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Abstract. We consider quantum field theoretical models in n dimensional space-time
given by interaction densities which are bounded functions of an ultraviolet cut-off boson
field. Using methods of euclidean Markov field theory and of classical statistical mechanics,
we construct the infinite volume imaginary and real time Wightman functions as limits
of the corresponding quantities for the space cut-off models. In the physical Hubert space,
the space-time translations are represented by strongly continuous unitary groups and the
generator of time translations H is positive and has a unique, simple lowest eigenvalue
zero, with eigenvector Ω, which is the unique state invariant under space-time translations.
The imaginary time Wightman functions and the infinite volume vacuum energy density
are given as analytic functions of the coupling constant. The Wightman functions have
cluster properties also with respect to space translations.

1. Introduction

In recent years the mathematical construction of quantum field
theoretical models has made an impressive progress1. For the poly-
nomial interactions2 in two-dimensional space-time all the Haag-
Kastler axioms for a quantum field theory of local observables have been
verified, as well as most of the Wightman axioms3.

In particular in these polynomial models (and also for certain
2-dimensional boson models with exponential interactions [4]) the
existence of a vacuum state has been proven4.

This was sufficient for Glimm and Jaffe to build a theory in which
the Wightman functions exist and have some of the important physical
properties embodied in Wightman's axioms.

The question of the uniqueness of the vacuum has not been tackled
yet. The vacuum state is only obtained by a compactness argument as

1 See e.g. [1] and the references given therein.
2 See e.g. [1, 2] and the references given therein.
3 See e.g. [1—3]. See also footnote 5 below.
4 This has been proven also for the two-dimensional Yukawa interaction [5].
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limit of a subsequence of space cut-off vacua, so that the possibility of
different subsequences giving rise to different vacua is not ruled out5.

In this paper we would like to remark that for certain non poly-
nomial interactions in n space-time dimensions with ultraviolet cut-off
but no space cut-off uniqueness of the vacuum can be proven for small
values of the coupling constant. Moreover the corresponding Wightman
functions can be constructed and studied. The formal Hamiltonian of
the boson models which we study has the form

where φε is an ultraviolet cut-off, free, time zero, field and dv(s) is a
measure with bounded support on the real line (and dv( — s) = dv(s), -
meaning complex conjugate)6.

We first prove that the space cut-off Schwinger functions (imaginary
time Wightman functions) have unique limits when the space cut-off is
removed, provided the coupling constant λ is sufficiently small. These
limit Schwinger functions are given explicitely in terms of Liouville-
Neumann series with known kernel as convergent power series in λ.
Moreover they have cluster properties with respect to space and time
translations. For real λ, with \λ\ sufficiently small, the Schwinger functions
are analytic in the upper half planes of suitable time differences and their
boundary values are the infinite volume Wightman functions, which are
limits in the sense of distributions of the Wightman functions for the space
cut-off interaction. The infinite volume Wightman functions, which
satisfy the positive definiteness conditions, yield then the physical
Hubert space ffl, with a cyclic vector Ω and a representation of the field
operators by symmetric operators on an invariant domain and a strongly
continuous unitary representation of the space-time translations.

The generator H of the time translations is non negative and, due to
cluster properties of the Wightman functions, has zero as a simple lowest
eigenvalue, with eigenvector Ω. Ω is the only state in Jtf* which is invariant
under space-time translations. The Wightman functions are also proved
to have the cluster property with respect to translations in space. A
connection of the vacuum state with the limit, as the space cut-off is

5 After completion of this paper we learned in a private communication from Glimm
that for the polynomial interactions in two space-time dimensions without cut-offs he and
collaborators (Dimock and Spencer) have solved the problem of the uniqueness of the
vacuum for small coupling constants. As far as we know this has been done by methods
different from the one we use in the present paper.

6 These models are related to the bounded interaction models studied in [6]. They
are, in a sense, an Hamiltonian version of certain "non polynomial interactions" studied
in recent years from other points of view. See e.g. [7].
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taken away, of the space cut-off vacuum state on an algebra of operators
defined in terms of the time C*-automorphism is also given.

The limit ε of the ground state energy densities of the space cut-off
Hamiltonians exists, is analytic in λ for \λ\ small and concave in λ. It also
exists for arbitrary negative λ and positive dv and ε is then negative,
decreasing for \λ\ increasing and concave in In ( — A).

The idea of the proofs is suggested by the analogy between euclidean
field theory and classical statistical mechanics, on one hand8 and, on the
other hand, by the relation between Minkowski quantum field theory
and euclidean Markov field theory as recently established by Nelson [9] 9.

2. The Space Cut-off Models

Let OF be the Fock space for free, scalar, uncharged bosons of strictly
positive mass m, moving in n dimensional space-time. Thus J^ is the

direct sum & = 0 &(r\ where ^(0) = C = complex number and
r = 0

for r = 1, 2, . . . , is the r-fold symmetric tensor product 3F^ = 3tf®-
s s

ffl being the Lebesgue L2-space of (equivalence classes of) functions of a
(momentum) variable p running over the euclidean n — 1 dimensional
space 1R""1.

Let HQ be the free Hamiltonian in 3F. It is a self-adjoint operator with
domain D(H0) = D0.

For x in 1R""1 the free time zero fields are given by

Γ Γ s k / \ , / \ ~ I J /^ ϊ \j —r^ta (-p) + a(p)]dp, (2.1)

7 Note that, due to the presence of the ultraviolet cut-off, no Wick ordering of the
interaction is required. In fact our interactions

and the correspondent Wick-ordered ones

can be made to coincide by choosing ί/v1(s) = exp( — { s2K)dv(s), where K is a constant
(equal to the value for x = 0 of the propagator Gε(x) defined below).

8 This analogy has been exploited from a different point of view particularly in the
references [8] (and references quoted therein) and [7b, c].

9 See also [10], where a euclidean Markov field theoretical relation is exploited to
prove the uniqueness of the vacuum energy density and the van Hove phenomenon for
two-dimensional polynomial interactions. For further results on this infinite volume
behaviour, see [11]. For references concerning work previous to Nelson's one, see [8].
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where μ(p) = j/p2 + m2. a(p) and a*(p) are the usual formal annihilation-
creation operators for free scalar, uncharged bosons, normalized so that

[α(p), fl*(p')] = fl(p) «*(/>') - <**(P') a(p] = δ(p ~ p'\
Let χ(x) be a positive symmetric C00 function in IR""1 with support

in the unit ball such that J χ(x) dx = 1. Set χε = ε~π +1 χ(ε~1 jc), with ε> 0,
and define the ultraviolet cut-off free time zero field by

φε(x)=$φ(y)χε(x-y)dy. (2.2)

Then φε(x) are self-adjoint operators in ^ with definition domain
containing D0 and they are essentially self-adjoint on D0. They are
bounded from ^(r} into &(r-^®&(r+l}.

Let now v(a) be a real-valued function on R, so chosen as to be the
Fourier transform of a finite measure dv of bounded support on the real
line:

(2.3)

with J d | v | < oo and v( — s) = v(s).
The interaction density is given by λv(φε(x)), which is a well defined

bounded self-adjoint operator since ι (α) is a bounded continuous
function.

We note that

υ(φε(x))=lei&φ*(*>dv(s), (2.4)

where the integral is taken in the strong sense. This is of the same form
as the bounded interaction densities studied in [6].

The space cut-off interaction corresponding to this interaction
density is given by

λVt = λ j v(φε(x))dx, (2.5)
1*1 ^i

where the integral is again to be understood as a strong one. This defines
λVl as a bounded self-adjoint operator on 3F for all /.

Hence Hl = H$ + λVl is a self-adjoint operator, bounded from below,
with the same domain D0 as H0.

Moreover we have from [6c] (Theorem 3) that, for arbitrary λ, the
bottom of the spectrum of Hl consists of the simple eigenvalue El with
(unique) eigenvector Ωl

 10.
From regular perturbation theory alone one has the additional result

(which we are going to extend, in a certain sense, also for /-> oo) that for

10 E{ and Q{ are obtained in [6c] as the unique (norm) limits of the lowest eigen-
values and respective eigenvectors of suitable approximating Hamiltonians ("piecewise
constant momentum approximation").
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\λ\ sufficiently small (depending on /) El and Ωl are analytic in λ. Moreover
El is a concave function of λ i.e. satisfies El((x.λ1 + (1 — α)/t2)^α£ ί(/l1)

α ) £ μ ) for all

3. The Associated Euclidean Markov Field

For any real Hubert space ffl let Φ#(h\ he^f be the Gaussian
generalized stochastic process indexed by Jf, with mean zero and co-
variance E(ΦJp(g)Φjr(h)) = ( g , h ) j p 1 1 . So that Φ# (h) maps /ιeJf into
a measurable function (Gaussian random variable) on a probability
space (Ω^,dμ^). Let L2(dμ^) be the L2-space over Ω^ with respect
to the measure dμ^. L2(dμ^) is isomorphic [13,14] with the Fock space

oo

0 .tf(n) over Jf7, where ̂ (n} is the n-fold symmetric tensorproduct of 2ff.
n = 0

Using this isomorphism we see that any strongly continuous unitary
group on J^ induces, through a group of measure preserving transforma-
tions on Ωjf, a strongly continuous unitary group on L2(dμ^).

Let Δ be the Laplacian as a self-adjoint operator in L2(1R"). Let tf*
be the real Sobolev space, which is the completion of CJflR") with
respect to the inner product in ffl* given by

(f,9)* = (f,(-Δ+m2Yg), (3.1)

where ( , ) is the inner product in L2flR
w), and m is chosen to be the

mass of the free field discussed in Section 2. For α < 0, Jjf* will be a space
of distributions.

The generalized Gaussian stochastic process Φ#,-ι(h) is called the
free euclidean Markov field. Using ideas introduced by Nelson [9] in the
constructive study of models, we associate to the free time zero field over
1R""1, φ(g) = § φ ( x ) g ( x ) dx of Section 2, the euclidean Markov field

Φ^-iίΛ).
For any open set U with smooth boundary in IR" let @(U) be the

family of random variables generated by Φ(h\ with h e J^~1 and support
of h in U. Let E{Φ(h)\Θ(U)} be the conditional expectation of Φ(h) given
@(U). Nelson proved that Φ(h) has the following "Markovian property":

E{Φ(h)\G(ϊ, U)} = E{Φ(h)\Θ(dU)} (3.2)

where C U is the complement of U and dU is the boundary. The property
(3.2) is taken as the characterizing property of a Markov field.

The Fock space of the free boson field as given in Section 2 is just
the Fock space over ^f~-\, moreover the free time zero field itself φ(g)
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is a generalized Gaussian stochastic process with mean zero and co-
variance function

E(φ(f)φ(g)) = ( f , g ) - ± . (33)

Hence the free time zero field φ(g) may be identified with the generalized
Gaussian stochastic process Φ^-ϊ^g).

We define now a mapping Wt\tf-_\->tf-^ by (Wtf)(x)
= δ(x0 — ί) f(x). One verifies easily that Wt is an isometry of ^n~\ °nto
the closed subspace of ^f~ 1 generated by elements of 2tf~ l with support
on the hyperplane x0 = ί.

The Fock space of the free boson field, Ĵ , is the Fock space over
ffl~-\ , hence identified with L2(dμ^-^l). Since W0 is an isometry, we have

that the generalized Gaussian stochastic processes Φ^-i^g) and

Φ#>-ι(WQg) have the same mean and covariance functions, hence may

be identified. This then identifies L2(dμ^~^ί) with a closed subspace of

Let FGL2(dμ^~iί) be of the form F

where / is a bounded continuous function of fc real variables. Then we
define F^L2(dμ^ by Ft = f(Φ^,(Wtg,\ ...,Φ^,(Wtgk}\ Using

that Wt is an isometry one gets that F-^Ft extends to an isometry of
L2(dμ^~j ^ into L2(dμ^~ i). Moreover in J^~ 1 the translation group acts

unitarily and strongly continuously. Using the identification of L2(dμ^~ i)

with the Fock space over J^~ 1 we get a unitary and strongly continuous
representation U(x) of the translation group in 1R" on L2(dμ^>-ι). Since

Ft = C/(ί, 0) F0 U( — ί, 0), we see that Ft depends continuously on t in the
L2-norm for any F in L2(dμ#>-±^.

One verifies that

Σ ^..A.^-i-iV-.^-t
all partitions

«ι <«25 . . . » w r _ ! <nr (3.4)

O for r odd,

from which it follows that the distributions of r-variables defined by
E(Φ#,-ι(hι) ... Φ#>-ι(hr)) are the imaginary time free field Wightman

functions. Hence, for tl ^ ί2 ••• = f r»

where Ω0 e J^ is the vacuum for the free scalar boson field and H0 is the
free energy. Using now the identification of !F with L2(άμ^-\^ and taking
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sums and limits of expressions of the form (3.5) we get the following
lemma.

Lemma 3.1. Let F(1), ...,F(r) be in LJdμ^^).
Then, for f^--<U r,

E(F^} ...F^) = (Ω0,F
(i)e~^-tί)H°F(2)e-^-t2)H°...F(r)Ω0). Π

We will now consider self-adjoint operators of the form H = H0 + V,
where HQ is the free energy and V is a bounded operator on 3F which
commutes with all the free time zero fields φ(g). Since the L2(dμ^-^)

is a spectral representation of 2F with respect to the maximal abelian
algebra generated by φ(g\ we see that, in L2(dμ^_ t), V is a multiplication

operator by a function, which we will also denote V.

Lemma 3.2. Let V be as above, and let F and G be in L2(dμ^-ji), then

where the integral over Vτ is taken in the strong L2(dμ^-1) sense.

Proof. The Trotter product formula gives us

Now, by Lemma 3.1,

(Ω Fρ~t/nHoρ~tlnV p~t/nH°e~t/nVGΩ } — F\F e k=l Gl Π 6Ϊ\t,ίQ,re e . . . t ^ t; ^i<Σ0;— j^ \ι o ^ ^f/ V J U7

Since F is in L00(dμ^-^ί) we know that Kr is in Lx(dμ^-ι) and is con-
n

tinuous in t in the strong L2-sense. Hence t/n ]Γ Ffc ί/w converges strongly
k = ί

t

in L2(dμ^~i) to J Vτ dτ for n-» oo.
o

The strong L2-convergence allows us to conclude that any sub-
sequence has a subsequence n such that the convergence is almost
everywhere. The almost everywhere convergence together with the
uniform boundedness gives that

-$Vτdτ

This implies that the right hand side of (3.6) converges to E\F0e ° Gj,
which proves the lemma. Π
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The interaction of Section 2,

λVt = λ f v(φe(x))dX, (3.7)
1*1^*

is of the form considered in Lemma 3.2. Moreover the function Vτ in
L00(dμ^- 1) of Lemma 3.2 may be given explicitely in this case:

Vτ = λ f υ ( Φ j e - l ( f τ t X ) ) d x 9 (3.8)
\*\£i

where fτ,x(y) = δ(τ — y0) χε(x — y). This follows from the identification
of φ(g) with Φ^-i^g) and the definition of the mapping F-^Ft from

L2(dμ#>-±^ into L2(dμ^>~ι). Since

we see that the integrand in (3.8) is continuous in x as well as in τ in the
strong L2-sense. Hence in this case Lemma 3.2 takes the form

Lemma 3.3. Let v(a) be as in Section 2. Then

where F and G are in L2(dμJ/e-il\ and /τ,xM-(5(τ -^0)χε(^ - j). Π

From (3.4) it follows that Φ#-ι(h) for he^1 is in all Lp for 1 ^p < oo.

For V in L^(dμ^-i t) we may therefore consider E

where we have written Φ(h) for Φ#,-ι(h). Take hl9 ...,hn in C^(1RΠ) and

Then fei(x0,jc)= § δ(xQ — t) g\(x) dt and the integrand <5(x0 — i ) g f f ( j t )
is strongly continuous in 3 t f ~ l . Therefore if the support of hi is bounded
by the hyperplanes x0 = a and x0 = b, then

which by formula (3.5) and Lemma 3.2 is equal to

n

with W = H0 + V.
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Let E be the infimum of the spectrum of //, and set H = H — E.
Since V is bounded we have

i ^ e - ^ ^ - H , (3.ιi)
with C independent of tt and /. On the other hand for any positive self-
adjoint operator A we have

\\(A + l)*e~tA\\ ^ sup(x+\^e'tx = (2tΓiet~^ . (3.12)

Using (3.11), (3.12) and the fact that φ(g\] is zero for t outside a bounded
interval, we get that

is bounded in absolute value uniformly in a and b by an integrable
function over t1 ^ ^ tn.

Let us assume that H has a simple eigenvalue at E and let Ω be_the
corresponding eigenvector. Then e~ ( ί l~α )^Ω 0 as well as e~(b~tn}ΠΩo
converge to (Ω, Ω0)£2 as α-> -oo andb-* +00. By (3.11) φ(g^)e~(tl + ί~tl)H

is a bounded operator for tί < t2 < ••• < tn. Hence (3.13) converges to

|(Ω,Ω0)|2(Ω,φ(^)e-(t-")S ... e-^""-^Bφ(^)Ω) (3.14)

as α-> — oo and b-> + 00 for tl < t2 < ••• < tn.
From Lebesgue's dominated convergence theorem we then get that

(ΩQ, €-<•"

converges to

J . J (
ίli ••• ̂ ίn

as α-^ — oo and b-> -h oo. This proves the following Lemma.

Lemma 3.4. Let h1 , . . . ,/ !„ e C^flR"),

t^+cc
lim \E\e - '"";/ ' E\Φ(hl}...Φ(hn}e -**'

Remark 1. For V = λVh the interaction of Section 2, this lemma
holds since we know that Hl = H0 + λ Vt has a simple lowest eigenvalue.

Remark 2. Lemma (3.4) shows that the limit is the time imaginary
Wightman function for the space cut-off interaction integrated with
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4. Connection with Some Quantities of Classical Statistical Mechanics

Let us denote the random variable Φ^~ι(fXθ9X) by Φε(.x0, x) = Φε(x\
where fXQtX(y) = δ(x0 — y0) χε(x — y), and define for any bounded measur-
able ΛClR n and for any / ι l 5 . . . , hk in C0(lRn)

-λ J v(Φt,(x))dx
Λ

-λ J v(Φε(x))dx

F^(hl9 ...,hk) = E !Φ(/ίi). . . Φ(hk)e
and

From Lemma 3.4 we see that if we take A = Attl=(x\ |x0| g ί/2, \x\ rg /},
then the Gk

Λt l(hl,..., fιfc) converge for £->oo to the imaginary time
Wightman functions for the space cut-off interaction. In order to remove
the space cut-off we will therefore naturally be interested in taking the
limit as / -> oo as well as ί -> oo in G%t l We intend, by using methods from
classical statistical mechanics, to prove that the limit of G\ exists for A
expanding to IR". This will then give us the time imaginary Wightman
functions for the model without cut-off.

So let A be bounded. Since υ(Φε(x)) is a bounded random variable and
strongly L2-continuous in x, ZΛ and FΛ are entire functions of Λ,. Let us set

-λ J v(Φε(x))dx\

'- Λ j and GA(h) = Z^FA(h).

Since v(Φε(x)) is a bounded random variable we see from the definition
/ * \

of FΛ(h) that FΛ\ Σ ^hAisk times differentiable with respect to ί ̂ ,..., tk

Hence FΛ(h) determines F^(hί7 ..., /zfc).
Since v(Φε(x)) is a bounded random variable, FΛ(h) is also an entire

function of λ. By expanding in powers of λ we get

Using now that t (α) — j eιsa dv(s) we get

Φ(Λ)+ Σ

iΦ\h+ Σ Sj/vJ n
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where fx(y) = δ(x0 - y0) χε(x - y) by the definition of Φε(x). On the other
hand, for any g e 2tf~ 1

and setting
n

g = h+ X S j f X j

j = ι
we get

ΪΦ Λ + Σ s j f x ) \ -\ Σ s t S j G t . ( x l - X j ) - Σ Sjhε(Xj)
E\e { ' = ' V =E(eίΦ(h})e *•>**

Hence the integral over An above is

Computing now the product and using that ]Γ st Sj Gε(xt — x7 ) is symmetric
i, 1

under permutations of x 1s 1, ..., xnsn, we get this equal to

-± Σ S i S j G t ( X ι - X j ) r «

From this it follows that
n + t

oo -j oo / l\n~^~r ~i~ Σ SιSjGε(Xι~ Xj)~

r=l T. n = Q n. Λn + r

r n + r (4.1)
• Y[ (e sJhε(χj} — ϊ) Y[ dv(Sj) dXj,

J = l 7 = 1

where we already have used that the expansion for ZΛ is given by

ZΛ — Σ ~^—i ί ' "J β 1 > J = 1 Y[dv(Sj)dXj. (4.2)

We remark that Gε(x) is a bounded real positive definite function, which

tends to zero as e~
m\x\ for |χ -»oo. Since Gε(x) is positive definite,

we have that |Gε(x)| ̂  Gε(0). We notice that, for negative λ, ZΛ is in fact
the grand canonical partition function for a gas in n-dimensional space
with variably charged particles and activity z= —λ. The interaction
energy between a particle at xt with charge sf and a particle at x} with
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charge Sj is s^-G^X; — x^ ), and the self energy of a particle with charge s
is given by \ s2 Gε(0). So the charge s is an internal degree of freedom for
these particles, and 5 may be discrete or continuous, depending on dv.
We are going to exploit this connection with the grand canonical ensemble
of a gas of variably charged particles, by introducing the corresponding
correlation functions and we shall see that GA(h) can be expressed
explicitely by these correlation functions1 2. The correlation functions
ρ^XiS!, ...,xksk) are defined for x;e!R'1 and sl in the support of dv by

"I Σ s l S j G E ( x ί - X j ) n + k

for all xte A and zero elsewhere, for those values of λ for which ZΛ φ 0.
Since £ st Sj GE(xt — Xj) ̂  0 we see that the series converge for all complex /.

From (4.1) it follows that GΛ(h) is given in terms of ρk

Λ by

GΛ(h) = e~*(h'h)-ί (4.4)

oo i r r 1

j_ \ — l . . . I I I (g~Sj ^χj^ — 1) nr

A (x, 51 x s ) I I ί/v(s •) ί/x •
r = 1 r Λr j - 1 j = 1 J

As in classical statistical mechanics13 we shall now introduce the Banach
spaces Bξ of sequences ψ= {ψk((xs)k)}k^l = {ψίί(xlsl, ...,xksk)}k^ί of
bounded dx Jv-measurable functions. The norm in Bξ is given by

where ξ is a positive number.
In Bξ we define the projection operator PΛ of norm one given by

(4.5)

12 The correlation functions of similar "euclidean gases of charged particles" associated
with field theoretical models have been introduced, in another context, in Ref. [7 b] and [7 c].

13 These spaces have been introduced in classical statistical mechanics by Ruelle in
order to study the infinite volume limit of the correlation functions in the grand canonical
ensemble. Here and in the rest of this section we shall follow closely the lines of classical
statistical mechanics as given in Ruelle's book, Ref. [15], Chapter 4. This reference contains
also bibliographical notes on previous work on the infinite volume limit of correlation
functions.
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where χΛ(x)n = χ Λ ( x ι ) ••• XΛ(XH\ witn XΛ(X) equal to the characteristic
function for the set A. Also in analogy with statistical mechanics we
introduce an operator K on Bξ given by

- £ sιSιG ε (x, -x i)

(KΨ)(xs)m = e •-* e-^G'(

+ Σ Λί ί Π [(e- s"'G ' ( ) l j-A l )-l)]Vm + n -i (4.6)
M = 1 n ' I = 1

7 = 1

For m — 1 the first term in the curly bracket is set equal to zero.
Let α be the sequence o ί l ( x l s l ) = £»~^S?G C ( O ) and cnn(xl s{, . . . , χ n s n ) = Q

for n> 1. We then verify that the sequence ρ^ given by the correlation
functions ρ^(Xi ... xn) satisfies the equation

ρΛ=-λPΛΛ-λPAKρΛ. (4.7)

Since the correlation functions ρn

Λ(xίsl, ...,xπsπ) are symmetric, we
find from (4.7) that ρΛ will also satisfy the equation

QΛ=-λPΛ*-λPΛΠKρΛ, (4.8)

where 77 is an operator of the form

XιS 1 , . . . ,x l l s n ) = ι/?w(x(T(1)sσ(1), ...5xσ ( f l )sσ ( 1 )), (4.9)

σ being, for each n, a permutation of 1, . . . , n which may depend measurably
on x 1 ? . .., xn and sϊ9 . .., sn.

We note that such a /7 will have norm equal to one.
Since Gf (x) is positive definite 14 we have that

Let 5 = Gε(0) sup {s2 5 e swpp of dv} then

m

ΣS ίs jG ε(x ί.-x J.)^-2mβ. (4.10)
i*j

It follows from (4.10) that for any x l 5 ..., xm and s l 9 ..., sw there exists an
index i such that

m

Σ 5 ίs jG ε(x ί-x j)^-2B. (4.11)

14 Using the analogy with classical statistical mechanics this can be interpreted as
the fact that the total interaction of our gas in IR" satisfies the "stability condition" of [15].
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For any m and any xl7..., xm and sl9..., sm we now choose a permutation
σ of 1,..., m such that σ(l) = i, where i is the index i of (4.11). σ is then a
permutation depending on the x's and the s's, and let Π be the corre-
sponding operator on Bξ defined by (4.9).

We now estimate the operator norm on Bξ of the operator Π K of (4.8).
From (4.6) and (4.11) we have

n2B

x,s

1

with

C = sup{J \e-
stGM - 1| β-**2<M<» d|

It follows from the exponential decrease of Gε(x) that C is finite1 5.

Using now that sup^x^, ..., xksk)| <^ξk \\ip\\ ξ, we get
x,s

Hence

\\ΠKy\\ξ^Γle2B+*c\\v\\^ (4.12)

so that \\ΠK\\ <*Ce2B+ί, if we choose ξ = C~*, which is seen to be the
best choice of ξ. This proves that (4.8) has a unique solution for
\λ\ < C~ 1 e~2B~ \ which then is ρ^. From this we also get that the correla-
tion functions ^(Xis l 9 ..., xksk) are analytic in λ uniformly in A for
\λ\ < C"1 e~2B~ί. Moreover we may define ρ k(x 1s l J ...,x f cs f c) by

ρ=-λx-λΠKρ (4.13)

for λ <C-le-2B~l.

Lemma 4.1. For \λ\ < C~le~2B~l the infinite volume correlation
functions ρk(x1s1, ..., xksk) defined as the unique solution of (4.13) exist
and are analytic in λ16. Moreover they satisfy

2B+1'* v " i ~ ι , . .,"*^, = ~ ι_μ |Cβ

are continuous in x l 5 ..., xk and sί ... sfc, and translation invariant in the xs.
The finite volume correlation functions Qk

Λ(xι s l 5 . . . , xfcsfe) converge to
ρk(xίsί, ...,xksk) as /l->IRrt swc/z ί/iαί βί(x, C/I)-> oo /or απ^y xelR" and

15 This can be interpreted as the fact that the interaction of our gas in IR" satisfies the
"regularity condition" of [15].

16 Their expansions in powers of λ are given as Liouville-Neumann series with known
kernel: see Remark at the end of the Section 4.
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d(x, C/L) is the distance from x to the complement of A. The convergence is
such that

where η is a function that goes to zero at infinity and is independent of A, k
and *! ... xk, s^ ... sk, and d = mm{d(xi, C/L)}.

Lemma 4.2. For \λ\ < C~ 1 e~ 2B~ l we have the cluster property for the
correlation functions:

pointwise as a tends to infinity in IR".

These two Lemmas are proved as in classical statistical mechanics [15]
by using that S SyG^X; — x7 ) corresponds to a stable and regular inter-
action in the language of classical statistical mechanics. The proofs
require only a slight modification of the proofs given in Ref. [15],
Chapter 4, and will therefore not be given here.

Lemma 4.3. For \λ\ < C ~ 1 e ~ 2 B ~ l the limit

ε = -lim
IRn \Λ\

exists when A — > IR" in the sense that d(x, C A) tends to infinity for all x e IR".
Moreover ε(λ) is analytic11 in λ for \λ\<C~l e~2B~^ and

λ 1

where ρ 1 ( x s , λ ) is the correlation function with one argument. For λ<0
and dv a positive measure we have that ρ1 is positive which gives us that ε
is negative. Moreover in this case ε exists also for all λ<Q, decreases when
\λ\ increases and is also concave in In ( — A).

17 For all \λ\ < C * e 2β 1 (and all dv) the expansions of ρ1 and ( —ε) in powers of λ
are the Mayer series Σ(nbn)( — λ)n resp. £/>„( — λ}" for the "density" respectively "pressure"
of our "gas" in IR". Hence information on the expansion coefficients is readily available
(see e.g. [15], p. 84-86).

Note that the well known virial expansion (of the pressure in powers of the density)
corresponds in our case to an expansion of — ε in powers of ρ1, expansion which can be
obtained by inverting the expansion of ρ1 in powers of λ in a neighborhood of A ^ O

which is possible since lim — Φ 0 .
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Proof. From the expansion of ZΛ (4.2) and the expansion of ρl

Λ (4.3)
we find that

Λ= — $ρ\(xs λ)dv(s)dx.
dλ ̂ Λ λ Λ

From Lemma 4.1 we have that — ρ\(xs,λ) is uniformly bounded and

analytic in λ for \λ\ < C"1 e~2B~l — δ, for any δ > 0. Moreover
|ρi(x, s; λ) - ρl(x, s; λ)\ <; C~ 1 η(d), and hence it follows that

1 λ 1
— J dv(s) dx j y ρi(x, 5;
I71! Λ o /L

converges uniformly for |/t| < C~le~2B~l — (5 to

since ρ !(x, 5; 1) is independent of x. This proves that — - InZ^ converges

as A — > IRΠ and that the limit— ε is given by the formula of the Lemma.
That ρ1 is positive for dv ̂  0 and λ :g 0 follows from the fact that ρ^ ̂  0,
which one sees from (4.3). The existence of ε for all λ < 0 in this case
follows from the identification, possible in this case, of ZΛ with a grand
canonical partition function for a system with stable and tempered
interactions (see [15], p. 157).

The decrease of ε as \λ\ increases follows from the increase of ZΛ.
Remark. All the series expansions for the ρ^x^, ..., xrsr) and

therefore also for ε in powers of λ can be explicitely obtained from (4.13)
and are given by

. (4.14)

5. Removal of the Space Cut-off for the Imaginary Time
Wightman Functions and the Vacuum Energy Density

Let ΛM = [-ί/2,ί/2]x{jc| j c |^/}ClR" and set ZtJ = ZΛtl and
= FΛt l and GtJ = GΛt r It then follows from Lemma 3.3 that

(5.1)
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with H^H^ + λ j v(φε(x))dx. From (3.8) and (3.9) we have, for
\χ\zι

h ! , . . . , hk with support in Λtίh that

= k l •••{ (Ω0,e-(tl

-'k

h1(t1,xi)...hk(tk,xk

t l- -'k (5.2)

and
Gf^Z^f*,. (5.3)

By Lemma 3.4 the limit as f-» + GO of Gk

t Λ exists and is given by

G*(/i1 ?...A)

- fe! J . - . f (Ω ί,φ(x1)e" ( ί 2- f l ) 5 ' ...e- ( ί k" f k- l ) 5 'φ(jck)Ω i) (5.4)
•̂•̂  fc

•Mfι5*ι) M*fc,*fc) ΓMM*j'
j = ι

where Ωt is the unique normalized eigenvector with eigenvalue EL and
E{ is the infimum of the spectrum of Hh and Hl = Hl — El. The integration
over dXj in (5.2) and (5.4) is to be understood in the sense of distributions.

k

After integrating with respect to ]~| dxj in (5.2) and (5.4), the result is a
j=l

function of ί t , . . . , tk that is translation invariant, continuous in t1 <••• <tk

and integrable over tί ^ ^ ίk. This follows from the proof of Lemma 3.4.
We see from (5.4) that Gk

l(hl, ...,hk) are the imaginary time Wightman
functions (also called Schwinger functions) for the space cut-off inter-
action.

Theorem 5.1. Let \λ\<C~le~2B~1 and hl9 ..., hk be in CJ. Then the
Gf(Λ 1 ? ..., hk) converge as I -^ GO to Gk(/ι l 5 ..., hk), where Gk(hί, ..., hk) are
translation invariant in t and x and given by

G*(λ 1 , . . . ,Λ t ) = G*0(Λ1,...Λ) + (0*t 7Γ Σ ^r
r=l ' ' p + q = k P '

1 q^r,p^0

X G*0(haw,...,hσ(p)) Σ 1— ΓT
σeSk

-ί Π K1 Π^+ί, + ,̂
i = 1 L j = 1

r

ρ'Όx!^,...,*,^) f] dv(Sj)dXj.
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Sk is the set of permutations of 1, . . . , / c and the GQ(/II? ..., h^ are the
imaginary time free Wightman functions : GQ (h± , . . . , hk) = E(Φ(hl) . . . Φ(hk))

= ^TΓ Σ (^(i)A(2))-ι •••(fcσ<2p-i)A<2p))-ι far k = 2p and zero
Z P ' σeSk

for k odd. ρr(x151, ...,x rs r) is the infinite volume correlation function of
Lemma 4.1, and hl(x) = j Gε(x — y) h^y) dy and Gε(x) is the Gε(x) of
Section 4, which is given by

Proof. It follows from (4.4) and the fact that GΛi Σ tιni\ ιs analytic

in*!, ...,ίk that the formula (5. 5) with Gk

A(h 1 ? . . ., hk) instead of Gk(h 1?..., hk)
and with Qr

Λ(x1s1, ...,xrsr) instead of ρr(x1sl7 ...,xrsr) holds. Choosing
now Λ = Λtj we have by (5.4) that G*j(hi9 ..., hk) converges to the limit
Gf(/ι1? ..., /ι f c)asί->oo. On the other hand by Lemma 4.1 ρr

Λt l(xίsl ...xrsr)
is uniformly bounded in x± , . . . , xr, t, I and tends to a limit Q*(XI sl , . . . , xr sr)
uniformly on compacts as ί and I tend to infinity. Since /ι?(x) i= 1, ..., fe
are all bounded integrable functions we get by dominated convergence
from (5.5), with Gk

ttl = Gk

Λtland ρk

Λtl instead of Gk and ρr, that G*j(hί9...,hk)
converges to the limit G k(Λ 1 ? ...,/ιk), given by (5.5), as ί and / tend to
infinity.

Consider now the inequality

(̂̂ ...̂ -G?,̂

Choose ε>0; then there exists a Nε such that for any t^N£ and any
/ ^ Λ Γ ε the last term is smaller than ε/2. Choose an /^ Tε. Then for this
value of / we may choose a t^Nε and large enough so that the first term
is smaller than ε/2. Then for / ̂  Tε we get |Gf (̂  , . . . ,hk) - G*^ , . . . , fek)| ̂  ε.
This proves the theorem.

Theorem 5.2. Let \λ\ < C~le~2B~l, and let hl9...,hk, gl,...,gl be
in CJ(1R").

Let ga

i(x) = gi(x — a) for αeIR". Then we have the following cluster
properties :

as \a ->oo.
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Proof. It follows from (5.5) that for any he CJ(IRΠ)

00 (ί\k

G(h) = 1 + X -y- Gk(h, . . . ,h) is defined
k = 1 K

and the series is absolutely convergent. Remembering that (5.5) was
obtained by means of (4.4), we get

(5.6)

dv(sj)dXj .
j = ι

Therefore

1- J- . J Π (e-s^β^-fl)-s^(^+β)-l) (5.7)
Γ j = 1

j
ρ'X x^,...,*^) f] dv(Sj)dXj .

j = ι J

We observe that (/zα, g~a)- 1 ->0 as |α| -> oo. By writing each of the integrals
over x f as the sum of the integrals over xt- a :g 0 and x t α ̂  0, we get that
the r'th term of the series above is equal to

~~ Σ (r\ ί'"ί ' ί"'ί Π (e~Sjhe(Xj~a)~Sjgί(Xj + a)-l)
T . s = o \5/ X j . a ̂  o >•_, α g 0 j = 1

r — s

Π ίp-tjht'(yj-a)-tj9ε(yj + a) __ 1\ nr( Y S V f V /- "l ΓS RΊ
V^ L) V \xl^l ••- xs^sι S l l l •'• yr-slr-s) W W

7 = 1

From the definition of hε(x) = J Gε(x — y) h(y) ay we get that \hε(x)\
^ Ce~m | x |, from which we obtain that

m . m

\hε( — }\<r ~ ~ΐ " " " 2 i > ! | f <A

and similarly
m m
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By the substitution Xj-^Xj + a and y^yj — cι we get

^Γ Σ 0. J - ί , - I l . Π (•-—-•"

(5.9)

where ρ^(x 1,...,x s,y 1,...,)v_ s)-ρ f '(x 1 + ̂ ...,x s + α ? y 1 -α, ...,y,_ s-α).
Let Fα(x, 5) be any measurable function uniformly bounded in a; then

x a ̂  - α
(

-o^
(5.10)

-n2

^-*h*(X)

Λ" α > — α 2

(e-
shE(x}-l)Fa(x,s)dxdv(s)

converges to zero when |a|->oo, because the absolute value of (5.10)
is bounded by

J \
x a'Z -a2

J \gt(x + 2a)\dx = B j \gε(x + a)\dx

Therefore for any ε > 0 there exists an #f such that, for \a\ > R^ (5.9) will
differ from (5.11) by an amount smaller than ε/2:

' s = 0 λ-j α^ -α2 ^-α^α 2 j= 1 j= 1

s r-s

'Qa(xιsί,...,xsss,yιtl9...9yr_str_s) H dv(Sj) dXj Hdv
7 = 1 j = ι

By dominated convergence and Lemma 4.2 we have that (5.11) con-
verges to (5.12) as \a\ -» oc :

Γ Σ
(5.12)
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From (5.7) and the translation invariance we now get that

G(h + ga)-+G(h)G(g) as |α|-*oo. (5.13)

Since G^tihi+ ]Γ Sjgγ\ is analytic in ί and s and converges to G /£ t{h\
j I \ ι I

, we have only to use that the convergence of analytic functions

implies the convergence of the coefficients of their powerseries to prove
that Gk + l(hl9...,hk9fi,...,tf) converges to Gk(hί9...9 hk) G

l(g,, ...,gι). D

Theorem 5.3. Set

Gk(h1,...,hk)=$ $Gk(Xl,...,Xk)hί(Xll...,hk(Xk)dx1,...,dxk,

then Gk(x1, . .., xk) is locally ίntegrable and continuous for xt φ xj9 for all
i ήpj. The singularities at xt = Xj are of the same form as the singularities
of GQ(XI , . . . , Xj). Moreover the Gk(xl9 . . . , xk) are translation invariant and,
for χε(x) rotational invariant, they are also invariant under rotations in
IR""1. The Gk(xί9 ..., xk) depend analytically on λ for \λ\ < C"1 β"25"1 18.

Proof. This follows from (5.5) and the analyticity of the
ρ r(x l 5 s1? ..., xrsr) as proved in Lemma 4.1. Π

Theorem 5.4. For all \λ\ < C~ 1 e~2B~l we have that the vacuum energy
density

exists, where |J5Z| is the volume of the n— {-dimensional ball of radius I.
Moreover this limit is equal to the ε of Lemma 43 and is therefore analytic
in λ for all \λ\ < C~l e~2E~l and its power series is given in terms of the
powerseries for ρ1 by

ε(λ)= - j Ύρί(x,
o Λ

The power series for all ρr, hence also for ε, are explicitely given by (4.14) ly.
ε(λ) is a concave function of λ.
For dva positive measure and allλ<0 (not necessarily > —C~1e~2B~1)

the limit ε exists, is negative, decreasing for \λ\ increasing, concave in λ
and In (-λ).

18 The coefficients in the expansion of Gk(xl,..., xk) in powers of λ can be obtained
from those of the expansions of the ρ's in powers of/ί, using (5.5). The latter are known and
given by (4.14) (see also footnote 17).

19 The expansion for ( —c(λ)) is the Mayer power series expansion Σbn( — λγ for the
"pressure" of our gas as a function of ( — λ). Hence the coefficient are the quantities bn of
footnote 17, which can be computed explicitely.
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Proof. By Lemma 4.3 l/^/Γ1 ^^t,ι converges to ε as ί and / tend
to infinity. We observe that \Λttl\ = t \Bt\. By (5.1) Z t > z = (Ω0, e~tHlΩ0).

El is a simple lowest eigenvalue of H{ so that — ln(Ω0, e~tHlΩ0)-^ —El

as t->oo. Therefore

as ί-> oo. Since |Λ ί t / |~ * lnZ ί f / converges to ε for ί and / tending to infinity
it now follows that l^l"1^ converges as /-»oo to the ε of Lemma 4.3.
That ε is concave in λ follows from ε being the limit of — \Bt\ ~ 1 El and
the fact that Eh being the lowest eigenvalue of Ht = H0 + λVh is concave
in λ. The rest of the theorem is contained in Lemma 4.3. Π

6. The Vacuum, the Interacting Fields and the Wightman Functions

Let QL\(A) — e~ltίil A eltHl, for any bounded operator A on ̂ , and let αf
be the corresponding one parameter group of C*-automorphisms
defined with H0 instead oίH^ Let ^(Ω\ for any open domain Ω in 1R"~ *,
be the FK*-algebra generated by all αf°(έ?I>(/))» for all t e [- T, T] and all
fEJ^n1.\ with compact support in Ω, where φ ( f ) = \ φ ( x ) f ( x ) d x , with
φ(jc) given by (2.1). Let stfQ be the smallest C*-algebra containing
all <(ί2).

Theorem 6.1. α/ as we// as af° are one parameter groups of C^- auto-
morphisms of S/Q. Moreover al

t converges strongly on s/0 to a one para-
meter group of automorphisms a, of J</0 as /-> oo. We a/so /ιaι?e ί/iaί a°_ t aj
anJ aja?. t converge strongly to a° ίa ί anίi ata°^t, uniformly on an open
interval containing t = 0.

The proof of this theorem is entirely similar to the proof of the
corresponding theorem in Ref. [6d]. The only difference is that we do
not assume that αr° is strongly continuous. As mentioned in [6d], p. 31,
this can be overcome by taking, as we have done, the local VP/*-closure
in forming the algebra j/0.

The conclusions of Theorem 6.1 are, however, weaker than those of the
corresponding theorem in [6d], in as much as we can not say that α,
is strongly continuous 20. Π

Let now ZΛ, FΛ and fx be as in Section 4, where we have also defined
Φε(x) = Φ(/x), Φ = Φtf- ί being the generalized Gaussian stochastic
process indexed by the Sobolev space ^~1. Then

Σ 5jΦe(Xj) -λiv(ΦE(X)

^^ e - , (6.1)

For additional results on the αj see [6b], Lemma 4.
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where E is the expectation in the probability space of the generalized
process Φ. If we now expand with respect to λ we get that this is equal to

Σ sjΦε(Xj)

n = 0 " * Λn

k + n

v(Φε(xk+ί))...v(Φε(xk+n)) Π

k + n

Π dv(Sj)dXj

Σ slsJGε(xl-Xj) k + n

' J = ί Y\ dv(Sj)dXj,
j = k+l

which by (4.3) is equal to (&(xi s l 5 ...,
This proves the formula:

-λ J y(Φ ε (x))djc -1 i i Σ SjΦeUj) -λ J υ(Φ f c(x))djc

Choose now Λ = ylα > i = {(x0, jc); |x0l ̂
 α

? 1^1 ̂  '}• Then by Lemma 3.2, for
— α^ίi ^ ••• ̂ tk^a, where ί. = (χί)θ5 i = l , . . . , / c :

= (Ω0,e'2aHlΩ0)y (6.3)

and, with φε(x) given by (2.2),

-λ Sv(Φε(x))dx\
J = ί e Λ

= (Ω g~( ί l+ α) f ί zg ί s ι <Pε(Xl)^-(ί2-ίl)ίίί eίsκφε(xk) e~(a-tk)Hι Q \ \ ' )

Since El is a simple isolated lowest eigenvalue, the limit as α-»oo of the
expression obtained dividing (6.4) by (6.3) exists and is equal to

(Q eίsι<Pε(xι) β-(t2-tι)Hι e-(tk-tk-ι)Hι eίskφε(xk) Q\

We have the following theorem:

Theorem 6.2. The functions Qk

Λa l(^ιS1, ..., xksk) converge pointwίse
as a-roo to the finite volume correlation functions ρf(xι51 ? ..., xksk),
where, for tt = (xf)0 and t1 ̂  ^ tk :

= ( — λ)k(Ω eisιφε(xι) e-(t2-tι)Hι e-(tk-tk~ι)Hι eiskφε(xk) Q \

with H^Hi-Ej.
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Moreover Gk(hl, . . . ,/ι f c ) is given in terms of ρk by (5.5), where ρk is
substituted for ρk.

Proof. All but the moreover part is proven above, and the proof of
the moreover part follows from the proof of Theorem 5.1. Π

From Theorem 6.2 it follows that ρf is analytic mξi = t2 — ti,...,ξk. L

= tk — tk_ ί for Re ξ t > 0, i = 1 , . . . , k — 1, and uniformly bounded for
Re ξi ^ 0. As in the proof of Theorem 5.1 we have that, for \λ\ < C~ 1 e~ 2B~l

and real ί1? ...,ίk, ρ^x^!, ...,xksk) converges, uniformly on compacts,
as /-+oo, to ρ*^ s1? ..., xksk). By the analyticity and uniform
boundedness, for real A with \λ\ < C~le~2E~l, in the region Reξ^O,
i= 1, . . . , / c — 1, this implies that ρ^x^, ...,xksk) converges for Re<^ >0
point wise to a function analytic in Re<^>0, i= 1, ..., fc — 1, which is
the analytic continuation of ρ^x^, ...,xksk). Moreover the boundary
values, i.e. the values on the set where all tt are purely imaginary, con-
verge almost everywhere. This gives that

= ( — iλ)k(Ω £ ί s ι < p f ( x ι ) £~ ί ( ί 2~ t l )^ i

 e-ι(tk-tk-l)Hι eiskφε(xk)Q \

converges almost everywhere in the ί's as / — »oo, for all real λ satisfying
\λ\<C-1e~2B-ί.

Consider now the imaginary time Wightman functions Gk(x1 ? ..., xfc),
given by the relation

...dxk.

We then have:

Theorem 6.3. For real λ with \λ\ < C~ίe~2B~ί the imaginary time
Wightman functions Gk(x ^ , . . . , xfc) are analytic functions of all the variables
ζi:=t2 — tί, ..., ζk-ι_ — tk — tk-ι in the domain {Reξt >0, i= 1, ..., k— 1),
where ti = (xi)0 for i = l , . . . , / c . TTzdr boundary values on the imaginary
axis, Wk(xl9 . .., xfc) are ί/ie Wightman functions. Wk(xl9 . .., xk) satisfy the
positive defmiteness conditions for Wightman functions and are translation
invariant in space and time. Moreover they are rotation invariant in space
if χε(x) is chosen rotation invariant.

Proof. From what is said before the theorem, we know that
ρk(xι s± , . . . , xk sk) is analytic and uniformly bounded for Re ξ t > 0,
i= 1, . . .,/c- 1. It follows then from (5.5) and the fact that Gε(ί, jc) is
analytic for Reί>0, that the G f c(x1 ? ..., xk) are analytic for Re^>0.
Their boundary values Wk(xlί ..., xk) for Re^ = 0, i = l , . . . , / c — 1
satisfy the positive definiteness conditions because they are limits in the
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sense of distributions21 of the finite volume Wightman functions, which
are themselves boundary values of the functions Gf(x t , . . . , xfc), analytic in
Re ξ l > 0, i = 1,..., k — 1, satisfying for t{ = (xf)0 and ί t :g rg ίk

GHx^...,^-^^^,)^^^^'..-^^^^^^!^)^) (6.6)

and converging as /->oo to G k (x 1 , . . . , xk). The in variance of the
PF fc(x1? ...,xk) follows from the corresponding invariance of the
G*(X!,..., xk)5 which was proven in Theorem 5.3. Π

Since the infinite volume Wightman functions Wk(xl9 ...,xk) satisfy
the positive definiteness conditions, we can construct a Hubert space J^
with a cyclic vector Ω in the usual fashion2 2, such that φ(f) for /
smooth2 3 are symmetric operators on an invariant domain of Jtf*. Due
to the translation invariance of the Wk(xί9..., xk) we have a strongly
continuous unitary representation of the translation group on ffl, with Ω
as an invariant vector. From the analyticity properties of G k(x l 5 ...,xk)
it follows that the infinitesimal generator of the time translations, H,
is non negative, i.e. H ̂  0. This canonical construction is such that

Wk(x,, ..., xk) - (Ω, φ(Xl)ei(t^^Hφ(x2) ... eί(tk'tk^]H φ(xk)Ω). (6.7)

Hence we have the following theorem:

Theorem 6.4. For real λ and \λ\ < C~l e~2B~1 there is a Hubert space
ffl which carries a strongly continuous unitary representation of the
translation group in space and time, with an invariant vector Ω, and such
that the polynomial algebra generated by φ(f) with f smooth23 is
represented by symmetric operators on an invariant domain of Jf'. Ω is
cyclic with respect to the representation of the translation group and the
algebra spanned by φ(f); and H, the infinitesimal generator of the time
translations, is non negative, H ̂  0. Moreover, for tί ^ g tk and (xf)0 = ίf

i = l , . . . , f c :

Gk(xl9...,xk) = (Ω,φ(xί)e-(t2-tί}H ... e~(t^tk^]H φ(xk)Ω).

Proof. All but the formula follows from what is said above. The
formula follows from (6.6) and the fact that Wk(xί,..., xk) was taken to
be the boundary values ofGk(xί,...9 xk). Π

Theorem 6.5. For λ real and \λ\ < C~ί e~2B~ \ Ω is the only translation
invariant state of ffl, and zero is a simple eigenvalue of H with eigenvector Ω.

21 E.g. in ̂ '(1R"), 0ΌR") being the Schwartz' space of distributions over ̂ (Rπ) = C^(1R").
But the test function space can also be chosen to be more general, as can be seen from the
preceding proofs.

22 See e.g. Ref. [16], Chapter 3, 3.4.
23 E.g. in Schwartz space C^(IR) or //(R).
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Moreover the Wightman functions Wk(xl9 . .., xk} have also the cluster
properties with respect to space translations, i.e. for a = (0, α),

in the sense of distributions21, as a -> oo.

Proof. From the formula of Theorem 6.4 and the cluster properties
in the time directions of the G-functions as given in Theorem 5.2, we get
that Ω is the only eigenvector with eigenvalue zero for H. The cluster
properties of the Wightman functions are a direct consequence of the
cluster properties of the G-functions in the space directions, since these
imply that Ua converges weakly to the projection on Ω as α| tends to
infinity, where Ua is the unitary operator corresponding to the translation
by a = (0, α). This proves the theorem. Π

We shall now study the connection between the construction of the
infinite volume Wightman functions, as we have done above, and the
limit as /-» oo of the space cut-off vacuum state on elements of the algebra
generated by all finite linear combinations of operators of the form
atί(eiSίφ(fί)) ... atk(elsk(p(fk)\ at being the time automorphism given by
Theorem 6.1.

As remarked in connection with (6.5), the quantities σk(xί s1? ..., xksk)
converge, for real λ with \λ\<C~l e~2B~l and for almost all ti = (xi)09

as /-> oo, to limit functions σk(xisl9 ...,xksk). Since (—iλ)~kσk(xlsi,..., xksk)
satisfy the positive definiteness conditions, the limit functions
( — iλ)~kσk(xΐslί ...,x f csk) satisfy also the positive definiteness conditions
and can therefore be used in the same way as the Wightman functions
to construct a representation space for the operators eιsφε(x\ From the
construction it follows that eιsφε(x} form a strongly continuous unitary
group with infinitesimal generator φε(x). Using now (6.6) we get the
identification of this representation with the one in Theorem 6.4. From
this it follows by (6.5) that we have the following formula for the limit
function σk(x1s1, ..., xksk):

σk(xlsl9 ...,xksk)

_ ί _ iλ)k (Ω gisί<Pt<(χ^ g~l(t2-ti)H e~i(tk-tk- ι)H giskφε(Xk) Q\

and hence correspondingly, for t1 ̂  t2 :g g tk :

ρ*(x! $!,..., xksk)
//Γ O\

= ( — λ)k(Ω eisιφε(Xl) e~(t2~tί)H

 e-(tk-tk~ι)H eίskφε(Xk)Q\ ^ ' '
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We have now, choosing χε(x) positive definite:

Theorem 6.6. Let oίt be the time automorphism given by Theorem 6.1.
For any real λ with \λ\<C~l e~2B~l there exists a strongly dense linear
subspace i^ of ^n~L\ such that for all /1? . . . , f k in 'W ana almost all th

converges as /-> oo to

where Ω is the unique infinite volume vacuum given by the Theorems 6.4, 6.5.
Moreover the limit is also equal, for almost all ti9 i = 1, . . . , k to

(Ω eisιtP(f^ eHt2~tl)H

 ei(tn-tn- ι)H eiskφ(fk) Q\

where H is the infinitesimal generator of the time translations given by
Theorem 6.4.

Proof. By the definition of α| and the fact that Ql is the eigenvector
of Hl to the eigenvalue Eh we have

— (Ω eiSί<Pε(X^ e~l^2~tl)**1

 e~
ί(t

l = Hl-El.
By (6.5) this is equal to

(-iλΓkσf(xιS1,...,xk

and converges, as /-^ oo? to the limit functions

for all real λ with \λ\ < C~le~2B~l and almost all ί f. By (6.7) these limit
functions are equal to

(Ω ρisiΦί ( X ί ' ) e~Ht2~tl)H g-ι

We have therefore

(6.9)
— (Ω ^^^εUO^-t'ίίi-ίiJH e~i(tk-tk-i)H eιsk(pε(xk) Q\
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Introduce now the functions ft(y) on IR""1, defined, for each jc, e!R"~ 1

by ; fι(y) = Xε(
xi~ y)- These functions belong to 3tfn~-\ and one has

Introducing these identities in (6.9) we obtain:

lim(Ωhaίtl(eίsιφ(fl})... α{k(e lSk<iί>ί /k))Ω/)

isιφ(fι) _ . ( ί 2 _ f ι ) H _ι(tk_tk ι)fl .Skφ(/fc) (6 10)

On the other hand, because of the strong convergence on j</0 of αj,
given by Theorem 6.1, and because of the uniform bound | j Ω z | i = 1,
we have that

- lim (Ω,, ati(eisιφ(fl}) ... αtk(^ί/k))Ωz) .
l-+ oo

This together with (6.10) are the formulae of the theorem, which are
therefore proven for f{(y) = χε(x{ — y\ i = 1, ..., k. The rest follows from
the fact that the set H^ of all finite real linear combinations of these
functions /f, for all x f elR""1, i= 1, . . . ,k and all positive integers k is
dense in ̂ l|, since the ft run over the set of all translates of the function
Xε(~y) = Zε(y} for which χε(p)(μ(p)Γi>® for almost every pelR"" 1 ,
χε(p) being the Fouriertransform of the symmetric, positive definite
function χε(y). Π

Remark. Theorem 6.6 connects the limit of the space cut-off vacuum
state on an algebra defined in terms of the time automorphism con-
structed by Streater and Wilde [6d] with the infinite volume quantities
we have constructed in Theorems 6.2 to 6.5.

Remark. Since, by Theorem 5.4, for \λ\ < C~le~2B~l one has that
the vacuum energy density |B,| ~ 1 Et converges to ε as / -> oo and moreover
the interaction V{ is bounded in norm by a constant limes \Bt\, we obtain
the estimate

where C t is independent of /.
This inequality and the fact that the Wightman functions tend, as

/->oc, to the translation invariant Wightman functions could be used
to prove, along the lines of [17], that the representation space in the
infinite volume limit is locally Fock.
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