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Abstract. The derivation of characteristic surfaces for interacting higher spin wave
equations is discussed in a shock wave formalism. Equations describing the propagation
of shock waves along the bicharacteristics are established for several interacting systems.

1. Introduction

The programme of constructing Lagrangians to give a consistant
field theoretical description of higher spin particles (s ̂  1) was initiated
by Fierz and Pauli [1]. The resulting Lagrange equations are then
equivalent to the equations of motion of the field together with the
constraints necessary to reduce the number of degrees of freedom of the
field to the number specified by its spin. This method eliminates the
algebraic inconsistencies which may arise when an interaction is intro-
duced and the constraint equations are postulated independently of the
equations of motion.

But it was noticed by Johnson and Sudarshan [2] that when the
Rarita-Schwinger field for a spin-3/2 particle is coupled minimally to the
electromagnetic field, a peculiar anomaly appears: namely, despite the
addition of a relativistically invariant interaction term to the free
Lagrangian, the equal time commutation relation between fields is not
positive definite in all Lorentz frames. Subsequently, Velo and Zwanziger
[3-5] showed that anomalies appear in the first quantized versions of
the same, and other, interacting systems by demonstrating, for example
[3], that the minimally coupled Rarita-Schwinger equation has charac-
teristic surfaces which can be space-like for any non-vanishing value of
the Maxwell tensor. Their method involves considering the Cauchy
problem and using the definition of characteristic surfaces as those
initial surfaces for which it has not a unique solution [6].

In this paper we use the fact that characteristic surfaces are surfaces
across which there can exist discontinuities in the highest order derivatives
appearing in the wave equation. This method was first used by Stell-
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macher [7] to analyse the propagation of gravitational waves. The
method is described in Section 2. It will be seen that, once the basic
formulae for the various orders of discontinuity have been established,
the calculation of the characteristic surfaces becomes very straight-
forward. This analysis allows us also to establish the equations which
govern the propagation of the discontinuities or shocks along the
bicharacteristics. We show that even when the characteristic surface is
space-like, the shock waves do in fact propagate. Several examples
of the interacting spin-1 Proca field are considered in Section 3, and in
Section 4 the linear Rarita-Schwinger equation for a sρin-3/2 field
minimally coupled to the electromagnetic field is discussed. In all the
cases considered, there is a remarkable similarity both in the form of the
equations which define the characteristic surfaces, and in the form of the
equations describing the propagation of the shock waves.

2. Discontinuity Formulae

Let σ be a smooth hypersurface given in a region of Minkowski space-
time. Here and in what follows, by smooth we mean differentiable of
class #", n ̂  3. Let xμ, μ = 0, 1, 2, 3, be an inertial coordinate system and
z(xμ) a real-valued smooth function of xμ regular in a neighbourhood
^ of σ and vanishing on σ. σ divides ^ into two regions ^+ and <^~
corresponding to z^O and z<0 respectively. Define ξμ = dμz. ξμ is
nonvanishing in <*U and normal to σ.

Consider a function φ(xμ) (with values in a space to be specified in
Sections 3 and 4) defined in % and smooth in the interior of ύlί+ and (ίli~ .
We wish to give general expressions for the possible discontinuities
across σ in the first, second and third order derivatives of φ with respect
to xμ. We consider two cases. In the first case we suppose that φ is con-
tinuous across σ but has a discontinuity in a first and possibly higher
derivatives. In the second case we suppose that φ is continuously differ-
entiable across σ but has a discontinuity in a second and possibly higher
derivatives.

Let φ be denoted by φ± in the regions ^r±. By extending φ± smoothly
into ^+ , the discontinuity [φ] = φ+ — φ~ may be defined as a smooth
function in <%. There exist therefore (uncountably many) smooth functions
fc, /, g defined in °U such that

We shall later in Sections 3 and 4 place restrictions on these functions.
For a function k defined in tyl let k ) σ be its restriction to σ. Define k, /, g by
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Suppose now that /cφO. From (2.1) we can calculate the discon-
tinuities across σ in the first and second derivatives of φ in an arbitrary
direction:

Suppose that k = 0. From (2.1) we can calculate the discontinuities
across σ in the second and third derivatives of φ in an arbitrary direction :

ldΛdβdyφ ] = (dΛdβdy[_φ])}σ = ξα<^y0 + ί<«£ A>/+ Wy)/ - (2.6)

The brackets on the indices indicate cyclic summation.
We shall use these formulae (2.3)-(2.6) in the next two sections to

find the characteristic surfaces and shock propagation equations for
various interacting higher spin wave equations.

3. Interacting Spin-1 Proca Field

We first consider the self-coupled vector boson. With a term pro-
portional to W4 in the Lagrangian, the wave equation is

Rμ = dλG
λμ + m2 Wμ + λ W2 Wμ = 0 , (3.1)

where

A constraint is found by taking the divergence of Rμ. This gives

d = aΛβPWβ = Q , (3.2)

where we have defined the "supplementary metric" aΛβ by

aΛβ = (m2 + λ W2} gaβ + 2λ WΛ Wβ . (3.3)

Suppose that Wμ is smooth except for a possible discontinuity in its
second derivative across a hypersurface σ, as described in Section 2.
There exist therefore a vector field /μ defined in a neighbourhood tyt
of σ and a vector field gμ defined on σ such that

Now consider the discontinuities of Rμ and dad across the hyper-

: m = ξV-ξ"/ ξ = 0, (3.4)

[3«ίO = ξ.fl^λ/'l = 0. (3.5)
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Equations (3.4) and (3.5) are sufficient to determine the characteristic
surfaces, but before doing so we examine the higher order discontinuity
structure implied by (3.1) and (3.2) in order to describe the propagation
of the discontinuity fμ along the bicharacteristics. In fact we examine the
quantities [SΛR

λ] and [dΛdβd].

Choose /to satisfy (3.4) and (3.5) in <%. We have then on σ

[δXl - ξ* J2 ~^ + dμξ
μfλ + ξ2gλ - dλ(f ξ) - ξλ(g - ξ + 3α/*)j = 0 ,

(3.6)

tfΛdβd] = ξΛξp{aλμξ
λg* + dλ(aλμf

μ)} = 0 . (3.7)

We have defined d/dr = ξμdμ.
The characteristic surfaces fall into two classes: (i) ξ2 = 0 and (ii) ξ2 Φ 0.
With £2 = 0, it follows from (3.4) that ξ -/ = 0, and from (3.5) that

f-W = 0 provided W ξ Φ 0. The vector fμ must be space-like since it is
normal to a light-like vector, and so may be written in the form

fμ = Anμ, n2 = -i,

From (3.6) it is straightforward to derive the equation

dλ(A2ξλ) = Q (3.8)

which expresses the conservation of the amplitude of the shock along the
bicharacteristics of σ. Using (3.6) and (3.7) we find the transport equation
for the vector nλ: , 3

d * = _ ξ ί W j L w . ξ t (3.9)

provided W ξ^Q. dr άr '
When ξ2 φ 0 we can write

r=βf, B=f ξ/ξ2.
It follows that the characteristic surface is given by

aafξ'ξf = 0. (3.10)

From (3.6) and (3.7), we derive then the conservation law

dλ(B2aλ»ξll) = Q. (3.11)

We next consider the vector boson with an external symmetric
tensor interaction. In this case, we have

Rμ = dλG
λμ + m2 Wμ + λTμv Wv = 0 ,

d = aα(αα/ϊw^) = o,
where

a*β = m2gaβ + λTaβ. (3.12)
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The discussion here is completely analogous to that of the previous
example, and it is possible to derive Eqs. (3.4) to (3.8) but with the
supplementary metric αα/3 given by (3.12). The only difference is that for
light-cone characteristics, Eq. (3.9) is replaced by

dnλ dTaβ

= - ? t »*IT*>t&. (3-13)

provided TΛβξΛξβ*Q.
As a last example, we consider the vector boson with minimal

electromagnetic interaction. The replacement dλ-^Dλ = dλ — ieAλ intro-
duces the minimal electromagnetic interaction, so that we have

a ,
where now

a«β = m2gaβ + ieFaβ. (3.14)

With the supplementary metric given by (3.14), Eqs. (3.4) and (3.5)
show that there can only be light-cone characteristics, because of the
anti-symmetry of FΛβ.

Equation (3.8) is established as before. The transport equation for nλ

is not well defined. We have only

--̂  = 0. (3.15)
dr

The transport equation for nα was not well defined in the previous two
examples along those bicharacteristics whose tangent vector ξα belonged
to the intersection of the Minkowski cone and the supplementary cone.
In this example the two cones coincide.

In cases where minimal coupling to the electromagnetic field is
being discussed, it is worth noting that Eqs. (2.3), (2.4), (2.5) and (2.6) are
still valid when the derivative da is replaced by the covariant derivative
Dα, and it is understood that

4. Minimally Coupled Rarita-Schwinger Equation

Before investigating the spin-3/2 equation, we examine, for the
purposes of comparison, the minimally coupled Dirac equation which
does not imply any constraints:
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Suppose that ψ is smooth except for a possible discontinuity in its
first derivative across a hypersurface σ as described in Section 2. There
exist therefore a spinor field k defined in a neighbourhood ^ of σ and a
spinor field / defined on σ such that

It follows that

so that if fc =t= 0 then ξ2 = 0. If we then choose fe such that ξ y k = 0, we have

ldβK] = ξβ(iξ.γf + iγ.Dk-mk) = Q.

Putting / = An, nn = ± 1, we get

We shall see how these are modified in the minimally coupled
Rarita-Schwinger equation, where the wave equation is

Λλ = (zTϊρD
β-M/)φμ = 0. (4.1)

Γ%Q and Mλμ are given by

Mλμ=-mσλμ.

Contracting (4.1) with Dλ and yλ we have

Using the fact that

FλρΓ^ρ = 2iy5y^aμ

(the * indicating the dual of Fαμ) and defining

we get
d' = 2iDλRλ-myλRλ = -3m2baβy

aψβ .

Suppose as before that ψμ is smooth except for a possible
discontinuity in its first derivative across a hypersurface σ. There exist
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therefore a spinor-vector field fcμ defined in a neighbourhood Jll of σ
and a spinor-vector field fμ defined on σ such that

The discontinuity structure of RΛ, d, and Dαd' may now be examined,

giving

0 μ
which lead to

ξ y k Λ - ^ V fe = 0, (4.2a)

ξ fc - ξ γγ k = 0 , (4.2b)

/> //c" = 0. (4.2c)
From (4.2a), we get

ξ2kλ = ξλξ k,

and, by defining the supplementary metric aΛβ by

it follows that fa.μξ«^ = 0. (4.3)

There are two classes of characteristic surfaces: (i) ξ2 — 0, in which
case ξ k = 0 and ξ γy - k = 0; (ii) ξ2 φO in which case ξa satisfies the
equatlon

The propagation equations for the shock are, as before, found by
examining higher order discontinuities. If we require kλ to satisfy (4.2)
in ̂ , then by examining [DαDλjRλ], [DαZ)/ϊ<Γ] and [DαKλ] across σ we find

°λμ(ξλfμ + Dλk») - -̂  y5yαF*α% , (4.4a)

^//M = 0, (4.4b)

( f r D - m ) F - y /y fc + ϊ(ξ y / λ - ξ λ y - / ~ D λ ( y - f e ) ) = 0. (4.4c)

respectively. Using the fact that

iy β(r^A-ξAr£) = o,
(4.4c) becomes

i(2ξ Dkχ + d^k}) - mξλy .k+^yλξ.r/ k

+ i(ξ2fλ-ξλξ yγ f-Dλ(ξ γy k)-ξλy D(y k)) = Q .
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In the case ξ2 = 0 we may write

k. — An i, n^nλ = T 1.
Λ A ' Λ '

The conservation equation for the amplitude of the shock is

da(A2ξ*) = Q , (4.5)

and the transport equation for nλ is

~df = ~ϊ^ξirb<'~frLy'rξβnftξi' (4 6)

provided a^Pξ^ξβ Φ 0.
If ξ2 Φ 0 then !

kλ = Bξλ, B=-^ξ k,

and the conservation equation for the amplitude of the shock is

yλB) = Q . (4.7)

At each point we have two cones defined: the Minkowski cone which
contains the normals to null hypersurfaces; and the supplementary cone
which contains the normals to the anomalous characteristic hyper-
surfaces.

In the previous examples a choice can be made of the free parameters
such that the causality requirement is satisfied; that is, such that the
supplementary cone does not lie inside the Minkowski cone.

In the first example this condition is A ^ O ; (and λW2 > —m2) in the
second example it is that λTaβ be a positive matrix.

This is not the case in this example. The supplementary metric may
be written as

! " - (4 81

where τλμ is the Maxwell stress-energy tensor. Causality here requires that

for all ξλ in the supplementary cone I provided 1 — j——2"] FaβF
aβ >01.

This is obviously impossible.
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