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Abstract. It is shown that K.M.S.-states are locally normal on a great number of
C*-algebras that may be of interest in Quantum Statistical Mechanics. The lattice structure
and the Choquet-simplex structure of various sets of states are investigated. In this respect
special attention is payed to the interplay of the K.M.S.-automorphism group with other
automorphism groups under whose action K.M.S.-states are possibly invariant. A
seemingly weaker notion than G-abelianness of the algebra of observables, namely G'-
abelianness, is introduced and investigated. Finally a necessary and sufficient condition (on
a C*-algebra with a sequential separable factor funnel) for decomposition of a locally
normal state into locally normal states is given.

§ 1. Introduction

The investigation of representations of the commutation relations
and anticommutation relations by DelΓAntonio, Doplicher and Ruelle [3]
has forced upon us the concept of a locally normal state. Due to this
origin, locally normal states have been studied on a C*-algebra which is a
C*-inductive limit of sub-C*-algebras, which in essence are irreducible
C*-algebras on suitably chosen Hubert-spaces [14,21].

In [12] the concept of a locally normal state has been generalized
for a C*-algebra that is a C*-inductive limit of a net of von Neumann
algebras. In the case where the net consists of factors each having a
representation on a separable Hubert space, the net is called a funnel.
We shall use the word funnel for the net of von Neumann (or rather W*)-
algebras that generate a C*-algebra U in the sense of [12], Definition 2,
even if the net does not contain only factors and even if the net contains
factors which are not of the same type.

It is the aim of this paper to investigate the locally normal character
of K.M.S. states on a C*-algebra U with a funnel whose components are
σ-finite properly infinite W/*-algebras. As a result we find then that
every K.M.S. state on U is locally normal. It then follows that ω is normal
on every finite factor contained in It and on every σ-finite properly
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infinite W*-algebra contained in U. If we further specialize the funnel
that generates U, to a sequential funnel of properly infinite W/*-algebras
with a separable predual1, then the cyclic representation induced by a
K.M.S. state acts on a separable Hubert-space and consequently every
K.M.S. state is normal on every factor contained in U. Also here ω
is normal on more general VF*-algebras than factors in U, namely
on every σ-finite properly infinite W* -algebra contained in U.

In the case of a sequential funnel of properly infinite W*-algebras with
a separable predual we prove that every non-primary K.M.S. state
admits a unique decomposition into extremal K.M.S. states under
suitable conditions on the K.M.S. automorphism, namely that the set of
K.M.S. states for a given K.M.S. automorphism at a given temperature
is compact in the weak*-topology on U*. In the course of the argument
we show that every weak*-comρact subset of the set of locally normal
states is metrizable compact.

The simplex structure of various sets of states is investigated. For
example, we shall show that the set of K.M.S. states which are also
invariant under the action of an arbitrary group of automorphisms that
is different from the K.M.S. automorphism group is a simplex. Further-
more we shall investigate to what extent a locally normal state can be
decomposed into locally normal states.

§ 2. Notation, Definitions and Preliminary Results

Let 9JΪ be a W*-algebra, then by definition 3R is the Banach-space
dual of a Banach-space SR*, i.e. 9W - (2RJ* 9K* is called the predual of 9JI
and consists precisely of those elements in 9K* (the Banach-space dual
of 9M) which are σ(SDΐ, 9WJ continuous.

Because 9JΪ - (9KJ*, the <j(9Jl, 9ϊy topology on 9W is the weak*-
topology on 9W. 9W is said to be separable, whenever the Banach-space ΪR^
is separable. For SOΐ separable the unit ball in 9W is metrizable and since
it is compact in the σ(9Jί, 501 )̂ topology it is separable; we can therefore
find a separable C*-algebra 91 which is σ(9Jl, 9JΪJ dense in $)ϊ.

Let {50ία}αeΓ be a net of P^*-algebras in the sense of [12], Definition 2,
i.e.

i) to all pairs 9Jζ, $Jlβ in {9Jία}α6Γ there exists 9ϊlr with the property

ii) Every S0ΐα contains the unit of U where U is defined in

iii) U- (j 9Jϊα" ((")" is the norm closure of (•)).
α e Γ

A C*-algebra U has a funnel {SOΐJαgΓ? whenever {9Wα}α6Γ satisfies
i), ii) and iii) above. 9Jία is called a component of the funnel. A C*-algebra

1 For definitions see § 2.
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U has a σ-finite (resp. separable) properly infinite funnel whenever it
has a funnel whose components are σ-finite (respectively separable)
properly infinite VF*-algebras. A VF*-algebra 931 is separable (i.e. has a
separable predual) iff there exists a faithful normal representation of 93ί
on a separable Hubert-space. Indeed, let π be a faithful normal repre-
sentation of 931 on a separable Hubert-space §. Then π(93l) is a von
Neumann algebra on §. Let ψeπ(9K)#, then the transposed map 'π
of π is defined by (rπ(φ), A) = φ(π(A)) for all A ε m. XTT^)*) is the
image of π(9K)ϊK in 93?̂  because π is normal. Furthermore every φ ε 931̂
is the image of some ipεπ^)^. under the transpose *π of π. Indeed:
φ(A) = (φ ° π~ 1) (π(^4)) = fπ(φ ° π~ *), ^4), v4 e 931, where φ ° π~ 1 is normal
because φ is normal and π is faithful normal. Therefore we have that
XπίSWy = 931*. In addition we have that |Γπ(tp)|| = II V l i for all ψ ε 71(931)*
namely:

l = sup |('π(VM)l = sup \ψ(π(A))\ = \\ψ\\ .

We thus conclude that 931* is isometric as a Banach space to π(93ί)*
which in turn is isometric to β(§)*/π(93l)1, where #(§)* is the set of
trace-class operators on § and π(93l)1 is the annihilator of π(93ί) in £(§)*.
Since § is separable and π(9K)1 closed, β(§)*/π(93ϊ)1 is separable and
consequently π(93l)* (and hence 931*) is separable. If we now conversely
consider the situation where 93Ϊ* is separable, then there exists a countable

dense set {φn} in 93Ϊ*. From this one constructs φ = Σ ———Γ φn, then φ

is normal, as a norm-limit of normal linear positive forms, furthermore
φ is faithful on 931 and gives rise to a faithful normal cyclic representation
πφ of 931 on a separable Hubert space §φ. The separability of §φ follows
from the fact that the σ(93ϊ, 931*) topology on the unit ball of 931 is metrizable
and therefore we can find a countable σ(93ί, 93Ϊ*) dense subset of 93Ϊ,
{xn} say. Let Ωφ be the cyclic vector for πφ(93ϊ) in ξ)φ. For every ξεξ)φ

with the property (£, πφ(xj Ωφ) = OVxn e 9W, we have that (ξ,πφ(x)Ωφ)
= OVxe93ί because ωξ Ω is σ(93l, 93Ϊ*) continuous and πφ is normal.
Because Ωφ is cyclic for π^(93l) we conclude that £ = 0, and therefore
that {πφ(xn) Ωφ} is a dense set of vectors in §φ which then is separable.

A PF*-algebra 931 is σ-finite iff there exists a faithful normal state on
931 [8]. From what was said above, it follows that every separable
PΊ^*-algebra is σ-ίϊnite. A particular case is when the algebra U could be
thought of as generated on Fock space. The funnel then consists of von
Neumann algebras on Fock space and because this space is separable
every component 93ία in the funnel is also separable and of course σ-finite.

Let U be a C*-algebra with a σ-finite, properly infinite funnel then for
every 93lα and 931̂  with 93lαg93ί^ the embedding is normal ([34], Theo-
rem 7).



132 M. Takesaki and M. Winnink:

A locally normal linear form on U is an element from U*, with the
property that its restriction to every ΪRα is normal (i.e. σ(9Kα, (SERJJ
continuous). Because the embeddings ϊ^gϊR^ for all ordered pairs
in the funnel are normal we can apply [12] (Proposition 6) and conclude
that the locally normal positive forms on U form a folium (i.e. they form
a uniformly closed convex subset in U*, with the property that for
every φ in this set φA(-) = φ(A* - A) also belongs to it). We shall nowhere
assume that we have a full folium.

Let U be a C*-algebra with a sequential separable funnel. Then in
every $)ln in the funnel there exists a separable C*-algebra Un that is
σ(9Hw, (9KJ J dense in 9Kn. Consider the separable C*-algebra U0 - (J <&» .

n

Let V denote the set of locally normal linear forms on U. Let S denote
the set of states on U; the set of locally normal states is then SnF.
By σ(Sn V, U) we denote the topology induced on Sn V by the σ(U* U)
topology (i.e. the weak*-topology) on U*. By cr(Sn V, U0) we denote the
locally convex topological structure induced on Sn Fby the semi-norms
on V: φ -> |φ(^4)|, φ e F, A e U0. We then obviously have that

σ(6n V, 81) <σ(8n V, H0) .

Let K be any σ(6nF, U) compact subset of SnF. Whenever we can
show that σ(SnF, U0) is a Hausdorff topology then σ(SnF, U) and
σ(SnF, U0) coincide on K [23]. In that case we have, because U0

is a separable C*-algebra, that K is a metrizable compact in σ(Sn F, U).
This then is independent of the particular choice of U0. In order to show
that σ(Sn V, U0) is a Hausdorff topology it suffices to show that er(F, U0)
is Hausdorff because σ(SnF, U0) is the topology induced on SnF
by σ(F,U0). Let φ e F and φφO, then φ(^) = OV^eU 0 implies
φ(x) = OVxe9K n , n is arbitrary. This is because 50ϊn is a separable von
Neumann algebra and we can find a separable C*-algebra Un which is
σ(yjln,Wln^) dense in S0ϊn. Indeed, let x e 9Wn then there exists a sequence
x^ in lίn such that xn

κ-*x σ(9Mn,9JlnHe) weakly. Since we assumed
φ(yl) = OV^4eU 0 and φ is normal (i.e. σ(SDln5SDlΛJ(c) continuous) on 9Jίπ

we find that <jp(x) = OVxeSER n , n arbitrary. Therefore φ vanishes on
|J 9Jlw and because φ e U*, φ has to vanish on all of U, which is in
n

contradiction with the assumption φφO. In other words to every
φ e F, φ Φ 0 there exists an element AeU0 with the property that
φ(A) Φ 0, implying that σ(V, U0) is a Hausdorff topology.

§ 3. K.M.S. States in Connection with Local Normality

Let U be a C*-algebra and t -+ σt a representation of the additive group
of the real numbers into the group of *-automorphisms of U.
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A state on lί satisfies the K.M.S. boundary condition, at the inverse
temperature /?, whenever the following two conditions hold:

i) ω(AatB) is a continuous function of t for all A, B e lί.
ii) $ω(Aσt(B))f(t - iβ) at = $ω(σt(B) A)f(t) at

for every /eT>, where T) is the space of the Fourier-transforms of
functions in D.

[Equivalently ω satisfies the K.M.S. boundary condition, whenever
for each pair A and B in lί there exists a holomorphic function F in
0 < Imz < β with boundary values

F(ί) = ω(σt(A) B) and F(t + iβ) = ω(Bσt(A)\~]

For details on the structure of representations induced by a K.M.S. state we
refer the reader to [11, 37, 40,41].

A well known fact by now is that every K.M.S. state ω as defined above,
gives rise, by the GeΓfand-Segal construction, to a representation πω of lί
with the property that πω(lί)" has a cyclic and separating vector. πω(U)"
is therefore a σ-fmite von Neumann algebra [8].

Theorem 1. Let lί be a C*-algebra with a σ-finite properly infinite
funnel, and ω a K.M.S. state on lί then ω is locally normal.

Proof. Let (πω, §ω, Ωω) be the representation, the Hubert-space and
the cyclic vector obtained from the GeΓfand-Segal construction. As
already remarked Ωω is separating for πω(U)" and therefore πω(U)"
is σ-finite. Let 9Jία be a component of the funnel, then πω|9Jlα is a *-homo-
morphism of a σ-finite VF*-algebra into the σ-finite algebra πω(U)".
Such a mapping is normal ([34], Theorem 7). Hence ω is locally normal,
q.e.d.

Remark. Since [34] Theorem 7 also holds for every *-homomorphism
of a finite factor into a σ-finite von Neumann-algebra, we see that ω
is normal on every finite factor in lί and also on every σ-finite properly
infinite W*-algebra contained in lί whether or not contained in the funnel.
Of course Theorem 1 holds also if the funnel is a finite-factor-funnel. If we
specialize to a sequential separable properly infinite funnel2 then we
have the following.

Corollary 1. Every K.M.S. state on a C*-algebra lί with a sequential
separable properly infinite funnel, is locally normal, acts on a separable
Hubert-space and is normal on every factor contained in lί.

Proof. From Theorem 1 we know that πω 19Jln is normal. $Rn is sepa-
rable therefore [πω 991,, Ώω] is a separable subspace of §ω and thus
$ω(= \J (πjaWJΩβΛ is separable. By [10,17, 35] we know that every

V n )

representation of a factor on a separable Hubert-space is normal. q.e.d.
2 Everywhere in the following the reader can substitute for each properly infinite

H^-algebra a finite factor without changing the results.
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Corollary 2. For a C*-algebra with a sequential separable properly
infinite funnel the following statements are equivalent:

i) a state ω gives rise to a representation on a separable Hilbert-space
ii) ω is locally normal.
Furthermore whenever i) or ii) holds, ω is normal on every σ-finite

properly infinite W*-algebra and on every factor in U.

The proof of corollary 2 is a straightforward combination of [34]
(Corollary to Theorem 7) and the arguments given in the proofs of
Theorem 1 and Corollary I3.

Corollary 3. For a C*-algebra U with a sequential separable properly
infinite funnel (respectively a sequential separable factor funnel) the
following statements are equivalent:

i) ω is locally normal
ii) ω is normal on every σ-finite properly infinite sub W*-algebra of U

(respectively every subfactor of U).

We want to conclude this section with a few remarks.
Remark!. Let U be a C*-algebra U with a sequential separable

properly infinite funnel {9Jlπ}. Suppose furthermore that {Wln} is obtained
by some sort of "resummation" of a factor funnel {gα} where α is an
arbitrary index set. The existence of a locally normal state ω on U
implies then that every component of {gα} is separable. [This is true
since §ω is separable and hence πω | gα is normal and faithful, because 5α

is a factor].
Remark 2. A C*-algebra U with a funnel of which at least one com-

ponent is not a finite FF*-algebra, does not admit a representation of
finite type and in particular it does not admit an infinite temperature
K.M.S. state. The latter statement holds because an infinite temperature
K.M.S. state gives rise to a finite trace on U, which does not vanish on the
components of the funnel. (Every component contains the unit of U.)

Remark 3. None of the algebras that admit a central state can have a
funnel structure of local PF*-algebras, with at least one properly infinite
component. Not surprisingly, this is the case for the C.A.R. algebra and
the algebra of a Quantum-lattice gas. It is also the case for the C.C.R.
algebra considered in [22]. The fact that this algebra has a central state
has been shown in [38].

Remark 4. Let H be the algebra of all bounded operators on an
infinite dimensional, separable Hubert space §. Let H be a selfadjoint
operator on § whose spectrum is not totally discrete, with finite multi-

3 Corollaries 1 and 2 hold also for C*-algebras with a sequential separable factor
funnel. Corollary 1 for a C*-algebra with a sequential separable factor funnel was shown
in [12].
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plicities. Then there exists no K.M.S. state on U with respect to the auto-
morphism group :

A e U^σt(A) = UtA [/_, , Ut = exp ίHt .

To see this, suppose one had indeed a state ω that were K.M.S. with
respect to σt at a certain value of β, which we take 1 for simplicity. Then
because of Theorem 1 ω has to be normal, i.e. ω(A) = Tr (ρA\ AeW.

Thus πω is faithful. Also ω(A*A) = Q implies πω(A) = Q and hence
A = 0. The latter fact means that ρ is invertible i.e. ρ = exp ( — H'\ where
H' has a totally discrete spectrum with finite multiplicities. From the
standard construction [11,41] we know that ω is also K.M.S. at the
temperature 1, for the automorphism group γt:

Since ω is a faithful state on lί we have then [32, 37] that

This equation implies that l7 f F_ f e £(§)' = {λl}, i.e. [7fK_t = expiα(ί)
where ί->α(ί) is a real function on the real line.

Furthermore i) expiα(ί) is a continuous function of t, ii) expiαfo + f2)

Applying Stone's theorem in a 1 -dimensional space we conclude
that α(ί) = λt where λ is a real constant. This, however, means H = H' -f A,
which contradicts our assumption about the spectrum of H. q.e.d.

§ 4. The Simplex Structure of Various Sets of States on a C*-Algebra U

Our ultimate goal in this chapter is to make statements about
various possible decompositions of states on a C*-algebra U. In order
to do so we will first make some statements about the lattice structure of
various sets of functionals on a C*-algebra.

Let K be a convex set of states on U. Denote by K the positive cone
generated by K, i.e. for every μ e K we can find μ0 e K and λ > 0 such
that μ = λμQ. For the moment we do not assume that K is closed in the
σ(U*, U) topology [Since the σ(U*, lί) topology is Hausdorff, closedness
of K would imply compactness of K]. Consider K-K endowed with
its own order, i.e. for

— K(ί= I,2)z1 ^z2 means z2 — zleK.

For ω 6 K we define

= {ρeK:3λρ>0 with λρω-ρeK}.



136 M. Takesaki and M. Winnink:

Every ρ e S(ω) defines a positive operator Tρ in πω(U)' with the property

that: ρ(A) = (Ωω, TQnω(A)Ωω) = ω r J Ω ω (A), AeU.

Define for every ω e K, CS(ω) by:

Cs(α» = {TQ e (πω(U)')+ : ωriβω e S(ω)}.

The map ρ e S(ω)—> Tρ e CS(ω) is order preserving and one-to-one onto if
we endow CS(ω) with its own order, i.e^ Tβl ̂  TQ2 means Tρι - TQ2 e CS(ω}

and S(ω) with the order induced by K. The order on S(ω) induced by
K coincides, however, with S(ω)'s own order. We shall be interested
in the lattice properties of K in its own order (or equivalently in the
lattice properties of K — K when its positive cone is taken to be K}.
One easily proves the following:

Theorem 4.1. The following statements are equivalent:
i) K is a lattice in its own order

ii) for every ω e K, S(ω) is a lattice in its own order
iίi) for every ω E K, CS(ω) is a lattice in its own order.

Suppose that K is a lattice in its own order. Then from the fact that
we have a one-to-one order preserving map

we cannot expect that CS(ω) is the positive portion of an abelian algebra.

It is just a lattice isomorphism. To illustrate this remark let us consider
the following:

Let 21 be the C*-algebra of 3 x 3 matrices and let

a — b =

1 -1 0\

-1 1 0

0 0 0 ;

Let V be the two-dimensional subspace of 91 consisting of all αα
α, β e <C. Making use of the trace we can consider 91 itself as the conjugate
space of 9ί, because 91 is finite dimensional. Let K be the intersection of V
with the state space S of 91, i.e.

K = {ω e S: ω(x) - Tr(α x a + β x b\ x e 91, for α, β e R + }.

Since the functional: xe9Iι->Tr;cyeC is positive iff y is positive as

an operator, ωαj3(x) = Tr[x(αα + βfe)] is positive iff ua + βb is positive;
this is only true if α ̂  0 and β j> 0. Therefore, the self-adjoint portion of F,
which is the real-linear span of a and fc, is a lattice the order being the
natural order on V derived from the natural order on positive operators.
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But we can easily see that a b φ V. (This example is adapted from the
example in [31].)

Suppose K were a compact convex set in U*, then the equivalent
statements of Theorem 4.1 would mean that K is a Choquet-simplex.

Before discussing examples of sets of positive linear functionals that
satisfy one of the equivalent conditions of Theorem 4.1 we need some
lemma's and definitions.

Let U be a C*-algebra, and let G be a group that is represented as a
group of ^-automorphisms of U. Let IG(U) denote the set of invariant
states under the action of G, i.e. /G(U) = {ω e S(U) : ω(ag(A)) = ω}.

Suppose that /G(U) φ 0 (the empty set).
Define for ω 6 /G(U) on ξ>ω the projection operator PQ as the projection

operator on {ψ e ξ>ω : U"ψ = ιp}.

We have then the following:

Lemma 4.2. U is G-abelian iff PQ is an abelian projection in

[πβ(U)u [#"»]" for all ωe/G(U).

Proof. As one easily verifies

= [P0

ωπω(U) P0

ω] . (4.1)

Since by definition [21], U is G-abelian when for all ωe/G(U) {P^π(U) P%}
is abelian, we conclude that G-abelianness of H implies abelianness of the
right hand side of (4.1) and hence P^ is an abelian projection in
[πω(U)uP^]", but this algebra is the same as [πω(U)u l/£°]". This proves
the only if part. To prove the if part suppose that P^ is an abelian pro-
jection in [πω(U)uC/®]" then it is also an abelian projection in
[πω(U)u^oΠ". Furthermore since [P^πω(lί)P^]^ is *-isomorphic to
P<?[P,?π(U) P ]̂̂  we see that [P^πω(H) P£] is an abelian set of operators
and hence lί is G-abelian. q.e.d.

Definition 4.3. Uis G'-abelian when for every ω e /G(U) the projection
on [πω(U)uί/fl

ω]Ώω is an abelian projection in [πω(U)ul/^]" (or
equivalently for every ω e /G(U), [πω(U)u ί/^0]' is abelian).

Lemma 4.4. U is G-abelian implies :
i) U is G1 -abelian, _

ii) P r̂ - Pω (where Pω projects onto [πω(U)u U£J ΩJ.

Proof, i) is immediate from the proof of the previous lemma, if we
observe that [πω(U)uP^]pω as an abelian algebra on P^§ has a cyclic
vector, namely Ωω and hence

- [πω(U)u 17"]'̂  .

Furthermore the abelian von Neumann algebra [πω(U)ul^ω)]' is
*-isomorphic to [πω(H)u[/^]pω. Hence i) is proven.
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To prove ii) we observe that Pω ̂  Pg and since Pg and P both belong
to [πω(U)u U£Y and P$ is abelian we have that Pω = PgG where G is a
projection in [πJU)u t7;Tn[πJU)ul/,ω]'.

We have that PωΩω = P$GΩω this implies Ωω = GΩω and hence,
because G e πω(U)', G = 1 implying Pω = Pg>.

Lemma 4.5. Let ω e IG(U) be separating then Pω = PQ. The proof can
be found in [15], Lemma 2.2. It is perhaps worthwhile to mention that
this lemma holds independently of whether U is G' (or G) abelian or not.

We now want to give a few examples of cones that are lattices in their
own order.

I) Let as before /G(U) be the set of invariant states under the action of
a group G and let U be G'-abelian. Due to the fact that invariance of a
state is linear (i.e. Q^Q2 invariant implies αρλ -f βρ2 is invariant) CS(ω)'s
own order is the usual order on self-adjoint operators on §ω. Furthermore
G'-abelianess of U implies that CS(ω) is the positive portion of a com-
mutative von Neumann algebra, namely the set of invariant elements
in πω(U)'. Therefore CS(ω) is a lattice in its own order and hence IG(U)
is also a lattice in its own order. Since for an algebra U that is G-abelian,
it follows that U is G'-abelian we recover the fact that /G(lί) is a lattice
in its own order for a G-abelian algebra.

II) Let Kβ be the set of K.M.S. states a certain temperature β. Then
Kβ is a lattice in its own order because CS(ω) is the positive portion of the
centre of πω(U)". Indeed for ωεKβ,ρeS(ω) we have not only that
Tρe(πω(Uy)+ but also that Tρe(πω(Urnπω(Uy) + . This is true for the
following reasons:

α) The K.M.S. condition extends to the von Neumann algebra
πω(U)", i e.

f (flω, A UtBΩω)f(t - ίβ) dt = f (flω, B U_tAΩω)f(t) at /e D , (4.2)

β) Since ρ e S(ω) we have, independent of the fact that ω satisfies
K.M.S., a positive operator in πω(U)' such that coτ^Ωω = ρ. Since ρ

satisfies K.M.S. we have

Let A—\ then, by the invariance that follows from the above equation,

we have r 7 τ n τ^n r r τ ^ r r rUtTρΩω = TρΩω=> UtTρU_t= TQ .

y) The involution J that follows from (4.2) has the properties



Quantum Statistical Mechanics 139

Since Kρ is invariant we have J TρΩω = TKρΩω where T = exp — β/2 H

From this we conclude TQΩω = JTKρΩω = K*Ωω = KρΩω. [From
K.M.S. follows that JTAΩω = A*QωMA e πω(U)"]. If we now substitute
KρΩω = TρΩω in the K.M.S. condition for ρ, we have

The left-hand side equals $(Ωω,BU-tKρAΩω)f(t)dt because ω satis-
fies K.M.S. We have thus obtained:

J(flω, B U-tKQAΩω)f(t) = l(Ωω9 KρB U.tAΩω)f(t) at .

This implies
(Qω, [B, KJ 4Qω) = 0 VA, B e πω(U)" .

Hence [B, Kρ] Ωω = 0=> [B, Kρ] = 0, because Ωω is separating for πω(U)".
Therefore Kρeπω(U)"nπω(U)' and since JTρJ = Kρ we have that

Conversely, due to the pointwise invariance of πω(U)"nπω(U)'
under the action of the modular automorphism, every Tρ e πω(U)"nπω(U)'
gives rise to a functional ρ = ωr*βω e S(ω).

The reasoning displayed above implies also that ωeExt Kβ is
equivalent with ω is primary.

Ill) Let G be any group and let ge G-^τg be a representation of G in the
* -automorphisms of lί. Suppose that /G(U) (i.e. the set of τg invariant
states) is not the empty set and furthermore that K^n/G(U)φ0. (The
latter fact in the case of a simple algebra implies that τg commutes with
the K.M.S. automorphisms [32].)

In this case one easily checks that CS(ω) is the positive portion of the
von Neumann algebra of τg invariant elements in πω(U)"nπω(U)/ and
therefore Kβr\IG(U) is a lattice in its own order.

In example I) we have that IG(U) is σ(lί*, lί) compact and hence
/G(U) is a simplex for a G'-abelian algebra U.

In examples II) and III) we will also have simplices provided Kβ is
compact.

The set Kβ of K.M.S. states, for a given K.M.S. automorphism
group and a given temperature, is a convex weak * -compact subset of S
if σt is a strongly continuous automorphism group (i.e. \\σt(x) — x\\ -^-^ 0)
of H. A situation like this occurs in the case of a Quantum lattice gas [26]
and in the case of the C.A.R. algebra, if the relevant automorphism
group is a so-called quasi-free evolution [27]. In both these cases, under
suitable conditions, Kβ consists of one point only and is therefore
trivially compact; this one K.M.S. state is primary [21, 27, 32].
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We shall not assume the strong continuity of the automorphism
group σt: U-»U but rather we shall assume the compactness of Kβ in the
weak*-topology. In order to illustrate this assumption let us firstly
recall a result from [18]: Let 501 be a σ-fmite PF*-algebra with no type
//! portion, and let σf be a group of automorphisms of 501 with the
property that \\σt(x) - x\\ -^ 0, x e 501. Then \\σt - 11| -^ 0, where 1
is the identity automorphism of 50ί. From this follows [16], that the
automorphisms σt are inner automorphisms implemented by a unitary
group in 501 with a bounded generator. Let now 50Ϊ be a non type //15

σ-finite factor, ω a K.M.S. state on $01, σt the automorphism. Suppose
| |σ t (x) — x|| -^Q* 0, then from what we said above σt(x) =Utx U~1

[7,6501. Ut has a bounded generator, i.e. \\Ut — 1|| 73^0. From [37],
Theorem 14.1 and the interpretation of [5] and [25] presented in [40],
we conclude that 50Ϊ has to be semi-finite and consequently there exists a
faithful normal semi-finite trace τ on 50Ϊ. Furthermore ω(x) = τ(xΛ),
where Λ is a uniquely defined positive operator in 1} (501, τ) and furthermore
σt(x) = titxh~ίt [37]. Since we assumed that 50Ϊ is a factor (for the non-
factor case an analogous reasoning can be given) hlt = el<xtUt where α
is a real number and consequently \\hlt — 11| -̂ » 0, i.e. log h is a bounded
operator. In particular h is then bounded, belongs to 501, has a bounded
inverse and because h belongs to the defining ideal 50ίt of τ we see that
the unit in 501 belongs to 50ϊτ. Hence 501 is a finite factor.

If we now take a σ-finite, properly infinite factor, then we know from
the existence of a faithful normal state Φ and Tomita's theorem that
this state satisfies the K.M.S. condition with respect to the modular
automorphism group σf. Furthermore we know [37] that for this
automorphism group Φ is the only K.M.S. state at the appropriate
temperature for σf. Kβ is therefore compact and ||σf(x) —x||-^*0,
from what we said above. A, by no means general, example of this
situation is the finite volume K.M.S. state as considered in [11,41].
Before embarking on the decomposition of a K.M.S. state we would
like to mention a possibility where the K.M.S. automorphism is not
strongly continuous and Kβ is not compact either. Let 501 be a σ-finite
properly infinite VΓ*-algebra with a non-atomic centre 3 (i.e. 3 does not
contain minimal projections). Suppose σt is a K.M.S. automorphism
group and Φ a K.M.S. state with respect to σί? then Φ
is of course normal. (We are considering here the trivial funnel
50} = 50iα = U.) Whatever topology we equip it with, Kβ will never be
compact. The reason being that, although x-x7f(x) is σ-strongly con-
tinuous if x e s(Φ) 50l(s(Φ) is the support projection of Φ), every extremal
K.M.S. state Φ has to primary, i.e. s(Φ) has to be a minimal projection
in 3, which is excluded by assumption.
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As remarked at the beginning of this paragraph our ultimate goal is to
exhibit unique decompositions of a state ω into others which still have
properties the original state had.

The "cleanest" decompositions of a state ω e K, where K is the base
of a cone K which is a lattice in its own order, are obtainable when K is a
compact subset of S(U) (i.e. when K is a Choquet simplex) and the set of
extreme points of K is nice enough.

Indeed if K is a Choquet simplex and ExtK is a Baire set, an Fσ

or a K-Borel set one obtains a clean decomposition theorem [2,24].
(Given a Choquet simplex this does not exhaust all possibilities of
obtaining a unique decomposition; we shall, however, not insist on this
any further.)

From now on, we shall assume that Kβ is a σ(U*, U) compact subset
of -S(lί), and as remarked before in all three cases (I, II and III) we have a
Choquet simplex. Furthermore the set CS(ω) is the positive portion of a
commutative von Neumann algebra in πω(U)' in all three cases, which
we denote by 93, the order on CS(ω) which makes it a lattice in the usual
order on positive operators on §ω.

From the fact that K is a Choquet simplex we know that there is a
unique maximal measure μω on K that represents ω [2]. To exhibit
this unique maximal measure, one "diagonalizes" the appropriate,
depending on the case at hand, commutative subalgebra 93 in πω(9l)'.
For completeness we sketch the essential points of such a diagonalization
procedure.

Let, for the moment, 33 be an arbitrary commutative von Neumann
algebra in πω(U)' and let furthermore P = [S3Ωω]. One then observes
the following facts:

i) P E 93' and, therefore, since [93]P is a maximal commutative von
Neumann algebra on P§ω (it has a cyclic vector!):

[»'L = [»]p (4-3)

ii) From (4.3) we have that for all A e 93' there exists a uniquely
determined element ε(A) e 33 such that

= Pε(A).

In particular, since πω(U) C πω(U)" C 93', we have

Pπω(A)P = P ε ° π ( A ) AεU.

iii) (Ωω, Pπω(A) PΩω) = (βω, Pε ° πω(Λ) ΩJ - (Ωω, ε o πJΛ) Ωω) .
iv) [33]P is *-isomorphic to 33 ami therefore we have for all Ce33:
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where Γ is the spectrum space of 33 and C-»C( ) is the GeΓfand iso-
morphism of 33 onto C(Γ) (the set of continuous functions on Γ). vω is
the spectral measure on Γ determined by Ωω. Since 93 is a von Neumann
algebra, Γ is hyperstonean and [8] :

v) Combining iii) and iv) we obtain:

(Ωω, πω(A) Ωω) = f (ε ° πω(A)) (y) dvω(y] .
r

vi) By (ε ° πω(A)) (y) = ωy(A) A e U, one defines for every y e Γ, a state

y

y

ω on U.
Indeed ωy is linear and normalized to one. Positivity follows from

the fact that firstly πω(A* A) is positive and secondly that 33 is *-iso-
morphic to P33. Therefore from (4.3) ε°πω(A*A) is positive and hence

From vi) we have ω(A) = j ωy(A) dvω(y). Γ is compact and the map

ρ : y-+ωy is a continuous map of Γ into S(lί) (S(U) with the w*-topology).
We therefore obtain a measure μω on S(U), by transport of structure,
when we define μω(/) for all /e C(S(U)) as:

As one easily sees μω is a probability measure on S(U) with its support
in ω(Γ) = {τ e S(U): τ = ωy,ye Γ}. Since y e Γ-+ωy G ω(Γ) is a continuous
map of Γ into S(U\ and since Γ is compact, ω(Γ) is compact. Therefore
we obtain:

μ»(/)= ί f(Q)dμω(ρ)= J /(ρ)dμω(ρ) = J (/oρ) (y)dvω(y) .
ω(Γ) S(U) Γ

In particular we obtain

A(ω) = ω(A)= f ρμ)rfμω(ρ) (4.4)
ω(Γ)

and
μω(A, ...An) = (Ωω, Pπω(Λ) P - - ^πωμn) POJ . (4.5)

From now on 93 is no longer to be an arbitrary von Neumann-algebra
in πω(U)' but 33 is {πω(U)u U^}' in case I, 33 is πω(U)"nπω(Uy in case II
and 33 is πω(Uy/nπω(U)/n U™' in case III. In all these cases we have:

vii) All elements from ω(Γ), i.e. all states ωy, belong to K.
This follows from the following reasoning. 33 is a von Neumann

algebra hence the unit ball of its predual 33,,. is σ(33*, 33) dense in 5(33).
This implies that for C ε 33 there exists a net {φd} in 33^ with the property

ώy(C) = limφd(C) , where ώy(C) = C(γ) .
d
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If we now choose C = ε ° πω(A) we have:

ωy(A) - (ε o πω(A)) (γ) = lim φd(ε - πω(A))
d

φd as an element of 95 # is a normal state on 23 it is also normal on [93]P

and this algebra has a cyclic and separating vector in P£ω and hence [8]
there exists ad e 23 such that we may choose

φd(ε ° πω(4)) - (Ωω, α? ε ° πω(A) adΩω)

Therefore we have :

ωy(A) = lim(adΩω, ε o πω(A) adΩω)
d

= \im(adΩω,πω(A)adΩω).
d

Due to the special choice of the algebra 23 we conclude that ωγ is a
pointwise limit of states in K. At this point the compactness assumption
on Kβ comes into play. Indeed from the compactness of K (in all three
cases) it follows that ωy e K or equivalently ω(Γ) C K. μω is an ω-repre-
senting measure on K. Recall that:

μω(Λ . . . An) = (Ωω, Pπm(AJ . . . Pπω(An) PΩω) .

where A(ώ) = ω(A\
By exactly the same reasoning as used in [28] in order to prove that

τω(Λ . . . An) = (Ωω9 Pgn^AJ PS . . . P£π(An) P£Ωω)

extends to the unique maximal ω-representing measure on /G(lί) for
tl G-abelian, one proves here

viii) μω is the unique ω-representing measure that follows from the
fact that K is a simplex.

If instead of a G'-abelian algebra we were to have a G-abelian U then,
since P$ = Pω (Lemma 4.4), we would get that μω — τω for case I.

It should be noted that everything we have said up to now holds for
arbitrary C*-algebras U, in particular for those which are not separable
in the norm-topology. We are now going to specialize to a C*-algebra
with a sequential separable properly infinite funnel (cf. §2) and for K
we consider from now on only cases II and III. (Such algebras are still
non-separable in general.)

Firstly, as we have shown in § 2 Kβ is a metrizable compact. Therefore
its extreme points form a Gδ [2] (hence a Borel set and since K is separable
it is a Baire set). The same is true in case III for K^n/G(U), where G
can be any group represented as * -automorphisms of It, with the pro-
perties that IG(U)nKβ Φ 0. Therefore we have the following theorems.
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Theorem 4.5. Every K.M.S. state ω on a C*-algebra U with a
sequential separable properly infinite funnel4 can be uniquely decomposed
into extremal K.M.S. states (i.e. K.M.S. primary states).

Theorem 4.6. Every K.M.S. state that is also invariant for a *-auto-
morphism group g e G -> ag on a C*-algebra with a sequential separable
properly infinite funnel4 can be uniquely decomposed into elements that
are extremal elements in Kβr^IG(U).

At this point we want to make two remarks, namely:
1) Given an arbitrary C*-algebra and a state ω thereupon, choose an

arbitrary commutative von Neumann algebra 33 in πω(U)'. Then the
measure μω satisfying (4.4) and (4.5) is unique [30]. This, however, does
not guarantee that μω is carried by the extremal points of K. It is the
simplex structure with additional "niceness" criteria on the set of extremal
points that provides the possibility that μω is carried by the extremal
points.

2) Both Theorems 4.5 and 4.6 deal with decompositions of a locally
normal state into locally normal states. In § 5 we shall investigate under
what conditions a locally normal state can always be decomposed into
locally normal states.

We want to conclude this paragraph by describing the additional
structure that is obtained when the algebra tl has somewhat more
structure with respect to its *-automorphism group {ag,ge G}.

Suppose that for a certain value of β one has that for all ω e Kβr\IG(Vi):

πω(U)' n V? C πω(U)" n πω(U)'. (4.6)

Then we have the following

Lemma 4.7. Ext (Kβ n /G(U)) C Ext (/G(U)).

Proof. Firstly recall that we assumed that Kβ was compact. Hence
Kβr^IG(U) is compact and has extreme points by the Krein-Milman
theorem. Let ωeKβn!G(U) be decomposed as ω = λω^ + (1 — λ)ω2

with ωάi = 1, 2) ε /G(U). Then ω, = (Tflm9 πω( ) Ωω) with Tt e πω(U)'n U™'.
By assumption Tt e πω(U)//nπco(U)/ and hence ωf e Kβ. q.e.d.

We will adopt the definition of a face as given in [9], namely:
a face of a convex set K in a vector space is a convex subset Q such that if
λωί + (1 - λ) ω2 e Q with ω^i = 1, 2) and 0 < λ < 1 then ω^i = 1,2) e Q.
It is then clear from the proof of Lemma 4.7 that we have:

Lemma 4.7. KβnIG(U) is a face of /G(U) (provided K^n
iff (4.6) holds for all ω e l^n/G(U).

or a sequential separable factor funnel.
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(4.6) is satisfied for {lί, G) asymptotically abelian ([19] and [33],
Theorem 5.2) and in the case where lί is $R abelian with respect to
{τg, geG} [29]. (In this case G has of course to be amenable.)

Furthermore from the observation i) to vii) we have

Theorem 4.8. Let U be a C*-algebra admitting a group of K.M.S.-
automorphisms at a temperature β φ 0, with in addition a group of auto-
morphisms g e G -> OC0 such that:

1) Kβ is compact.
2) K,n/G(U)Φ0.
3) ω 6 Kβn/G(U)-> πω(U)'n l/f C πω(U)"n πω(Uy.
4) /G(lί) is a simplex.

Then the unique maximal measure that represents ω as an element of
the simplex KβnIG(U) coincides with the unique maximal measure that
represents ω as an element of the simplex IG(U).

Corollary 4.9. Let in addition to the assumptions of Theorem 4.8,
U be a C*-algebra with a sequential separable properly infinite funnel
(or a sequential separable factor funnel) and Ext IG(U) be a μω-measurable
set. Then the decomposition of ωeKβπIG(U) into elements of
Ext(KβΠ/G(lί)) coincides with the decomposition of coeK^n/G(li) into
elements of Ext(/G(U)) or stated differently:

μω(Ext(K,n/G(U))) = μω(Ext/G(U)) = 1, ω e KβπIG(U).

The conditions of Corollary 4.9 are fulfilled for all β φ 0 in the case
of a lattice gas with the interactions given in [26] the role of G is played
by space-translations, which act asymptotically abelian on U. Therefore 3)
and 4) of Theorem 4.8 hold; furthermore ||^(x) —x||-^^O implying

that Kβ is compact; X/ ϊn/G(lI)Φ0. Since lί is a U.H.F. algebra it is a
C*-algebra with a sequential separable factor funnel; furthermore lί
is separable in its norm topology and hence Ext /G(lί) is μω-measurable.

§ 5. Decompositions of Locally Normal States into Locally Normal States

In this paragraph we shall restrict ourselves to C*-algebras with
a sequential separable factor funnel. This restriction, as we shall see,
is essential to the proof of the main theorem of this section; namely

Theorem 5.1. Let SR be a factor on a separable Hilbert space. Let 93
be a commutative Von Neumann algebra in 9W, and let Ω be a vector in §
that is separating for 93 (for instance Ω could be cyclic for 9Jty and

ωΩ(A) = (β, A Ω) = f dμ(y) ωγ(A) A em,
r

where Γ, μ and ωγ are as before (cf. § 4i) to viii)).
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Then the following statements are equivalent
i) ωy is μ - a.e. normal on ΪR.

ii) The natural * -isomorphism

Σ Xib^ Σ *i®bi X i e S R
i = 1 ί = 1

extends to a ^-isomorphism of

(SRu93)" onto 2R®33,

where SCR ® 33 is the tensor product of the Von Neumann algebras 901 and 33.

Proof. Since 9K acts on a separable Hubert-space, 90^ is separable
in its norm topology. It is known that under this condition the predual
(501093)^ of 9W® 95 is isometric to the Banach space L^F,^, μ) of
all Bochner integrable SOί^-valued functions on Γ with respect to μ
(see for example [30]).

Suppose (i) holds. Since $R is a factor and 93 is in 9JΪ', the bilinear map :
(X 6)e$Rx33->;x;fceJB(ί)) is extended to an isomorphism π0 of the
algebraic tensor product $R®93 onto the algebra #0(ΪR, 33) generated
algebraically by 9W and 33, (see, for example, [8] Chapter I, § 2, Excercise 6).
Furthermore, since 93 is abelian, [36] the map π0 is extended to an
isomorphism π of the tensor product of C*-algebras 9W®α93, onto the
C*-algebra 9?(9Wu93) generated by 9K and 93. Let ω be the state on
9ϊ(9Wu93) defined by ω(x) = (xΩ\Ω). Put ώ = tπ(ω). Then α^is a state
of SDίl(H)αS. We claim that ώ is σ- weakly continuous on 9W®a33 when
9K(i)α33 is imbedded in the tensor product of von Neumann algebras

By assumption, we have, for each £ xt® bt e $R® 93,

=ω Σ xΛ ^ Σ ^ ω y ( x i ) b ί ( y ) d μ ( y ) .
i = ι / V = ι / i = ι r

Therefore, ώ is nothing but the restriction of the normal state of 9Jt®33
which is defined by the ΪR^-valued function in L^Γ, μ, 9ΪΪJ: y eΓ-^ωy,
to 9Jl®αS. Thus ώ is σ- weakly continuous. Since the map π is nothing
but the cyclic representation of 9Dί(g)α93 induced by ώ, π is extended
to a representation π of 9ΪI® 93 with the range (9Jϊu93)". Since the centre
of ΪR® 93 is 1 ® 93 and π is faithful on 1 ® 93 because it is just the identity
map, π is an isomorphism of 9W®33 onto (9Jϊu33)".

Suppose (ii) holds. Let π be the isomorphism of 501® 33 onto (9Jlu33)"
which extends the map: (x,fe)e9Wx95H>χfeeΛ 0 (9K,95). Let ώ be the
state of 2R®33 defined by (π(x)β|Ω). Then ώ belongs to
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As we remarked above, there exists a Bochner integrable SDί ̂ -valued
function: γ ε Γ-*ώy e 501̂  such that

** ® &f) = Σ ί ωy(*i) &i(y) rfMy) (*)
l / i = l Γ

n

for each ]Γ *i ® b* e 50ί (x) 93. Therefore we have, for each x e 9Jt,

(**)
- J ώy(x) dμ(γ) .

r

By equality (*) one concludes that the diagonal algebra for the decom-
position (**) of ω is precisely 93.

Indeed the function y e Γ-*ώy e 501̂  is a Bochner integrable function
on Γ (by the very definition of L1 (Γ, μ, 9W#)) and hence ωy is a strongly
measurable function on Γ [13,30]. Therefore by ([1] Chapter IV, § 5,
Definition 1 and Proposition 10) on every compact subset K of Γ we have
that ώy is a strongly continuous function on K\N where N is a subset
of K of μ measure zero.

Since Ω is separating for 93, μ is a normal basic measure on Γ; its
support is all of Γ [8]. Therefore [4], there exists an open dense set G
in Γ with G = (J Gn where {Gn} is a countable family of mutually disjoint

n

open and closed subsets of Γ. Since Gn is a closed subset of Γ, which is
Hausdorff, Gn is compact. In the hyperstonean space Γ a set is of μ-measure
zero iff it is nowhere dense. Furthermore each set of first category is
nowhere dense, as is its closure [4].

Returning to ωΎ, it is clear from what we said above that ώy is
continuous on G — (J Nn, with NncGn and Nn nowhere dense. Let us

denote G — (J Nn by H. By Baire's theorem H is open dense, indeed
_ n _

H = Gπ\jNn

c or equivalently Hc = Gcv(jNn, i.e. Hc is a closed set
n n

of first category.
Let now

ω(X)

be the decomposition as obtained in § 4 by diagonalizing 93. Then

ω(Aά) = J dμ(γ) ωy(A) a(y) A e 2R, α e 93 , (***)
r

where ωy(A) is the unique continuous function on Γ that coincides,
except on a set of measure zero, with ώy(A) [4]. Define
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then we have that E(x) and hence E(x) is nowhere dense. It then follows
that Hr^E(x) is open dense, and hence

For y 6 H, we can find yα such that lim yα = γ and yα 6 Hr\E(x) .
α

Since ώyα(x) = ωγα(x) and since ώ? is strongly continuous on H,
together with the fact that ωy is continuous on all of Γ we have that
ώy(x) = ωy(x) V x e 9JΪ, 7 6 H. q.e.d.

Let U be a sequential separable factor funnel and let ω be a locally
normal state thereupon. It follows from corollary 3 that §ω is separable.
Consider [πω(Un)u93] Ωω = ξ>n

ω where 93 is a commutative Von Neumann
algebra in πω(lϊ)'.

One then has the following structure
α) πωlun is

 a representation of the factor Un on the separable space §ω,
hence πJUn is faithful normal [10, 17, 35] and hence πω|Un is a Von
Neumann algebra; but by faithfulness it is a factor. Let Pnξ)ω = ξ>n

ω

thenPΠeπω(UΠ)'n93';

β) [33]Pn is isomorphic to 93; πω(Un) is isomorphic to [πω(Un)]Pn

since [πω(Un)]Pn is the image of a representation of the factor πω(lίn) on
ξ>n

ω which is separable;
y) In ξ>n

ω we have the conditions of Theorem 5.1. Indeed Ω is separating
for [93]Pn, [93]Pn C [πω(U)]Pn and [πω(U)]Pn is a factor.

δ) Let ω = $dμ(y)ωy be the decomposition of ω obtained by

diagonalizing 33, then

r

This equation can for A e πω(Un) be read as

where ω" is the transpose of ωy under the isomorphism of πω(UΠ) onto
[πω(«n)]pn (i.e. if Aeπω(UJ-+lA]Pn then ω^ = lφn(ωy}}. Equation (*)
therefore is the decomposition of a normal state on [πω(lίn)]Pn into
states on [πω(UJ]Pn.

Since normality of ω" on [πω(UJ]Pn implies and is implied by nor-
mality of ωy\Un we have by applying Theorem 5.Γthe following

Corollary 5.2. For a C*-algebra U with a sequential separable factor
funnel, a locally normal state ω thereupon and a commutative von Neumann
algebra 93 in πω(U)' the following three statements are equivalent:

i) ω = $dμ(y)ωy with ωy locally normal μ almost everywhere, where
r

the decomposition is obtained by diagonalizing 93.
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ii) The natural * -isomorphism

Σ *Λ>-* Σ *&*>, , Xί e ίπω(Un) ]Pn , bt e [»],,„
/ = ! i = l

extends to a * -isomorphism of

([«»(iυ],..u[»],J onto [πω(Uπ)]Pn ® [»],,,.

iii) 77ιe natural * -isomorphism

entends to a * -isomorphism of

πω(UΠ)® ΰ .

Because condition ii) in Theorem 5.1 is always fulfilled if ΪR is a
type I factor on § we have also

Corollary 5.3. For a C*-algebra U with a sequential separable type
I factor funnel a decomposition of a locally normal state ω is always into
locally normal states for any commutative Von Neumann algebra 93 in
πβ(U)'.

This corollary is also a consequence of [21] Proposition 4.3, because
any type I factor lίn in the funnel contains the separable norm closed
ideal I of the compact operators, that is σ-weakly-dense in Un and a
locally normal state has the property that ||ω|j|| = ||ω|uj| = 1, [6].

One might attempt to extend these results to general locally normal
states on a sequential separable factor funnel. This, however, is a rather
difficult problem if we do not have some additional structure like in
Theorem 5.1 and its Corollaries 5.2 and 5.3. As an illustration we want
to conclude with an example of a locally normal state on a sequential
separable factor funnel, whose central decomposition is not into locally
normal states.

Let G be a countably infinite discrete group such that every conjugacy
class Cg = {CgC~1 : CeG}, geG is infinite except for the trivial one Ce.
Such a group will be called an LC.C.-group ([8], Chapitre III, § 7.7, [30],
Chapter 4.2). Let SOί(G) denote the von Neumann algebra generated by
the left regular representation of G. 9K(G) is known to be a II ί factor.
Suppose G has a decreasing sequence {GJ of subgroups such that:

(a) Each Gn is an LC.C.-group;
00

(b) P| Gn — A is an abelian subgroup such that 9W(/ί) is a maximal
« = ι

abelian subalgebra of each 9Jί(Gn).
If we take a free group with two generators α and β as G and a subgroup

of G generated by α and β2" as GΠ, then G and Gn satisfy the above
conditions.
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Let § be the Hubert space /2(G) of all square summable functions
on G. Each 93l(Gn) acts on §. For each n, putting 3Jίπ = 9K(GΠ)', we get an
increasing sequence {9Jlπ} of separable factors. Let U be the C*-algebra

00

generated by (J S[Rn. Let Ω0 be the function in § defined by

n t\ 1° β = e>Ωo(0)Hι -[1 otherwise .

Then Ω0 is a cyclic vector for U. Therefore, the identity representation
of U is considered as the cyclic representation πω of U induced by the
state defined by / x

Since we have U ' = ( J » = f)

πω is a type / representation of U. The centre of πω(U)" = U" coincides
with Wi(A). If we decompose ω with respect to the centre 9Jί(^4) of πω(U)",
then the restriction ωl^ of ω to 9Jϊn is also decomposed with respect to
Wl(A). But yJl(A) is maximal abelian in 2R; = 9W(GJ, so that the restriction
of the components to 9JΪΠ cannot be normal because 30ΪΠ is not of type /.
Indeed 3Kn is a type // factor with (9K,,).,, separable; hence a normal state
on 9WW gives rise to a cyclic representation on a separable Hubert-space
(cf. § 3, Corollary 1) and this representation is normal and faithful
[10, 17, 35], and is therefore type //. This implies that the central
decomposition, in this case, cannot be accomplished in the frame of
locally normal states. To argue this last point, suppose that one would
have ω|TOn = fdμ(y)ω y |M l n= f dv(φn)φ\

Γ ωn(Γ)

where φn is v-a.e. normal on 9Wn (i.e. v(ωn(Γ)\N) = 1 and φn e ωn(Γ)\N
is normal on 9WΠ with N the appropriate null-set).

Since Wl(A) is maximal abelian in Wn = m(Gn) we know (cf. [30])
that (VQ)^ (ωn(Γ)\N) = 0 (where (v0)^ is the inner Baire measure obtained
from the Baire contraction of the regular Borel measure v) because
ωn(Γ)\N belongs to the hereditary σ-ring5 generated by the Baire sets.
(9Kιι)* is separable as a Banach space hence S($RM) is separable in the
σ(9K*, 9Wn) topology and therefore

where v^ is the inner Borel measure. This means that we obtained a
contradiction because we assumed v(ωw(Γ)\JV) = 1.

5 cf. P. R. Halmos, Measure Theory for terminology.
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