from the momentum decomposition
L2(Rd) ®^ = L2(Rd\ ^} to Jf = L2(Ed &} is given by Wχ = ψ where

(4.11)
Rd

and χ is a function from Rd to Ĵ . By definition ((/ <g)m b(k))χ) (p) = b(k) (χ(p)).
Consequently, since

χ p (4.12)

we have

((I®mb(k))ψ) (x) = (2πΓd/2eiχ p f e~ix'pb(k) χ(p) dp

= e ί x ' k b ( k ) ( ψ ( x ) ) .

Comparing this with (4.10) we see that if k is in B and k is in Bc then a(k)
commutes with both I®mb(k) and its adjoint:

((I®mb(k)}*ιp) (x) = e-iχ kb(kT (ψ(x)) .

This informally proves the first assertion of the proposition.
We shall now repeat the preceding argument in a formal style.

Since R(gf) acts only on the second factor eiR(gl) operates only on the
values of ψ(x):

(eiR(9Ίψ) (x) = eίSo(9'\ψ(x)) for each x in E'd . (4.13)
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Denote by F Fourier transform regarded as a unitary operator from
L2(Rd) to L2(E'd\ Let G denote the operator on L2(E'd)® ̂  to itself given
by (Gip) (x) = elx'p(ψ(x)) where P is the total Boson momentum operator.
Then the unitary operator

W=G(F®I)

from l}(Rd}®^ onto L2(E'd)®^ gives the total momentum decomposi-
tion of Jf i.e., is the map by means of which we identify L2(Rd)(S)^ with
Jf [8, Proposition 6]. Thus, as an operator on L2(Ed)®^ the operator

eiτ(g) is given by WeiI®So(0)W-1 = G(F®I)eiI®So(β)(F-ί®I)G-1

= G(I®eiSo(g])G~1. All three of these factors act only on the values of
ψ(x). Thus

(WeiT(9} W~l ψ) (x) = eίx'peiSo(ff)e"ix'pψ(x)

= eίeίx'PSQ(9}e~ίx'Pιp(x) (4.14)

The last equation follows from the Eq. (4.12), which is valid on δ. Since

eis0(g') commutes with eίSχ(9) for every x when g' is supported in B and g
is supported in Bc the first assertion of the proposition now follows from
(4.13) and (4.14).

In order to prove the second assertion of the proposition let h be a
bounded real valued measurable function with support in B. The self-
adjoint operator

Bh= $ h(k)b(k)*b(k)dk

on ̂  has the property that eitBh lies in j/(£) and so e

it(I®mBh) = l®meitBh

lies in <£(B). Denote by δ'{ the set of functions χ( ) from jRd to 3F such that
χw(p, fcl5 ..., kn) is zero for large n and in £f(Rd x (Ed)

n) for all n. One sees
readily that W takes δ'l onto δ(. For φ and χ in δ'[ one sees from (4.10),
(4.11) and (4.12) and from the unitarity of eix'p and unitarity of the
Fourier transform that

(J h(k) a(k)* a(k) dk Wχ, Wφ) = J h(k) (a(k) Wχ, a(k)Wφ) dk

= f h(k) j (b(k) χ(p\ b(k) φ(p)) dp dk
Ed Rd

= ((I®mBh)WLWφ)

for any bounded real valued measurable function h on Ed. Since δ(
is a core for J /ι(/c) α(/c)* α(/c) rffe we have

DΛ= J h(k)a(kΓa(k)dk = I®mBh. (4.15)

Hence eitDh lies in ^(β) when h is supported in
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Proof of Theorem 2. We first prove part a). If g is a complex valued
square integrable function with compact support in Ed then by Proposi-
tion 2.2 and Corollary 1.2 (b) σ(eίtR(9}) is a weakly continuous function
of ί. Hence by Stone's theorem there exists a unique self-adjoint operator
S(g) on tfph such that ii) holds. Since σ is an isomorphism the operators
S(g) satisfy the same commutation relations that the R(g) do - namely
(2.15), when g and g' have compact support.

Now let g be an arbitrary function in Kτ. Let gn(k) = g(k) if \k\^n
and zero otherwise. Then S(0n) is well defined by the preceding paragraph
and we shall show that the unitary groups eίtS(9n) converge strongly on
Jfph and uniformly with respect to t on bounded ί sets. To this end it
suffices to prove that for any bounded open set B in Ed and any operator A
in s/(B) and any strictly positive number ε and any vector u in L2(Ed)
and any positive real number T there is an integer nl such that

\\(eitS^-e

itS^)u®σ(A)ψQ\\<B (4.16)

whenever n and m are greater than n^ and \t\ ̂  T. For finite linear com-
binations of vectors of the form u® σ(A)ψ0 (with B varying) are dense
in J^ph so that the validity of (4.16) would show that the unitary groups
eltS(9n) converge on a dense set uniformly on bounded t sets and con-
sequently converge everywhere on tfph uniformly on bounded t sets.
The limit will therefore be a strongly continuous unitary group. We may
and shall define S(g) as the infinitesimal generator of this group.

Suppose n^m. Then (gn,gm)= \\gm\\2 which is real. Hence by (2.15)

If n ̂  m > sup [\k\ k e B} then the support of gn - gm is disjoint from B
and by the proof of Proposition 2.2 e

itR(9n~9rn} commutes with I®mA,
this product being defined relative to the decomposition (2.3). Hence
etts(gn-gm) commutes with I®σ(A) and we have

^ \\A\\ \\(^s^'^

for all sufficiently large n and m.
In order to estimate the right side of (4.18) we first show that if Bί

is any bounded open set in Ed and D is in <£(Bι) then

(σ(ί>)u<8)t/;0,tt(g)φ0) = lim(Dw®vV, u®\pn) (4.19)
j-> oo J J

where ψnj is the sequence of physical rest states whose C* algebra limit
is the state ω of jtf with respect to which Jf0 and Jjfph have been defined.
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Eq. (4.19) clearly holds if D is of the form D = C®A where C is in
&(L2(Rd)) and A is in ^(B^) by Eq. (2.9). Consequently it holds also for
finite sums of such products. Such finite sums are strongly dense in ^(B^)
while the left side of (4.19) is strongly continuous on bounded sets in
^(Bi) by Corollary (1.2b). Thus if D is in <β(Bι) there is a bounded net
Dα of finite sums of products, by the Kaplansky density theorem, such
that Dα->£> strongly. Thus

(σ(D)u®ψθ9u<g)ψ0) = lim lim(DΛu®\pn9u<8)ψ). (4.20)
α j J J

Since the states of ^(B^) determined by the vectors ψnj converge in trace
class norm, the (unnormalized) states oϊ(S(B1) determined by the vectors
u®ψnj also converge in trace class norm. Thus, since the operators Dα

are bounded, the two limits on the right of (4.20) may be interchanged,
yielding (4.19).

Replacing D by D*Z) in (4.19) we get ||σ(D)w(x)t/;0|| = lim\\Du®ιpn.\\

and consequently, for any function h in Kτ with compact support we have

\\(eίts(h}-I)u®ψ0\\ =Um\\(eίtR(h}-I)u®ψnj\\ . (4.21)

Let

Z= J μ(kΓτa(k)*a(k)dk.
Ed

Then in view of Eq. (4.15) and Proposition 3.3 u®ψn is in the domain
of Z for each physical rest state ψn and arbitrary u in L2(Ed). Hence

l)-1/2|| | |(Z+l) 1 / 2tt®φJ.

We now estimate the first factor on the right of the last inequality. Since
the domain of R(h) contains the range of (Z+ 1)~1/2 we have

\\(eitRW-I)(Z+ίΓ1/2Ψ\\ = $eisR(h)iR(h)(Z+lΓΐ/2ψds
(4.23)

whenever \t\ ^ T and for all ψ in Jf .
We assert that for any g in Kτ

(4-24)

where \g\τ= ( J \g(k)\2 μ(k)τ dk\ί/2 and the constant depends only on μ0

Ud /
and τ. For in fact if we put a(g) = | g(k) a(k) dk then for any φ in δ±
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we have \\a(gYψ\\2 = \\a(g)ψ\\2 + \g\2

0 \\ψ\\2 so that \\a(g)* ψ\\ Z\\a(g)ψ\\
+ \g\0\\ψ\\ and \\R(β)ψ\\ = \\(a(g) + a(g)*)ψ\\£2\\a(g)ψ\\ + \g\0\\ψ\\. But

\ = \\$g(k)a(k)ψdk\\

ί I \g(k)\ \\a(k)ψ\\ dk

£|0|τ(f μ(kΓτ \\a(k)ψ\\2 dk)1/2

= \g\τ\\Z1/2ψ\\.

Since |0|0 ̂  μ0~
τ/2 [g\τ we have

^ const M τ | | (Z+l) 1 / 2φ || .

Replacing ψ by (Z+ l)~ 1 / 2 φ (which is again in (fj yields (4.24) (cf. [7]
on Nt estimates).

Combining (4.18), (4.21)-(4.24), (4.15), and (3.5) we have

^ \\A\\ lim sup \\(e

itR<s«-βn>) _ Γ)u®ψ, \\
J (4.25)

£ const Mil Γ |0 B -0J τ l inup| | (Z+ l)1 / 2w®v>J

^ const Ml T]gn - gm\τ \\u\\ liin sup(| μ(kΓ \fj(k)/μ(k)\2 dk)1'2 .

The last factor is finite by an assumption of the theorem while \gn — gfjt-»0
as n and m-> oo. Hence the left side of (4.25) goes to zero uniformly for
|ί| 5Ξ T as n and m go to infinity. This proves the existence of a well
defined self-adjoint operator S(g). We note incidentally that taking the
limit on n in (4.25) yields

\\(eits(9} - eitS^)u®σ(A)ψ0\\ ^ C\g - gm\τ (4.26)

for all m such that B C {k : \k\ ̂  m} where the constant C does not depend
on g or m.

In order to prove strong continuity of the map g-^eίtS(9) we consider
a sequence hj in Kτ which converges in Kτ norm to h. It suffices to prove

eits(hj)φ converges strongly to eίtS(h)φ when φ = u®σ(A)ψ0 is an element
of the form considered above since finite linear combinations of these
vectors are dense in Jfpft. Let ε > 0. Choose m so large that B C {k : |fe| ^ m}
and such that Cί J \h(k)\2 μ(k)τ dk\ 1/2 <£ε, where C is the constant

\\k\>m }

appearing in (4.26). Put hj = Vj + w; and h = υ + w where Vj(k) = /z7 (fe) for
|fc| ^ m and is zero otherwise and v (k) = h(k) for |fc| ̂  m and is zero
otherwise. Then since C(w| τ^ε and |w — w7 |τ->0 we have C|w; | τ^2ε for
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all sufficiently large j. It follows from (4.26) that

\ ^ \\(eitS(hj)-eίtS(vj))φ\\

- eits(v} )φ\\ + \\(eίtS(v} - eitS(h}}φ\\ (4.27)

\(eίts(vj]-eits(v))φ\\

for all sufficiently large j and for |ί| ̂  T. Now \Vj — v\τ-+Q so ̂  converges
to υ in L2(£d, dfc). It is known [11] that the map g-^eitR(g) is a strongly
continuous map from L2(Ed,dk) and since e

its(^ = a(eitR(Vk}) and σ is
unitarily implementable on <$({k : \k\ ^ m}) by Corollary 1.2, it follows
that the last term on the right of (4.27) goes to zero as j->ao. This
establishes the strong continuity of the map g-*eitS(9).

The uniqueness of S(g) follows immediately from i) and ii) since ii)
determines S(g) uniquely when g has compact support and i) determines
eΐts(g) uniqueiy for each ι for an g jn ̂  because the functions in Kτ with
compact support are dense in Kτ.

The validity of (2.15) for all g and g' in Kτ follows from the fact that
both sides are strongly (jointly) continuous functions of g and gf and the
equality is valid, as has already been observed, when g and g' have
compact support.

The proof of part b) is similar to that of part a) and somewhat simpler.
If h is a bounded measurable real valued function on Ed with compact
support then eltDh lies in Ή(B) for some bounded open set B by Proposi-
tion 2.2 and by Corollary 1.2 b) or c) and Stone's theorem the equation iv)
determines a unique self-adjoint operator N(h) on tfph. The operators
N(h) commute with each other because the operators Dh do and σ is an
isomorphism. If now h is any element of Lτ let hn(k) = h(k) if |fc| ^ n and
be zero otherwise. We show that eitN(hn) converges strongly on jfpΛ and
uniformly with respect to ί on bounded ί sets. Since

eitN(hn) _ eitN(hm) = eitN(hm)feitN(hn-hm) _ Π

(because this identity is valid for the operators Dh) it suffices, as before,
to show that lim \\(eitN(hn~hm)-I)u®\p0\\=Q uniformly for \t\^T.

n,m-+ oo

For this purpose we need only show that \\(eit(Dhn~hm) — I)u®ψj\\ goes
to zero uniformly in j and |ί| ̂  T as n, m-> oo, as noted before. But by
Proposition 3.3 and Eq. (4.15) we have

|ί|
\\(eίtD^-^-I)u®Ψj\\^ j \\Dhn_hnιu®Ψj\\ds

o

^ 71«|| IIB^.^II .

Since
BvΨj + Bh2ψj (4.28)
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where v(kί, k2) = h(k±) h(k2) (see Remark 3.2 for notation) it follows from

(3.5) that llBhn_^ψjll2 ^ (j lhn(k} _ hm(k}l \fj(k}/μ(k}l2 dk)2

+ $\hn(k)-hm(k)\2\fj(k)/μ(k)\2dk

^const(j \hn(k}~hm(k)\ μ(k)τ {μ(kΓτ-*} dk)2

+ const j \hn(k) - hm(k)\2 μ(kγ{μ(kΓτ-3} dk .

The last two integrals converge to zero by the dominated convergence
theorem since the expressions in braces are integrable and the other
factor under each integral converges to zero pointwise and boundedly.
This establishes the existence of self-adjoint operators N(h). We note
that it follows from the preceding inequalities that

^ \\A\\ \ t \ \ \ u \ \ \ C J J \h(k)\μ(kγμ(kΓτ-3dk}2 (4.29)
L \ l * l > m /

+ C2 J h(k)2 μ(k)τμ(kΓτ~*dk\1/2

\k\>m \

where CA and C2 are constants. The proof that eitN(h) is a strongly
continuous function of h in the indicated topology now follows from
(4.29) in exactly the same way as i) followed from (4.26). This establishes
properties iii) and iv) for the operators N(h) and uniqueness follows from
these properties because the functions of compact support in Lτ are
dense in Lτ in the indicated topology.

The linearity, commutativity and order preserving character of the
operators N(h) as well as the Eq. (2.16) follow for functions with compact
support from the corresponding properties for the operators Dh because σ
is unitarily implementable on each algebra ^(B). For general h and h'
in Lτ and g in Kτ and real α and β the equation e

itN(ah + βh'} = e

itΛN^eitβN(h'}

follows by taking strong limits as h and h1 are approximated by functions
with compact support. This establishes the commutativity of N(h) and
N(hf) as well as the linearity. The Eq. (2.16) also follows by taking strong
limits over approximations to h and g by functions of compact support.
It remains to prove that N(h) ^ 0 if h ̂  0 and h is in Lτ. If hn(k) = h(k) for
\k\ ^ n and zero otherwise then N(hn) ^ 0. If / is a C°° function on the
line with compact support in (— oo,0) and / is its Fourier transform
then for any vectors φ and \p in $ph

0, ψ) f(t) dΐ
CO

-1 f (e"N^φ,ψ)f(t)dt

= 0
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since f(N(hJ) = Q for each n. Hence f(N(h)) = 0 and therefore
This concludes the proof of Theorem 2.

Proof of Corollary 2.1. If A is a self-adjoint operator on a Hubert
space then a vector v is in ®(^4) if \\t~l(eitA — ί)ψ\\ is uniformly bounded
for ί Φ 0. This follows from the spectral theorem and the equation

J λ2d(Eλυ,υ)=lim lim J
- on n-+co ί- O _„

(4.30)

where E( ) i s the spectral resolution of A. If Λ has compact support then,
in virtue of (4.19), the equation eίtDh = I®meίtBh, and Eq. (4.28), as well
as Proposition 3.3, we have

\\Γ1(eίtNW-l)u®ψQ\\2 = \imsup\\t-ί(eίtDh-i)u®^

= lim sup || M| | 2 \\rl(eitBh- l)ψj\\2

^lim sup \\u\\2 \\BhΨj\\2

j (4.31)
g Ni l 2 lim.sup{(ί \h(k)\ (fj(k)/μ(k))2 dk)2

+ \h(k)2(fj(k)lμ(k)}2dk}

£ const | |w ||2 {(I |/z(/c)| μ(fc)'3 rf/c)2 + J h(k)2 μ(fc)~3 dk} .

If h is a general element in Lτ and hn(k) = h(k) for | fc |^n and is zero
otherwise, then (4.31) applies to hn, and in view of Theorem 2 (iii) and the
dominated convergence theorem we may take the limit as w->oo and
obtain the validity of (4.31) for any h in Lτ. This establishes the corollary.

The next two lemmas are preparatory to the proof of Theorem 3.
We recall that Hn(p) denotes the restriction of the total Hamiltonian Hn

with cutoff function /„ to the infinitesimal subspace of total momentum p.

Lemma 4.3. Let P = (P± , . . . , Pd) denote the vector of momentum
operators for the Boson field [cf. Eq. (2.5)7 and let E(P) = (m2 4- P2)1/2.
Let S be a bounded open set in Ed and let A be in jtf(S). Denote by
Pf = (P[, ...,Pd) the vector of self -adjoint operators given by

P;= j kjb(k)*b(k)dk
keS

where k = ( k ί , . . . , kd). Suppose that ip and Aψ are in the domains of
PJ9 P and (Pj)2 forj=l, ...,d. Then ψ is in the domain of [£(P), A] and

\\A\\ \\(P')2ιp\\}

(4.32)
+ 2

where (Pf)2 = £ (Pj)2.
7=1
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Proof. Since E(p)^m+ |pA | H ----- h |pd| for all real Pι,...,pd, and
P1? ..., Pd commute it follows that ψ and Atp are in the domain of E(P)
and hence ψ is in the domain of [E(P), ^4]. Let

Qj = J kjb(k)*b(k)dk j=l,...,d.
kφS

If 5, C, and Z) are three self-adjoint operators with a common core δ
then the equation Bφ + Cφ = Dφ for all φ in <f implies that D is the
closure of B + C. For denoting closure by a bar and restriction to δ
by a subscript e we have

(X+
while

(A + B)*l
so that

(X + B)"CC* = C.

Thus since P, = Pj + Qj on <f, P, is the closure of Pj + Qj and g; is the
closure of Pj — Pj. In particular ψ and Aψ are in the domain of QJ9

j = 1, . . . , d and hence in the domain of £(β). Since A is in j/(S) it commutes
with any function of the Qjt In particular [E(Q),A]ψ = Q. Therefore

Now if p, pr, and ^ are vectors in Ed with p = p' + q then

|pf + 2^(£(p) + E(q)Γ 1 Pj .
j = ι

Since the operators P, , Pj, βj are commuting self-adjoint operators with
j = closure of P + Qj and since ||(£(P) + £(β))-1|l ^(2m)'1 while

+ £(β))~ 1 1| ^ 1 it follows that

ί \\(E(P) - E(Q))Aψ\\ + \\A(E(P) - E(Q))ψ\\

This proves the Lemma.
The next lemma was first proved rigorously in [3, Theorem 1].

We give a short proof. If 17 is any unitary operator on the one Boson
Hubert space 3tf = L2(Ed) then, regarding ̂  as the space of all symmetric
tensors over Jf, we denote by Γ(U) the unitary operator on 2F which is
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U®U®~ ®U on symmetric rc-tensors for n ̂  1 and is the identity on
zero rank tensors. If D is a self-adjoint operator on JΊ? then dΓ(D] denotes
the self-adjoint operator on 3F defined via Stone's theorem by the
equation Γ(eitD) = exp(itdΓ(D)} for all real numbers t. RQ(g) is defined
by Eq. (2.6).

Lemma 4.4. Let D be a self -adjoint operator on ffl and let g be in the
domain of D. If ip is in &>(dΓ(D)}r\&)(N112} where N is the number operator
on ̂  then ip is in the domain of dΓ(D)eiRo(9) and

dΓ(D)eίRo(9}ιp = eίRo(9}{dΓ(D)y + (Dg, g)ψ + RQ(iDg)ψ} . (4.33)

Proof. We start with a well known and simple to prove identity:
Γ(U)R0(g)Γ(UΓ1=R0(Ug) [2, Theorem 4] which by the functional
calculus yields Γ( U) exp (i R0(g)) = exp ( i R 0 ( U g ) ) Γ ( 17). Substituting
U = eitD and using the commutation relation

eίRo(Ug)_eiRQ(g)eiR0((U-I)g)eίlm(Ug,g)

(cf. 2.15) we obtain

Γ(eίtD)eiRo(9}W = e

iRo(9)eiRo(eitDg-g)eilm(eίtDg,g) fίeitD\ ^ (4.34)

By Stone's theorem the lemma will be proved if we can show that the
derivative of the right side exists at f = 0 and takes the appropriate
value. Thus it clearly suffices to prove that the derivative of e

iRo(eltD9~9)ψ
exists at ί = 0 and equals iRQ(iDg)ψ. But, using (2.15) again, we have

eiRo(ei^g-g) _ eiRQ((e^D-I- itD)g) eiR0(ίtDg)

_

The assertion now follows from the inequality

which goes to zero as f -» 0, showing that the derivative of
Qxp[iR0((eitD — I — itD)g)~]φ is zero at t = 0. This proves the lemma.

Remark 4.1. The lemma implies that if B = dΓ(D) + (Dg, g)I + R0(iDg)
then the closure B of B equals e~iRo(β) dΓ(D)eίRo(9\ which is the assertion
of Theorem 1 of [3]. For any vector ψ in 2(B) can be approximated in B
graph norm by vectors in @(Nll2)n@(dΓ(D}) (e.g. by finite particle
vectors) so that (4.33) implies BCe~iRo(9) dΓ(D)eίRo(9\ However by the
spectral theorem we may write D = D1+D2 where D± and D2 are com-
muting self-adjoint operators with D^^I, D2^ — /, gE@(Dl)n@(D2)
and dΓ(D) = closure of (dΓ(Dί) + dΓ(D2)). The corresponding operators
BI and B2 are self-adjoint on their domains since R0(ίDjg) is infinitesimal
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with respect to dΓ(D3\ j = 1, 2, and so Bj = e~
iRo(g} dΓ(Dj)eiR°(d\ j = 1, 2.

Since B1 +B2cB we have e-iRo(9)(dΓ(D1) + dΓ(D2))eiR°(9) = B1+B2CB.
Hence e~ίR°(9} dΓ(D)eiRo(d} CB.

Lemma 4.5. // /„ satisfies the hypotheses of Theorem 2 and \pn denotes
the rest state of Hn with unit norm then for each operator A in <$/$ there
is a real number c(A) such that

\\HMAψn\\^c(A) for all n. (4.35)

Proof. Since Hn(Q)ipn = m0ψn we may write Hn(0)Aψn = [#„(()), A]ψn

+ m0Aψn provided Aψn is in the domain of Hn(0) and we shall show
this in the course of the proof. We will thus obtain

\\Hn(0)Aψn\\ ^ KHn(0)9A-]ψn\\+mQ\\A\\ . (4.36)

Since A is a finite linear combination of operators of the form elRo(9)

where g has compact support it suffices to prove the lemma in case
A = eίRo(9) when g is an L2 function with support in a bounded open set S.
We prove that each of the three terms in [//„(()), A] corresponding to the
three terms in (2.4) gives a uniformly bounded contribution to the right
side of inequality (4.36). First we consider the middle term of (2.4). This
term, in the notation of Lemma 4.4, is dΓ(D) where D is the self-adjoint
operator of multiplication by μ(fc) on L2(Ed).

Since ψn is in the domain of H0 we may apply Lemma 4.4 to obtain

[ J μ(k) b(k)* b(k) dk, eiRo(9)] ψn

[Ed

^(μg,g)+\\R0(ίμg)ιpn\\

^(μwhere
= \b(k}*b(k)dk.

s

Proposition 3.3 shows that

which is uniformly bounded in n.
Next we consider the first term in (2.4). We must show that

|| [£(P), eiRo(9}] ψn || is uniformly bounded in n. Putting Pj = j kjb(k)* b(k)dk,
s

j = 1, ..., d, we note first that in view of the proof of Proposition 2.1, in
particular the equation s(m) ̂  m, we have m ̂  m0 > 0 so that by inequality
(4.32) it suffices to show that \\(Pj)2eiRo(d)ψnl ||P,VRo(flfVJ> \\(Pj}2ψn\\
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and ||Pjt/;J remain uniformly bounded as n-^oo for each j. (Actually
m-> oo in all interesting cases.) In the notation of Lemma 4.4 P is dΓ(D)
where D is multiplication by the bounded function kjχs(k) and χs is the
characteristic function of S. Hence by Lemma 4.4

for α = 1 or 2. All of the operators appearing are dominated by a power
of (Ns+ 1)1/2 in the following specific sense:

where
b = sup{\kj\:keS}

Thus for some constant C independent of n we have

2ψn\\

\\ (4.37)

by Corollary 3.5. This is uniformly bounded in view of the assumptions
on the sequence /„. We remark that ||(JVS + l)2ψ> J could also be estimated
easily using just Proposition 3.3 and the commutation relations for the

Finally the potential Vn in ̂  is Vn = R0(fn) and the commutation
relations show that

[Vn, e
iRo(βη = -2ί Im(g,fn)eίRo(d) .

Hence

Since g has compact support the right side is uniformly bounded in n.
Thus we have shown that each term on the right of the inequality

ί μ(k)b(k)*b(k)dk,A
Ed

+ \\ίVn9A]ιpn\\

is uniformly bounded in n when A = eiRo(9\ This concludes the proof
of the lemma.
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All tensor products in the remainder of the paper will refer to the
total momentum decomposition (2.3) and we shall henceforth write ®
instead of ®m.

Lemma 4.6. // fn satisfies the hypotheses of Theorem 2 and ψn denotes
the rest state of Hn with unit norm then, for each operator A in j/0 and each
function u in L2(Rd) with compact support in total momentum space Rd,
there is a real number c(A, u) such that

\\Hn(u®Aιpn)\\^c(Aίu) for all n. (4.38)

Proof. Keeping in mind the discussion of Eqs. (2.3) and (2.4) we may
write

\\Hn(u®Aιpn)\\2 = ί \u(p)\2 \\Hn(p}Ayn\\2 dp . (4.39)
Rd

But Hn(p) — Hn(Q) is a bounded operator of norm at most \p\. Hence,
in view of Lemma 4.5, we may write

\\Hn(u®AipJ\\2 ^ ί \u(p}\2 {\\Hn(Q)Aψa\\ + |p| \\Aιpn\\}2 dp

£ J \u(p)\2{c(A) + \p\\\A\\}2 dp

which is finite since u has compact support.
Proof of Theorem 3. Let Sn be the open ball of radius n in Ed.

Identifying L2(Sn) with functions in L2(Ed) vanishing off Sn we let Jίn

be a countable dense set in L2(Sn) and put Jί = (J Jtn. Then Jί is a
n

countable dense set in L2(Ed).
Given a weak accumulation point ω of the ωn choose a subsequence nj

as indicated in Corollary 1.1.
If u,v,g and h are in Jί then by Lemma 4.6 (Hn.(u®eiRo(9}\pn),

v®elR°(h}ipnj) is a bounded sequence. Therefore we may find a convergent
subsequence. Since Jt xJί xJt xJί is countable there exists, by
diagonalization, a sequence njk-+co such that (Hnjk(u®elRo(9}ιpnjk),
v®eίRo(h}ιpn. ) converges for all u, v, g and h in Jί. We shall be concerned
henceforth only with this subsequence to which we now restrict our
consideration.

We therefore change notation, writing ψj9 ωj9 Hj and we assume that
a>j converges to ω in the two senses indicated in Corollary 1.1 while

o(h}\p^ (4.40)

converges whenever u, v, g, h are in ̂ .
We assert that (4.40) converges for all u, v, g, and h in L2(Ed) with

compact support. In order to see this let u and g be in Jί and let v and h
be in L2(Ed) with support in Sr, say. Choose v0 and h0 in Jίγ and put
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wj = Hj(u®elKo(9)ψj\ aj = v ( S ) e i R o ( h } ι p j and βj = v0(g)eίRo(ho)ψj. Then
since KM^ , α^ ) — (wfc, αk)| ̂  |(w7 , o )̂ — (w; , βj)\ + KW^, ^ ) — (vvk, )8k)|
+ |(wfc, jffk) — (wk, αk)| we may write, estimating || wj rg const by Lemma 4.6,

\(Wj, α7 ) — (wk, αk)| ̂  const(||α7 — j87 || + ||αk — βk\\)

Hence

Iim_sup|(w7, α7 ) - (wk, αk)| ̂  const limjsupfllα,. - jSJ -f ||αk - j8k | |).

But H^-^IIJJu-uolH-l lu l l ||(^ΛO(;J)-^O(ΛO))^||. By the definition
of ω and ψ0, Iim||α7-/?7.|| ^ 11^-^11 + ||r|| \\σ(eίRo(h} -eίRo(ho})ψ0\\. Now
the map h-*eiRo(h} is strongly continuous on L2(Ed) and by Corollary 1.1
the restriction of σ to jtf(Sr) is unitarily implementable. Hence the map
h-*σ(eίRo(h)) is strongly continuous on L2(Sr). Therefore if h0 is chosen
to be sufficiently close to h and in L2(Sr) then \\σ(eίRo(h} -eiRo(ho))ιp0\\
can be made arbitrarily small. Choosing v0 in Jίr such that ||ι; — 1?0|| is
small shows that lim . supKwj, α^) — (wk,αk)| =0. This shows that (4.40)

j > "
converges for all u and g in Jί and all v and h in L2(Ed) with compact
support. Bringing the self-adjoint operator Hj over to the other side of
the inner product in (4.40) we may now repeat the preceding argument,
holding v and h fixed, to obtain the assertion following (4.40).

Since each operator in <$/0 is a finite linear combination of the
operators eiRo(e\ g e L2(Sr) it follows that, for any A and B in j/0 and u
and v of compact support, (Hj(u®AψJ),v(S)BψJ) converges a s j — >oo.

Denote by L2

c(Rd] the space of functions in L2(Rd) with compact
support. Let S£ be the linear space in Jfp/J consisting of all vectors α
of the form

n

α= £ uk®σ(Ak)ιp0 (4.41)

where wfc is in L2

c(Rd) and ̂  is in j/0 for k = 1, . . ., n and the sum is finite.
We assert that & is dense in jfp Λ. To this end it suffices to show that
σ(j/0)ι/;0 is dense in Jf0. But for any bounded open set S C Edjtf(S) is the
strong closure of <$?0njtf(S) and since σ is unitarily implementable on
j^(S) it follows that the strong closure of σ(j^0nj^(S)) is σ(j?/(S)). Thus
the closure of σ(j/0)t/;0 contains σ(jtf(S))ψQ for all bounded open sets 5.
Since (J σ(jtf(S))ψQ is dense in Jf0 so is σ(jtf0)ψ0. Therefore & is dense

s
in jfp Λ.

Let m

o (4 42)
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be another element in Jίf. We have seen that the limit defining the
following sesquilinear form F on the algebraic tensor product

L2

c(Rd)®jtf0 exists:

Σ UJ®AP Σ

= lim fl, £ uk®Akψj), £ υr®Brψλ.
;^°°\ \ k =ι / Γ = 1 /

Now we note that

lim \\Σfυr® Brιpj\\2 = lim £ (υr, vs) (Brψj9 BsΨj)
-+ ^

(4.43)

'

but not on j such that /fJ ]Γ uk®Ak\pj

= !l)3||2.
By Lemma 4.6 there exists a constant C depending on uί,..., un, Aί,..., An

^ C for all j. It follows that

(4.44)

Similarly, bringing the operator Hj to the other side of the inner product
in (4.43) it follows that there is a constant C depending only on v1,..., Bm

such that

|F( v)I^C'| |α| |. (4.45)

This inequality shows first that if vl9...9Bm are held fixed then
F('9Συr®Br) defines a linear functional on L2(Rd)®3/0 whose null
space contains the kernel of the map Σuk<8>Ak->Σuk®σ(Ak)ψ0 = oι9

so that F( 9Συr®Br) defines a linear functional on <£. Secondly it shows
that the linear functional is continuous on <£.

Similarly the inequality (4.44) shows that if the first argument of F
is held fixed in L2(Rd)®jtf0 then F defines a continuous anti-linear
functional on £2. Hence F defines a separately continuous sesquilinear
form <α, β> on .£? x X given by

. k = l

where α and 8̂ are given by (4.41) and (4.42).
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Since <• , •> is separately continuous on & x J&f there is an operator H'
on JfpΛ with domain Jδf such that

for α and β in Jδf . It follows from the self-adjointness of the operators Hj
and Eq. (4.43) that <α, β> = </?, α>. Consequently if is a symmetric
operator on jSf . Moreover, since Hj ̂  m0 / for all j we have

<α, α> = lim (Hj(Σ uk (x) Ak ψj), Σuk®Ak ψj)

Therefore Hf^m0L Let H denote the Friedrichs extension of H'. Then
H is self-adjoint and H^mQL

Conclusion i) of Theorem 3 is satisfied. Now taking A equal to the
identity operator in Eq. (4.39) we have

\\HjU®Ψj\\2 = J
Rd

Thus if ε>0 and j \u(p)\2 dp = 1 and w(p) = 0for |p|>ε then HHy
^ (m0 + ε). Hence

j9 u (x) T/;^) ̂  m0 + ε for all j .

It follows that (H'u®ψ0, u®ψ0)^m0 + s and since \\u®ψ0\\ = 1 we
have inf spectrum (H) ̂  m0 + ε. Since ε is arbitrary, conclusion ii) of the
theorem follows.

In order to prove part iii) of the theorem we first note that the operator
Dh = J h(k) a(k}* a(k] dk was shown in the proof of Proposition 2.2 to be
equal to I®mBh [cf. Eq. (4.15)]. We first restrict our attention to the zero
momentum subspace.

Note that if A and C are self-adjoint operators such that A ^ 0, and
2(C)^2(A\ and A — C is self-adjoint and bounded below, and ψ is a
unit eigenvector of A — C with eigenvalue equal to inf spectrum (A — C),
then

) . (4.46)

For A — C^(A — Cψ, ψ) = (Aψ, ψ) — (Cψ, ψ) ^ —(Cψ, ψ). We apply this
with A = Hj(0) and C = Bh. Thus

A-C= J (μ(k)-h(k))b(k)*b(k)dk + E(-
Ed
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where φ/0) = $ fj(k) (b(k) + b(k)*) dk and the mass in E(-P) has been
chosen so as to make m0 the bottom of the spectrum of Hj(0). Since
μ(k) — h(k) is a real and even positive function bounded away from zero
we may apply Theorem 8 of [8] to obtain a unit eigenvector ψ for A — C
with eigenvalue lying at the bottom of the spectrum of the semi-bounded
operator A — C. Proposition 3.3 is applicable to yield an estimate of
(Bhψ, ip) except, of course, that μ(k) must be replaced by μ(k) — h(k). Thus
(3.5) yields

£ j h(k)
Ed

Hence inequality (4.46) yields

f

μ(k)-h(k)

//*)

dk.

μ(k)-h(k)

2

dk. (4.47)

Now E( — q) ̂  E(p — q) + \p\ for all vectors p and q in Ed. Hence E( — P)
^ E(p -P) + \p\ and consequently Hj(ΰ) ^ Hj(p) + \p\. Therefore

\ (4.48)

where dj(h) = J h(k) \fj(k)/(μ(k) - h(k))\2 dk.
Suppose that the functions uk in Eq. (4.41) have support in Sa. Put

n n

Wj= Σ ^ΘΛv^ and w,.(p) = £ uk(p)Akψj. Then
k=ί k=ί

- J (BAw/p),
\P\£a

£ f ((Hχp) + dχ/ι)+|p|)w»,wχP))^ (4.49)

We wish to take the limit j-^oo in this inequality to obtain

(ΛΓ(Λ)α, α) ̂  ((H' + d(Λ) + α)α, α) . (4.50)

However while the right side of (4.49) does indeed converge to the right
side of (4.50) by the definition of H1 and dj(h), we do not know that the
left side converges. Thus we proceed as follows. First restrict h to have
compact support (in addition to the previous restrictions) in some
bounded open set S. Let φ be a non-negative, continuous, bounded
function on (—00, oo) such that φ(t) ^ t for all t in [0, oo), and assume
further that φ is the Fourier transform of an integrable function φ.
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Then φ(Dh) ^ Dh and therefore

(φ(Dh)wj9 w;) ̂  ((Hj + d(h) + a) w,, w, ) . (4.51)

Now (p(DΛ) = I®mφ(Bh) is in #(S) since φ is bounded and h has compact
support. Thus in view of Eq. (4.19) and the definition of α and w, we
have lim(φ(Dh)wp Wy) = (σ(φ(Dh))<x,, α). Since σ is unitarily implementable

on Ή(S) by a unitary operator which takes Dh to N(h) (cf. Theorem 2, iv)
it follows that σ(φ(Dh)) = φ(N(h)). Hence taking the limit j-^oo in (4.51)
we obtain

(φ(JV(Λ))α, α) ̂  ((H1 + d(h) + a)a, α) (4.52)

for all functions φ of the indicated type. Now we may remove the restric-
tion that h have compact support. For if h merely satisfies the hypothesis
of the theorem and hn(k) = h(k) for |fe| ^ n and is zero otherwise then
d(hn)-+d(h) by dominated convergence, as n-»oo, and, since eίtN(hn)

00

converges to eitN(h} strongly, the equation φ(N(hn))oc = J eitN(hn)aφ(t) dt
— 00

shows that φ(N(hn)) converges to φ(N(h)) strongly. Hence (4.52) holds
without a compact support restriction on h. Next we shall remove the
function φ.

We note incidentally that by Corollary 2.1, α is in the domain oΐN(h).
However we shall not use this fact. The domain of (H + d(h) + a)112 is,
by the definition of the Friedrichs extension, the closure of @(Hf) in the
norm given by the square root of the right side of inequality (4.52). Since
the left side of (4.52) is continuous in this norm (in fact in Jfph norm since
φ is bounded) the inequality persists for all α in @(H1/2)r\L2(Sa}® Jf0

in the form 2? | | , (4.53)

Letting φ increase to the function φ(t) = t through a pointwise con-
vergent sequence of functions of the indicated type, now shows, with
the help of the spectral theorem for N(h) and the monotone convergence
theorem, that (2.17) holds. We remark that the subspace L2(Sa)®<tfQ

is invariant under H. This is clearly the case for Hf as follows from (4.43),
the form of Hj and the definition of H'. Since H CH'* and H'* leaves

Ό invariant so does H. This concludes the proof of Theorem 3.

§ 5. Concluding Remarks

5.1. It is clear from the definition of 3fph that the operators corre-
sponding to the total momentum of polaron plus Boson field are
definable as self-adjoint operators on jfp Λ. Newton-Wigner polaron
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position operators also act on JfpΛ. Evidence indicates, however, that
the polaron momentum operators and Boson momentum operators are
not separately definable on JfpΛ in any reasonable way. This is in keeping
with the current view that certain bare observables should not be
definable on the physical Hubert space.

5.2. We have used Fock space methods in this article but it is illu-
minating to consider the meaning of some of our inequalities in the
Schrodinger representation (Q space representation) of the zero momen-
tum subspace. The use of Fock space is in many ways analogous to the
use of the Fourier transform in the study of partial differential operators.
In the Schrodinger representation of the zero momentum subspace the
Hamiltonian with cutoff is a second order elliptic differential operator
(in infinitely many variables) plus a first order pseudo-differential
operator (that comes from the polaron kinetic energy term) plus a
multiplication operator (that comes from Hj). The rest state is thus an
eigenfunction of an elliptic differential operator, and our basic inequalities
amount to estimates on the derivatives (of all orders) of this eigenfunction.
In fact our estimates can be used to show that the rest state is, in a certain
classical sense, an analytic function in the Schrodinger representation.

5.3. Our treatment of this model is incomplete in many fundamental
respects. We do not prove convergence of the states ωn, and in fact we
have not even used the fact that the cutoff functions fn(k) converge to
λμ(k)~1/2 in any crucial way. We do not prove the existence of the
renormalized polaron field as an operator from the one polaron physical
Hubert space to the zero polaron physical Hubert space (which is just
Fock space), although I have little doubt of its existence, and some of its
properties are easy to conjecture. We do not have a proof of the irre-
ducibility of the physical one polaron Hubert space under the Boson
field and the other relevant operators (total momentum and polaron
position). Moreover we do not discuss the many polaron physical
Hubert space at all.

Nevertheless the three problems that we have solved — the norm
compactness of states (Theorem 1), the extendability of the physical
Boson fields from test functions which have compact support in mo-
mentum space to all of the Schwartz space ^ (Theorem 2), and the
construction of the total Hamiltonian (Theorem 3) — seem to us to be
basic to any complete treatment of this model as well as other related
models with a momentum divergence.

5.4. The mass renormalization has been carried out in the present
model by inserting a bare mass m = m0 + δm (m0 = physical mass) into
the kinetic energy function (w2 + |p|2)1/2 of the nucleon. δm is chosen
(depending on the cutoff function) so as to maintain the lower bound
of the one nucleon Hamiltonian at the (fixed) physical mass ra0 as the
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cutoff is removed. This is in keeping with the spirit of mass renormaliza-
tion in relativistic theories. However the theorems and techniques we
have described in this paper are equally applicable with no changes of
proof if one accomplishes the mass renormalization by defining the
renormalized one nucleon Hamiltonian in the total momentum p
subspace as

H(p) = (H0)b + (m2

0 + (p-P)2)ί/2 + V + (δm)I (5.1)

where δm is again chosen so as to make m0 the lower bound of the
spectrum of H(p — Q). Frδhlich has pointed out in a note [17] that the
first method of renormalizing the model leads in the no cutoff limit to a
model whose dynamics is that of the scalar field model. (I wish to thank
J. Frohlich for an advance copy of his work.) His suggestion that the
renormalization method (5.1) be used in order to achieve a non-trivial
dynamics seems compelling.
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