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Abstract. Trilinear invariant forms are described over spaces transforming under the
so-called elementary representations of SL(2, C) obtained from the Gel'fand-Naimark
principal series by analytic continuation in the representation parameters (among these
are all infinite-dimensional completely irreducible representations). All such forms are
described using a manifestly covariant technique. The method is based on a natural one-one
correspondence between the invariant forms and invariant separately homogeneous
distributions (called kernels of the forms) in three complex two-dimensional non-zero
vectors; thus the problem is completely reduced to a problem of distribution theory.
The kernels display analyticity properties in the representation parameters; the results on
this point are only sketched.

0. Introduction
0.1. Distribution Theoretic Formulation of the Problem

The problem on continuous polylinear invariant forms over spaces
transforming under elementary representations! of the connected
Lorentz group #1 (or of its universal covering group, SL(2, C), consisted
of all complex unimodular 2 x 2 matrices) has been raised in [2]. The
interest in the forms arises from the fact that these provide powerful tools
in studying elementary representations. For example, through the use
of the bilinear invariant forms (which have been studied thoroughly
in [2]) one can determine intertwining operators, equivalence con-
ditions, existence of invariant pre-Hilbert structures, etc. The present
paper is devoted to description of continuous trilinear invariant forms
(over the spaces mentioned above). The importance of the trilinear forms
is in their intimate connection with analysis of tensor product of two
elementary (and, in particular, of infinite-dimensional completely
irreducible?) representations of the Lorentz group (see [3] and Remark

! For the definition and general properties of elementary representations of a complex
semi-simple Lie group, we refer to [1]. The case of SL(2, C) which is our main concern is
treated in great detail in [2].

2 A representation of a group in a topological vector space is said to be completely
irreducible if the weakly closed linear hull of the representation operators contains all
continuous operators in the representation space [1]. The complete irreducibility implies
the topological and the operator irreducibility.
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5.5 below). Another related problem, namely, the description of Lorentz
covariant bilinear forms and covariant operators over elementary
representation spaces, has been treated in [4]; such forms and operators
are basic for infinite — component field theory.

It is a standard convention to take the group SL(2, C) as a substitute
for #1. (This substitution corresponds to treating double-valued
representations of .#1 on equal footing with ordinary ones.) According
to [1,2], elementary representations of SL(2,C) are in one-one cor-
respondence with pairs y=(4, ), called indices, where A and u are
arbitrary complex numbers such that A — u is integral. By X we denote
the set of all indices. The representation T, of SL(2, C) corresponding
to an index y can be realized in the complete locally convex nuclear
space, D,, consisted of all (complex- valued) %> functions of a complex
two- d1mens1onal non-zero vector { e C2 = C,\{0} which are homo-
geneous of index y. Here and in the following a function (or, more
generally, a distribution) f in the complex n-dimensional Euclidean
space, C,, or in C = C,\{0} is said to be homogeneous of index y [or,
equivalently, homogeneous of bi-degree (A —n/2, u—n/2)] provided

fa2)=iYa) f(z), VaeC,, (0.1)
where ¢l is the following #* function in C,:
(pgcn](a)= |a|l+#—"ei(l—u)al‘ga. (02)

A topology in D, is that induced by the standard topology (of compact
conyergence of all derivatives) of the space éa(C ,) of all ¥ functions
in € 2 ([51). Now the action T, of SL(2 C) on D, is defined in the follow-
ing manifestly covariant way 3

(T(A) ) Q=Ff(A"10) forall feD, AeSLE2,C), [eC,. (03)

The elementary representation T, is completely irreducible provided
x ¢ PRIUPL! where PP = {y € X|both 1 and u are positive integers}
and P2li={—y=(—4, —p)|xe PP, and two such representations,
say T, and T, (with y,x ¢ BFIU P, are equivalent precisely when
¥ = +y. In case y e P?! D, contains the finite — dimensional subspace,
E,, of functions polinomial in { and Z, while in case y e P D, contains
an invariant (proper closed) infinite-dimensional subspace.

Most of problems on elementary representations (such as the
problem on polylinear invariant forms) need an effective realization of
the space D/, dual of D,. A manifestly covariant realization of D/, can be

3 We call a group representation [like (0.3)] in a function space manifestly covariant
if it is implemented solely via argument transformations of functions.
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carried out in terms of distributions*. Namely, there exists an SL(2, C)
invariant isomorphism of D’ onto the subspace d_, of all distributions
in C, homogeneous of index —y =(—A4, —u) ([6]). In order to construct
explicitly this isomorphism, we define, for every index ¥, the following
continuous operator I, from D(C )into D, :

(LF) ()= j (pm(a_l)F(aC) ld]leia‘ , VFeD(éZ). 0.4)

L is SL(2,C) invarlant [in the self-evident sense: I (F,)= (I, F), where
F A(C) F(A™1(), VAeSL(Q2,C)]. Moreover, it can be proved (see
Appendix A) that I, is the topological homomorphism of D(C ) onto
D,,and its dual operator 1D - D'(C »), 1s an isomorphism (topological,
provided the dual spaces are endowed e.g. with the weak topologies) of
D/, onto the subspace d_,C D’ (C2) Thus we obtain the claimed iso-
morphlsm which sets an element ¢ € D) into a homogeneous distribution
Ped_, according as (P, F)= (¢, I, F) for all F eD(C o)

We are now in a position to translate the problem on trilinear
SL(2, C) invariant forms over elementary representation spaces into the
language of distribution theory. (Of course, the construction can be
trivially generalized to polylinear invariant forms.) For any triple’ of
indices X =(x, 12, x3) € X3, we introduce the space 7 (X)=7 (X1, ¥2» X3)
of all (separately) continuous trilinear forms ¢ over D, xD,, xD,,
which satisfy the SL(2, C) invariance condition:

@(T,,(A) f1, T, (A) f2, Ty, (A) f3) = @(f1. [, f5), YA€SL2,C), Vf;eD,,

On the other hand, let T(X) = ‘I(;(1 » X2 X3) be the subspace of all distribu-
tions T=T((;,(;,(3)eD’ ((Cz) )=D'(C, x C2 X C2) (in three variables
;e C2) which satisfy the following conditions:

a) SL(2, C) invariance:

T(ALy, AL, AL =T, (5, 05),  VAeSL2,0); ©.5)
b) separate homogeneity [of triple X]:

T(a;8y,a,85,a305)= (l—[ (p[Z](aj)) T(1,82,85) vajeél . (0.6)

*# Only distributions in complex domains will be used in what follows. Here we remind of
the standard notations [5]. For every domain Q in C,, D(Q) is the Schwartz space of all
complex ¥ functions with compact supports, and D’(Q), the dual of D(Q), is the Schwartz
space of distributions in Q. An identification of a complex continuous function f in Q with
a corresponding distribution of D’(Q2) is performed according as

(f,F)= [ f@@F@)ld"zd"z|, VFeD().
Q2

5 In what follows, for a set S and an integer n > 0, S" denotes the Cartesian product of n
copies of S.
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We claim that there is a one — one correspondence between J (¥4, X2, X3)
and I(—yy, — 2, —x3) defined as follows: for every ¢ € T (x1, 25 X3),
a unique distribution Te I(—y, —x2, —x3), called a kernel of the
trilinear form @, exists such that

T(F,®F,®F;) = oI, F,,1,F,. I F)), VYEeDC,). (0.7)

Indeed, in view of the Schwartz nuclear theorem, T(—y;, — 12, —x3)
can be identified with the space of all (separately) continuous trilinear
SL2,C) invariant forms (F;, F,, F3)—~T(F,®F,®F;) over D(C,)
x D(C,) x D(C,) such that, for any j =1,2,3, the form F, = T(F,QF,QF,)
considered as a linear functional in F; is a dlstrlbu‘uon of b_, . Hence,
the claimed statement is obtained merely by applying three times
SL(2, C) invariant isomorphisms between ®) and d_, . Note that ¢
can be expressed through T by

@o(fi, /2. /) =T(R,, /i®R,, [,®R,, f3), VYfieD,, (08

where R, Dx—>D(C° ,) is a right inverse operator for I, (which exists but
is not unique; however the right-hand side of (0.8) is independent of a
choice of R, , according to Lemma A.3 of Appendix A).

0.2. The Main Result. Outline of the Proof

In the present paper we describe the spaces T(X) of all distributions
of D’((C ,)?) satisfying conditions (0.5) and (0.6). All continuous trilinear
SL(2,C) invariant forms over D_, xD_, xD_,  are thereby de-
scribed for an arbitrary triple X = (x;, 12, x3) € X>. It turns out that I(X)
is non-trivial (i.e. different from zero) if and only if X belongs to

3
:{XE(Xu OO LENEDY (4j— ) is integral}. (0.9)
j=1

The fact that T(X) consists only of zero for X e X3\Z can be easily
justified by comparison between (0.5) for 4= —1 and (0.6) for a;= —1
(Vj=1,2,3). This is why the condition X € Z will be assumed in all the
following. It is shown in Section 5 that dimension of T(X) is at most 4.
(In particular, dimT(X) =1 if y;¢ P for all j=1,2,3.)

In general an explicit form of distributions of T(X) is rather involved.
Our classification principle of the kernels originates in the following
simple observation. There are three (independent) algebraic SL(2, C)
invariant combinations built of the variables {,, {5, {5, namely,

Z,=[0,0) Z, =10, 0) Z3 =104, (0.10)
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where, by definition, [{;,{;1=(!{?—{(}{}, and (} denotes the «th
component of the complex vector {;=( i {3). If we introduce the “dual
triple” (x, x% %) of indices y' = (7, u) related to X =(x;, 2> x3) by

3 3
ey S a)-he W[ -, ©.11)
i=1 i=1

then, for Re(A/+p))>1 (Vj=1,2,3), the expression

3
Ty, Gy Ca)=a [ |1ZF 7wt el muhant, 0.12)

ji=1

defines obviously a distribution (indeed, a continuous function) T € T(X).
Moreover, in these cases distributions (0.12) exhaust I(X). It turns out
that the multiple in (0.12) can be picked as a function of X in such a way
that the resulting expression be analytic in the representation parameters.
Indeed, there exists a family ¥ = {¥y € D'((C,)?)| X € E} such that ¥y
belongs to T(X) and is analytic in yy, x,, x3. (These requirements define
¥, up to a multiple dependent on X.) For the specification of ¥ we use,
the reader is referred to Appendix C where further properties of ¥ are
summarized without proof. (The corresponding proof is presented in a
separate paper [7].)

The relation of ¥ to the problem on I(X) is as follows. T(X) is one-
dimensional precisely when X is not a zero of ¥ (in the sense that ¥y = 0);
in this case I(X) consists of multiples of ¥,. For almost every zero X
of ¥, T(X) is exhausted by distributions, called kernels associated with ¥
at X, which are representable in the form

0 0 0 0
P((,)X1 i 613) Yy :P(B—)?) Y, (0.13)

where P is an appropriate complex polynomial in three variables [indeed,
an admissible polynomial in the sense that (0.13) belongs to T(X)], and

6(;' is the derivative with respect to 3 (A’ + u/) [at fixed integral 2/ — u/;
j=1,2,3]. The only exceptions to this rule are triples X, called zeros of
type 4, which satisfy the condition: y;e B! for all j=1,2,3 and the
finite-dimensional representation of SL(2,C) in E_, QE_,®E_,,
contains the identity representation. In the exceptional case I(X) is
spanned by the kernels associated with ¥ at X and a distribution @,
which is specified in Section 5. Note that, with respect to permutation of
indices 1, 2, 3, the distributions @y possess symmetry properties which
are to some extent opposite to those of ¥y.

14 Commun. math. Phys., Vol 29
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The final description of I(X) in terms of distributions ¥x and @y is
given by Theorem 5.4.

We now turn to some remarks on the proof. Undoubtedly, making
the most use of invariant terms has to simplify the consideration. With
this in mind, we employ relevant properties of the mapping

(1,8, 83) (21,25, Z3) . (0.14)

In the subdomain O of (é ,)® where at least one of the invariants Z,, Z,, Z 5
is non-zero %:

0:={((1,05, 85 e(C) (21, Zy) ey}, (0.15)

the mapping (0.14) is regular (i.e. its rank as a rank of a holomorphic
mapping is 3), and submanifolds (Z,,Z,,Z,)=const are SL(2,C)
orbits. This makes it possible to represent every SL(2,C) invariant
distribution in O as a distribution of the invariants (cf. Lemma 3.1).
On the other hand, the remainder set w,

0= (C)NO={((1, (5, (3) € (C)* | Z, =Z,(=Z35)=0}, (0.16)

consists of singular points of (0.14) and is not an SL(2, C) orbit. These
observations suggest to divide the problem on I (X) into the three Steps:

Step One. To describe the space, F(X), of all SL(2, C) invariant
separately homogeneous [of triple X] distributions of D'(O).

Step Two. To describe the subspace, T,(X), of all distributions of
T (X) with supports in .

Step Three. To find the subspace, §(X), of all distributions of F(X)
which possess extensions to distributions of T(X).

While Step One is very easy, treating effectively the other Steps
requires the auxiliary technical means developped in Sections 1 and 2
(and utilized also in [7]). The method in Section 1 reduces a space I(X)
with “too singular” kernels to a space IT(X’) with less singular kernels.
For this purpose we use special isomorphisms between I(X)'s which
can be implemented by successive applications of the following (multi-
plicative and differential) homogeneous SL(2, C) invariant operators in
D'((C,)?): Z,, 4, (j=1,2,3) and their complex conjugates, Z,, 4,, where

0 a}_a o 2 0
00,7 0ls] Ly o3 oLy oy’

4= [
0.17)
A [ 0 0 } y [ 0 0 }
2= 5 5 3= H .
003 0y oL, " 04,
6 Note that the vanishing of any two of the invariants Z,, Z,, Z, implies the vanishing
of the third one, since then {, {,, {5 are complex-collinear vectors of C,.
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In Section 2 the SL(2, C) invariance condition is treateg in the infini-
tesimal form as a system of differential equations in D'((C,)?). It suffices
to solve the system in a certain subdomain which generates the whole
(C,)? by SL(2, C) transformations.

Through accomplishing the three Steps we obtain the complete
solution to the problem.

We close this Section with the remark on the use of Appendices.
Appendix A has already been exploited in Subsectlon 0.1; a synopsis
in Appendix B on homogeneous distributions in ¢ ; and in C, is used
in Sections 3 and 5; at last, a use of Appendix C is made in Section 5.

1. Special Isomorphisms between T(X)’s

The result of this Section is represented by Propositions 1.4 and 1.6
where we point out pairs of triples X, X' € & which are called equivalent
and which possess the property: I(X) is an 1somorphlc image of T(X')
under an operator in D’ ((C ,)?) obtained by successive applications of
operators of the form Z;, Z;, 4;, 4;. The next two lemmas underline the
construction.

1.1. Lemma. Let & be the subspace of all distributions of D’((C°2)3)
satisfying the SL(2, C) invariance condition (0.5). Then the operators Z;A;
and A;Z; coincide on & with I+NE=V) and 2+ V)(1L+V V),

3
oC and V=% V. (Of course, the
=1
analogous statement for the complex conjugate operators is also valid.)

Proof. Let Te <. By differentiating (0.5) with respect to group
parameters at the identity, we obtain the infinitesimal form of the
SL(2, C) invariance condition”:

respectively, where V= Z &

(%)
(z Z aBCJ aca) T=0

Jj=1 a,=1,2

for an arbitrary complex 2 x 2 matrix (aj) with zero trace; equivalently,

*)
(Z CJ az:az _5£V)( T=05 VOC,ﬁ=1,2, (11)

_ 7 We use the convention: II" T =0 denotes the system of the equations JIT =0 and
IIT=0, where T is a distribution, IT is a differential operator, and II is its complex
conjugate.

14%
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where (6%) is the 2 x2 identity matrix. Now elementary manipulations
yield for all j=1, 2, 3:

3 0 0
ZiAiTE Z Z saﬂl?iﬁ-}e”" EYel F
ie{1,2,30\{j} i=1 a,p,y,%x=1,2 Ci gj

=(1+W)V,T, where ¢,z=cF=(—105_,.

We have obtained a linear system with respect to Z;4; T, which implies
Z;A;T=(1+V)(V—-V)T. At last, using the expression for the
commutator in D'(C,)%): 4;Z;— Z;A;=2+2V —V,, we obtain 4,Z;T
=2+NA+V-P)T. Q.E.D.

Remark that, by virtue of homogeneity condition (0.6), the restrictions
of the operators V, ¥ —V; and of their conjugates, v, V— I7j, to I(X) are
equal to numbers [—1, 2/ —4 and m— 1, u/ — %, respectively, where A/
and p/ are defined in (0.11) and the index x=(I, m)e X is defined via

":31 ’:1 (1.2)
m=(~1+ T )= 4+ T
j=1 ji=1

1.2. Lemma. Let X, X’ be a pair of triples of E such that 1+ —1,
% —1 for some je {1,2,3} and X' is obtained from X by equating all the
numbers '\, W' (i=1,2,3), except A7, to the corresponding numbers 1, i’
and the number 7'/ to A’ + 1. Then A; maps isomorphically T(X') onto IT(X)
and Z; maps isomorphically T(X) onto I(X'). Analogous statement holds

if all the symbols 1, A}, 4, Z; are replaced by m, w, A4, Z;, respectively.
Proof. Lemma 1.1 yields 4;Z;T=(+1)(F+ )T for all Te I(X)
and Z;A4;S=(I+1)(#+3)S for all SeI(X'). This is just the assertion
of the lemma. Q.E.D.
1.3. Definition. For any two complex numbers a,b such that a—b
is integral, we denote by .#(a;b) the following subset of the complex
plane:

F(a;b)={a+n|n isintegral and 0<n<|a—b|} if a—b =0, (1.3a)

F(a;b)={b+n|n is integral and 0<n<|a—b|} if a—b=0. (1.3b)

We introduce an equivalence relation, ~, on = as follows: X ~ X’ if and
only if, for all j= 1, 2, 3, the following conditions are satisfied:
A — A isintegral, —i¢ . #(AM; 1Y), —1¢7(;1),

. . (1.4)
w— 'l isintegral, —3¢ S (uw; ), —1¢ S (mm').
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1.4. Proposition. For a pair of equivalent triples X and X' of E, there
exists an operator M in D'((C,)®) which is representable as a product of
operators of the form Z; Z; A; A, (j=1,2,3) and which maps iso-
morphically T(X") onto T(X).

3
Proof. By condition, the number Y (I&/— A7+ |/ —u/)=n is
j=1
integral. Since case n =0 is trivial and case n = 1 has been actually proved
in Lemma 1.2, it suffices to reduce case n>1 to case n= 1. Indeed, there
is a finite chain {Xq), ..., X,)} of equivalent triples satisfying the con-
ditions: X, =X, X,,=X" and

3
Y (M 1y = Al + -y — ) =1 forall r=1,2,...,n.
j=1

Thus, the general case is obtained by successive applications of case n = 1.

Q.ED.

1.5. Remark. By replacing a given triple X with an appropriate

equivalent one and by using Proposition 1.4, a simplification in an

explicit form of distributions of T(X) can in general be achieved. We

now develop such a reduction procedure for a particular case (which is
important in what follows). Define

E,={XeZ|xe P2, and A/ (hence u’) is half-integral®; Vj=1,2,3).
(1.5)

Given X € &, it seems to be reasonable, by replacing X with an equivalent
triple (of Z,), to make all the numbers |4/, || as little as possible. A point
3

XeE, for which the number ) ||+ |u/| cannot be diminished by
j=1 .
replacing X with an equivalent triple, is called extremal. It is evident that
there is only a finite number of extremal triples of =,. Moreover, for an
extremal triple X, [= —2 if /= —1 for all j, and [= —1 otherwise;
analogous statement holds when [ and A/ are replaced by m and x/; thus
Im is equal to one of the numbers 1, 2, 4. Further, it is easy to prove
[by induction on the numbers |4+ 1, |u/| + 1] that, for every Xe Z,,
there is a unique extermal triple on =, which is equivalent to X in all the
following this triple is denoted by X. More explicitly, X is related to X via

M=+l -1, p=p+mi—-m ; (1.6)
here V, (and analogously n,) are non-negative integers defined as

follows: if A7 is positive then ¥, =4’ — 3 and I/ =0 if 1/ is negative then
I, =0 and V. equals either — A/ + 3 (provided A'<0 for some i) or

8 By convention, a half-integer is a number of the form n + % with n integral.
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— 27+ 3 (provided A'>0 for all i#j); analogously m/ are expressed
through /. At last, for every X e Z,, we define the number v(X)=I1it
[which is evaluated in terms of X and which assumes only one of the
numbers 1, 2, 4].

Next we can state the following

1.6. Proposition. Let X be a triple of Z, (1.5) and let X be the extermal

triple of 2, which is equivalent to X. Then every kernel T e T(X) can be
represented in the form

3 .
T, 82, 05) = ]j[l(Z,-)’i Zm (A) @Y | T 68, (L)

where TeX(X); U, and m. are as those in (1.6). Indeed, (1.7) defines a
bijection of T(X) onto T(X).

Proposition 1.6 is a special case of Proposition 1.4 and, as the latter,
is obtained from Lemma 1.2 by induction [first on I, and m’, (j=1, 2, 3),
then on . and m’ ].

2. Characterization of Kernels of the Forms in Question
through Their Restrictions to a Certain Subdomain

The SL(2, C) invariance condition (0.5) in D'((C,)?) can be written
in the infinitesimal form as system (1.1). Since the complex Lie algebra of
SL(2, C) can be generated by two elements, there is a subsystem which
is equivalent to (1.1), e.g.

3 o \® 3 o \&
(ZC} a¢g> T=0, (ZC? 6@“‘) T=0. 2.1)

j=1 i=1

It is a general fact (independent of a specific #* action of a connected
Lie group G on a domain Q) that the infinitesimal form of invariance
condition (in other words, the ¢-invariance condition where ¢ is the Lie
algebra of G) is equivalent to the global form. Moreover, if Q; is a sub-
domain of @ such that Q=GQ, and, for any xe Q,, the (open) set
G(x):={ge G|gx e Q,} is connected, then there is a one-one (canonical)
correspondence between the subspace D'(Q)¢ of all G-invariant distribu-
tions of D'(Q2) and the subspace D'(Q,)? of all %-invariant distributions
of D'(Q,). The statement can be easily proved by the standard argument®.
It suffices, for every distribution h; € D'(2,)? to define a distribution
H(g, x):= h,(gx) in two variables (g, x) of the corresponding subdomain
of G xQ and to show that H is independent of g and can be written as
H(g, x) = h(x) with he D'(Q)%; this then completes the proof.

By applying this remark to our problem we obtain

9 Cf. [8], Theorem 2-11.
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2.1. Lemma. Every SL(2,C) invariant distribution TeD'((C,)?)
[which, of course, satisfies (2.1)] is characterized uniquely by its restriction,
Tlg, to the subdomain Q,

Q:={((1, (. L) (G #0, ¥j=1,2,3}=(C, xC,)* . (22)

On the other hand, any distribution T, € D'(Q) satisfying system (2 1)inQ
possesses a unique SL(2,C) invariant extension Te€ D’((C ). If, in
addition, T, satisfies (0.6) in Q then T e I(X).

Proof. By virtue of the preceding remark, the first two statements
of the lemma are implied by the following two facts. First, (C )}
=SL2,0)Q [ie. (C2)3 consists of elements of the form (A{,, A{,, AL3)
with Ae SL2, C) and ({,,{,,{5) € Q]. Second, for any ({,,(,,{3)€Q,
the subset G({,{,,(5):={AeSLR2,C)|(AL,, AL,, A{3)€ Q} is connected;
indeed, in the special case, with {; =(1,0), G({,,{,, {3) is parametrized
by the matrix elements A1, A1, 4% which vary ina connected domain of
C, defined by A4} +0, A G4+ AL340, AT3+A3(5+0; in general
case G({y,(,,{5) is also connected since it is obtamed from the special
one by applying an 4 € SL(2, C). At last, the final statement of the lemma
is a consequence of the first two ones; in fact, if two SL(2, C) invariant
distributions ﬁsuch as both sides of (0.6)) coincide in Q, they coincide
throughout (C,)3. Q.E.D.

Our further results make use of the notion of a change of variables
in a distribution and, more generally, the notion of a composite of a
regular mapping with a distribution.

2.2. Definition'®. Let 2, and Q, be domains of C,, and C,, respec-
tively, where m = n, and let u : Q; — Q, be a regular holomorphic mapping
of Q, onto Q,. [The regularity of u means that the rank of u as a rank
of a holomorphic mapping equals n.] Then, for any fixed we Q,, U, (z)

=6(w—u(2)= n S(w ) is a well defined distribution of D'(Q,)

which depends in ‘6"" way on w as on a parameter. It is easily seen that
U, (z), considered as a “kernel”, defines a continuous operator U which
maps D(Q,) onto D(Q,) by the formula (U f) (w):=(U,(2), f(2)), for all
f € D(Q). Now, by definition, the composite F ou of the mapping u with
a distribution F € D'(2,) is the distribution of D'(Q,) obtained by applying
the dual operator U’':D'(Q,)— D'(Q,) [which is injective] to F, i.e.
(Feu, f):=(F(w), (U,(2), f(2)),), for all feD(Q,). In particular, if m=n
and u is a holomorphic differmorphism of Q,onto ©,, then the mapping
F+—Fou is an isomorphism of D'(Q,) onto D'(Q,) defined by

19 For a more detail see e.g. [9], Chapter 1L
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(Fou, JP-(f-w)=(F, f) for all feD(Q,), where Jim DLt

D(zq,...,2,)
is the Jacobian of u.

The well known formula of differentiating a composite of two
functions is applicable to the composite of a regular mapping with a
distribution. There is one another rule which will be tacitly used below:
Ifu:Q,-Q, and v: Q,— Q; are regular surjections and F € D'(Q5) then
Fo(vou)y=(Fov)ou

The following lemma, combined with Lemma 2.1, is the next step in
constructing global solutions of system (2.1).

2.3. Lemma. The restriction of an SL(2, C) invariant distribution
Te D'((C,)?) to Q (2.2) can be represented in the form

T|Q(C17€2’C3)=B(ZI’ZZ>p17p2); (23)

here the right-hand side is the composite of the regular mapping
R A AT NAVIES: N L

3

of Q onto C, x (C,)* with a distribution B(z,,z,,zs,24)€D(C, xC,
X C1 xC ) satzsfylng the system

0 g\
(zl oz Z, oz ) B=0. (2.5)

PVOOf The mapplng (4’1’ CZ» 52’ 539 4'2)'_)(21, Z29 pl’ p27 4’3’ Cz) 1sa
holomorphlc d1ffeomorph1sm of Q onto 0:=C, x(C D2 ><C2; indeed,
it is linear with respect to the variables subjected to the change and its
Jacobian equals —1. Hence Tlo({y, (5, (3) = T(Zy, Z 5, p1» s, (3, 03 for
some TeD'(Q). In terms of T system (2.1) takes the form

0 (k) z Fi 7 bl o\
—| T=0,|--* 2 ) T=0.
(aZG) ( (25)2 024 - (25)2 0z i 0zs

After differentiating the second pair of this equation with respect to z4
and z¢, we obtain that T satisfies (2.5) and partial derivatives of T with
respect to zs, Zs, zg, Zg vanish. Since an intersection of any plane
(21,23, 23, 24) = const with 0 is connected, this implies the existence of
BeD'(C, x(C,)? related to T via T(zy, ..., z¢) = B(zy, 25, 23, 24), and
satisfying (2.5). This then completes the proof. Q.E.D.

By applying Lemmas 3.1 and 3.3 to distributions of I(X) we obtain

2.4. Proposition. The restriction of a distribution T e I(X) to Q (2.2)
is of the form

1 1
T|Q(r:1,¢2,cg)—¢[“( )qﬂ;l( )b(plzl,pzzg, 26)
D1 P>
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where Z; and p; (j =1, 2) are defined in (2.4) and b(z,, z,) is a distribution
of D'(C,) satisfying the conditions

blazy,az,) = @) blz,,z,), VaeC,, 2.7)

0 0
e A R

0\ _ 0\ _
[(’uz_%_zza—gJZl_(ul_%_zl_ai)zz} b(zy,z,)=0. (2.8b)

b(z,,2,)=0, (2.82)

Conversely, for every distribution be D'(C,) satisfying (2.7) and (2.8),
there exists a unique distribution T e T(X) such that (2.6) holds.

Proof amounts to translating the homogeneity condition in terms
of the distribution B of the preceding lemma. Q.E.D.

3. Step One: SL(2, C) Invariant Separately Homogeneous
Distributions in the Subdomain O of (C,)?

We now prove that any SL(2, C) invariant distribution in the sub-
domain O can be represented as a distribution of the invariants Z; (0.10).
Following this result, the homogeneity condition is imposed.

3.1. Lemma. In domain O (0.15) the rank of the holomorphic mapping
(0.14) is 3, hence the SL(2, C) invariants Z, Z,,Z5 can be used as local
coordinates in O. Further, any SL(2, C) invariant distribution F € D'(O)
can be represented in the form

F(£1>C23C3)=g7(zla227z3)7 (31)
where & € D'(0) and
0:={(zy, z,, z3) € C5|none or at most one of z,, z,,z; is 0} . (3.2)

Proof. An arguing like that in Lemmas 2.1 and 2.3 shows that it
suffices to prove the statement only for the subdomain

Q:={((,, (5. (5) € 0|3 %0}
where the representation of type (2.3) is valid:
Flo(l1, 60, )= Fi(Z1, Z5,p1, D) 5 (3.3)
here F,(zy, z,, 25, z4) 1s a distribution in the domain
{(z1,25,23,24) €Cy | (z4,24) € 62, (25, 23) eéz}

satisfying (2.5). Next we represent Q2 as the union of two subdomains
Q:=1{((,0,,0)eQ|Z;#0}, j=1,2. In Q, the regular substitution
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pi>Zy= —(p1 Z,+p,Z,) allows to rewrlte (3 3) as Flg,(¢4,05,03)
=F(Z,,Z,, Z,) with an Z, € D'(0,):=D'(C, x Cz) Analogously, there
exists a distribution %,(z,, z,, z;) in the domain

Oy:={(z,,23,23)€C3 | 2,6 Cy, (z,,25) €C,}

such that F|o, (¢4, (5, {3) =F,(Z,, Z,, Z,). It remains to prove that there
exists a distribution # € D'(0)=D'(0,u0,) which coincides with Z;
in ¢;; by the principle of gluing distributions this is equivalent to the
following fact: #, = %, in O, N 0O,. This last fact is implied by the equality
FNZ,Z,,Z3)=F(Z,,Z,,Z3) in Q,nQ, and by the fact that the
image of 2; "2, under the mapping (0.15) is @, n0,. This then justifies
the validity of (3.1) in Q and, hence, throughout O. Q.E.D.

Next we want to describe (X) for every Xe E and thus to solve
Step One.

3.2. Proposition. The general form of distributions of F(X) [i.e. of
distributions of D'(O) satisfying (0.5) and (0.6)] is given by (3.1) with a
distribution & € D'(0) of the following form:

a) if none or at most one of x*, x*, x> belongs to

P: = {y = (A, u) € X | both 4 and p are negative half-integers} ,

then 3
F (21,25, 23)=a| [] wx,(zj)} , 3JaeC,;; (34a)
i=1 0
b) if at least two of x*, ¥, x* belong to PYY, then
3
Frmz)= 3 |awuz) ] @Xl(zi)] . (34b)
j=1 ie{1,2,3)\{j} O

where a; (j=1,2,3) are complex numbers, and a;=0 if y’¢ P [Here
notations y, and ¢, of Appendix B are adopted.]

Proof. In terms of & € D'(0) the homogeneity condition (0.6) takes
the form

(a Zlaa ZZaa Z3 (1—[ q)[l] aj)) (21’22523)9 vajecol‘

It is obvious that the right-hand sides of (3.4) satisfy this condition. There
remains the necessity of Egs. (3.4) to be verified. It is convenient to
represent (¢ as the union of three subdomains: ¢ =0Vu0@uO®
where by definition

OV =C,xC,xC,, 09=C,xC,xC,, O¥=C,xC,xC,.

In these subdomains results on homogeneous distributions in one
complex variable (see [9] or Appendix B below) are applicable; thus we
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have

Floinlz15 225 23) = a}wxf(zj) H <P§$<](Zk); j=123.
k
k#j

By requiring the compatibility of these representations in ¢ ~@OY for
i%+j (i,j=1,2,3), one obtains easily the desired result. Q.E.D.

4. Step Two: SL(2, C) Invariant Separately Homogeneous
Distributions in (C,)* Vanishing in O

4.1. Proposition. The dimension of Ty(X), the subspace of all distribu-
tions of IT(X) with supports in w (0.16), is given by

0 if  x¢PLI,
dimT,(X) =11 if xeP? and X¢E,,
vX) if Xe&,.

[v(X) is the function (defined in Remark 1.5) on = (1.5), which assumes
values 1,2,4.]

Proof. 1Tt is fairly obvious that, for a pair X, X' of equivalent triples,
the operator M established in Proposition 1.4 maps isomorphically
T (X) onto T, (X), hence we may substitute the triple X by equivalent one.
It terms of b (2.6), the support property reads suppbC {0}. First, if
x ¢ P2 then (2.7) and the support property of b imply b=0. Second,
if xe P2 and X ¢ E,, we may substitute X by an equivalent triple in
order to fulfill the condition I=m= —1. Then (2.7) and the support
property yield b(z,, z,) =ad(z,) d(z,), Jae C;. It is clear that every such
distribution satisfies (2.8). Thus, in the second case dim Ty (X) = 1. At last,
let us consider triples of =,. Proposition 1.6 allows to confine the treat-
ment with extremal triples of Z,. Then we have: [=m= —1 forv(X)=1;
either [, m)=(—1, —2)or ([, m)=(=2, — ) forv(X)=2;and [=m= —2
for v(X)=4. Further, (2.7) and the support property imply

b(z,2,) ) z 121 (—a ) (—a )3’5( )
Z1,2)= Aoy s = Zj) -
=2 Bk 0z; 0zZ; @.1)

artar=~—1-1 fi+pr=-m—1 j=1
It is remarkable that every such distribution satisfies (2.8) automatically.
For example, we consider (2.8a), since (2.8b) is analogous. If [= —1,

Eq. (2.8a) is satisfied since z;6(z;)6(z,) =0 for j=1,2. If [= —2 [hence
M= —1for all j=1,2,3], Eq. (2.8a) reads

0 0
[(14—2287)21—(1—1-2167)22}19:0;
2 1
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it is justified by the right-hand side of (4.1). Thus, dim T, (X) is equal to
the dimension of the space of distribution (4.1), i.e. to Im=v(X). Q.E.D.

4.2. Remark. In the proof of Proposition 4.1 we have actually put
into effect Step Two of Subsection 0.2 and described the space T,(X).
Our purpose here is to rewrite distributions of T,(X) in an invariant form.
First, we observe that, for a point ({;,{,,{;) € w, there are non-zero
complex numbers denoted by {;: {; such that

G=0i: )¢5 Lj=123. (4.2)

Further, we claim that an expression like

o\"[ 0
HE G b= s | () ozoaz @

can be given a meaning of an SL(2, C) invariant distribution of D’((C° )%),
provided m and n are non-negative integers; i,j=1,2; u(z,,z,) is a €%
function in (C 1), which, in addition, must be anti-holomorphic in z;_;
if m >0 and holomorphic in z;_; if n > 0. Indeed, it is easily verified that
the right-hand side of (4.3) becomes a distribution in Q of the form (2.3)
[hence satisfying (2.1)] after the substitution of {} /{3 for {: {5 (k=1,2);
recalling Lemma 2.1, a precise meaning of an SL(2, C) invariant distribu-
tion in (C,)? is given to (4.3).

We are now in a position to rewrite distributions of T,(X) using
invariant symbols. We know that T,(X) is non-trivial if and only if
x € P21 Due to Proposition 1.4 it suffices to single out at least one point X
from every equivalence class on Z. In case x € P! and X ¢ 5, we may
suppose [=m= —1, then the replacement of b(z,,z,) in (2.6) by
a 0(z,) 6(z,) yields

T(1, 6o, L) = a0l 1 ) @Ua(l5 1 () 6(2,) 0(2,)
=apD((i:C) U1 G) 0(Z) (Z),
where ae Cy, and {i,j, k} ={1,2,3} . In case Xe Z, we may restrict
ourselves to extremal points [general case is obtained by applying

Proposition 1.6]. If X € £, and v(X) = 1, then [=m = — 1, and representa-
tion (4.4) is valid. If X € 2, and v(X) =2, then we have two possibilities:

a) [=—1 and m= —2, then (2.6) and (4.1) yield

(4.4)

2
=‘=Z {H(C (™%~ }(C A 5(21)5(22) (4.5)

11 When this equality of sets holds, we say that (i, j, k) is a permutation of (1,2, 3).
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b) [= —2 and m= —1, then

2 ; 0
) a;{ﬂ (cj:ca)-“’-f} (207! 5, 0Z)6(Z): (45D)
i ji=1 i
here a; and a;j are arbitrary complex numbers. At last, if Xe =, and
v(X)=4 [hence /= /= — L for all j=1,2, 3] then

2

laij'(CiiCa)—l (m)_lm5(z1)5(zz), (4.6)

M

T=

L,

where (a;;) is an arbitrary complex 2 x 2 matrix.

_ Asaconsequence of Sections 3 and 4, all the spaces T(X), To(X), F(X),
&(X) [defined in Subsection 0.2] are finite-dimensional for every X € =.
By the very definition of these spaces, we have

dim T(X) = dim T, (X) + dim FX) < dim T,(X) + dim F(X).  (4.7)

5. Step Three: The Extension Problem. The Final Result

The most convenient classification of distributions of T(X) for any
triple X e Z seems to be that realized almost completely in terms of
distributions Py (see Appendix C). In Appendix C we have described the
subspace 2(X) of all distributions of T(X) associated with ¥ at X [i.e.
representable in form (0.13)]. Now we will prove that dim T(X) = dim 2(X)
[hence T(X)=A(X)] for all X, except for a countable series. For the
exceptional X, it turns out that dim T(X) = dim T,(X) [hence T(X) = Ty (X),
T (X) being already described].

In order to find dim T (X) (and hence to prove the above assertion)
we have to accomplish Step Three in our programme, viz., to determine
the subspace &(X) of all distributions of F(X) which possess extensions
to distributions of T(X). It is possible to make it directly. [On the basis of
Proposition 2.4, the problem reduces to extension of a distribution in C,
satisfying (2.7) and (2.8) to a distribution in C, satisfying the same
conditions.] Another way is to prove that any distribution of F0
coincides with the restriction to O of a distribution of (X). With this
is in mind, we use a possibility of translating the extension problem in
terms of ¥ as follows. On the basis of Proposition 3.2, it can be easily
seen (and is actually seen in the proof of Proposition 5.2 below) that
every distribution F e §(X) can be represented in the form
F :P( 0 , 0

o'’ oy
of the extension problem: Given a (complex) polynomial P(z,, z,, z3)

0 . . .
5 3X3) Yxlo- Thus, we obtain the following version
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0 0 0 0
such that the distribution P( (3X> ?’X|OEP< o o (7)(3) Yxlo

belongs to §(X); whether P< 0

oxX
distribution T e I(X)?
5.1. Lemma. Let XeZ, and P(zy,z,,z;3) be a polynomial in three

0
variables such that P ( (3X) Yylo=Tlo for some TeZI(X). Then

0 3 a
Q(W) ¥y =0 where Q(z,,2,,25)= _Zl 55 Pl 22, 73),

)‘leo possesses an extension to a

Proof. We denote T, = ( 6?() ¥Yx — T and represent Tj|, in form

(2.3): Tilg(y, {2, (3)=B1(Z1, Z,, py, p2). The support property of T,
[that is, supp T; C @] implies the corresponding support property of B; :
supp B, C {(zy, z3, z3, 24) € C, X (Cl) | z; =2z, =0}; consequently,

@i/ 0 \Pi
Buenznini)= 3 fumnntenz [ (5] (2] 06

oy, By J

Therefore T|o can be represented as the finite sum

Tilp(¢1, 82, (3) = Z (81,82, 03) s (5.1

xePL2!

where t, is a distribution of D'(Q) which satisfies the following homo-
geneity condition

t(aly, aly,aly) = 9@ 1,01, 0, Ls), YaeCr (52)
On the other hand, since both T and ¥y satisfy (0.6) we have
Tilo(aly,als, als)

2 0 0
— pl2)(42
o2a ){TIIQ(Cl,Cz,Q)‘F{P(V"‘ oy s aXZ’r+ (‘)X3) (5.3)

0 .
— Pl )| mrlettn Gt vaces,

where r =4 1nlal. Next we express the left-hand side of (5.3) through ¢,
according to (5.1) and (5.2). We observe that expressions at @ll(a?)r"
(n=1,2,...) in the resulting equation need equal zero; thus

0 0 0 0
lP(r+ 6x1’r+ axz,r+ >_p(__.)} ¥, =0 forallrealr.

oy’ ox
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Differenting this equation with respect to r at r =0 provides the desired

result. Q.E.D.

5.2. Proposition. In notations of Appendix C, dimension of T(X) is
given by

I if XeB\3,
. 3 f Xe3,.
ImIN=12 i Xe3,03s.
4 if Xe3,.

Proof. Note that dim U(X)<dim I(X) for all X, therefore if
dim F(X) + dim T, (X) < dim A(X) for some X then (4.7) implies dim T(X)
= dim A(X).

Let us first consider the case XeZ\3 (when Py +0 and hence
dimQU(X) = 1). There are three possibilities

o) x¢ P2 and at most one of y?, ¥2, y* belongs to P;

p) xe P2, X ¢ E,, and ¥/ ¢ B for all j;

7) Xe By, v(X)=1, and ¢/ ¢ P for all j.

In case o) dimF(X)=1 (according to Proposition 3.2) and
dim T (X) =0 (according to Proposition 4.1), hence dim §(X) + dim T,(X)
<dimA(X). By the preceding note this means that dim I(X)
=dimA(X)=1. In cases ) and y) we have ¥, +0 and dimZT,(X)=1.
For an arbitrary distribution Te I(X), comparison between Proposi-

tion 3.2 [part a)] and formula (C.3) gives T|po=a Y¢lo for some

0
oy
aeC,. Now Lemma 5.1 implies a=0, i.e. supp T Cw. Thus, dimI(X)
=dimT,(X) =

Next we direct our attention to zeros of ¥. We will treat separately
each case of Classification C.2 in Appendix C and make use of the
information (in Theorem C.3) on A(X).

1) Let Xe 3,, hence dim2(X)=3. By the note at the beginning of
the proof, it suffices to observe that dim &(X)=1 [by Proposition 3.2,
part a)] and dimT,(X)=2 [by Proposition 4.1 in case Xe X, and
v(X)=2].

2a) In this case dim F(X) =2, dim T, (X) =0 and dim A(X) =2; by the
same note, dim T(X) = dim A(X) =2.

a n
2b) In this case (a—xk—> ¥, =0 for all n> 0 [due to Classification C.2]

and 6(;7(i Y, — ﬁ + Px are two linearly independent distributions of 2(X)

[due to Theorem C.3]. Further, comparison between Proposition 3.2
[part b)] and formula (C.3) gives:
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For any Te T(X) there are a,, a, € C, such that

- - 54
Tlo=|a, 6Xiaxk t+a, axjaxk Pxlo- (54

Now Lemma 5.1 implies

~

0 0 0
[al P +a, — P +(a, +a,) aX,{}'szo; (5.5)

consequently, a, =a, =0. Therefore, suppT Cw for all Te I(X), and
dimIT(X)=dim T ,(X) =2.

2¢) In this case dimF(X)=dimT,(X)=1 and dimA(X)=2; hence
dim T (X) =dim AX) = 2.

3a) Asin case 2b), for an arbitrary T'e I(X), there are two complex
numbers such that (5.4) and (5.5) hold. Since

o\ 0 o \"
(] #em o = 3] wem0 foran

[due to Classification C.2] and — ¥, 0, we have a; + a, =0. There-

0
ay'
fore dimi}’-(X)-g 1. Moreover, dimT,(X)=1 and dimA(X)=2. Hence,
dim T (X) = dim A(X) = 2.

3b) This case is similar to 2c).
4) For an arbitrary T e T (X), a representation analogous to (5.4) is
valid; indeed, there are complex numbers a,, a,, a; such that

3 63 63 lI,
o TG o TRy x3] wlo-
0? 0? 0?

1 a A 1A2 + 2a2 + 203 “a—xz—ax—3

T|o=

aq 3 +a3

D>

oyt oy

Lemma 5.1 implies [2 a; £ PP
0 \? o\ )
+(a1+a2)(6—}51> +a3(a—xz)}'}’x=O.Smce( ) Y,=0foralln>0

andi=1,2,3 [according to Classification C.2] and ——— ¥, (1 Zi<j<3)

oy 6 d

are linearly independent [according to Theorem C.3], we have a; =a,
=a; =0 Consequently, supp T Cw, and dimT(X)=dimT,(X)=4.

Q.E.D.

We obtain the following important corollary: If X is not a zero of ¥

or if X belongs to 3, U3,uU3;, then T(X)=A(X). Indeed, by definition,

A(X) always is a subspace of T(X); moreover, if X € Z\3 then both A(X)

and T(X) are one-dimensional, and if X e 3, U3, 3; then comparison

between Proposition 5.2 and Theorem C.3 gives dim 2(X) = dim I(X).
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The only triples for which dim A (X) < dim T (X) are those of 3,, that is,
triples X satisfying the condition: y/e P! for all j=1,2,3 or, equiv-
alently, X € &, and v(X)=4. In this case T(X) is spanned by (X) and
some one distribution, @, € T(X). Although a choice of ¢, seems to be
immaterial, we point out one natural specification of @, with an
interesting symmetry property.

5.3. Definition. Let X be the unique extremal triple among the triples
X of Z,with v(X)=4; this means that /1 =p;=—1 [and M=pi=— 2]
for all j=1,2,3. In accordance with (4 6), the distribution CDXGI(X)
is defined by

62 62
oy =i{(C1 () UG Ca)—l_a—Zla—Zz N CHO (Y Ca)_lm}

X NZ)d(Z,). (5.6a)

For an arbitrary triple X of Z, with v(X) =4, let u(X) M(X) by the operator
defined by (C.7), then @4 € T(X) is defined by setting

Px = pu(X) M(X) Py . (5.6b)

We claim that @, does not belong to 2(X) and hence T(X) is spanned
by A(X) and &. Indeed, in the special case X=X, A(X) consists of
distributions (4.6) with (a;) an arbitrary symmetric complex 2x2
matrix [see Appendix C], while @ is a non-zero distribution of the form
(4.6) with a skew-symmetric matrix (a;;); hence ®x ¢A(X) In general
case, the operator u(X)M(X) maps 1somorphlca11y I(X) onto I(X)
[according to Proposition 1.6] and A(X) onto A(X) [according to
Appendix C]J; therefore &, ¢ A(X) which justifies the assertion.

It is of interest to note that the distribution @ possesses the following
property whose verification is straightforward: for an arbitrary odd
permutation (i, j, k) of (1,2, 3), ®x(;, {, () = — Px ({4, {5, {5); this prop-
erty characterizes up to a multiple @y among distributions of T(X).
More generally, the distributions ®x possess a symmetry property which
is to some extent opposite to that of ¥y . Namely, under an odd permuta-
tion (i,j, k) of (1,2,3) ¥, behaves according to (C.2), while

‘p(x,,xj,xk)(gi’ Cp Ck) = “(_ 1)2f ‘p(x,,m,m)(Cu Cza Cs) . (5‘7)

We now summarize the results on T(X), the space of all kernels of
trilinear SL(2, C) invariant forms over ®_,, x D_,, x D_, . Remind
that only the triples of = (i.e. the triples of X* satisfying the condition:

Z (4;— u;) is integral) are to be treated; otherwise T(X)={0}.
1—1
5.4. Theorem. For an arbitrary triple X =(y1, 12, x3) €Z the space
I(X) of all SLR,C) invariant distributions T((,,(,,¢3)e D'((C,)?)

15 Commun math Phys, Vol 29
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separately homogeneous of indices Y1, 2,3 in {1,(,, {3, respectively,
is non-trivial, and its dimension is given by Proposition 5.2. Distributions
of IT(X) can be described in terms of the distribution-valued analytic
function ¥ on E [introduced in Appendix C] and the countable family
of distributions ®x [introduced in Definition 5.3] as follows.

I. If X is not a zero of P, i.e. if X satisfies none of the conditions (i),
(i), (iii) of Theorem C.1 [in Appendix C], then T(X) consists of multiples
Of Y.

IL If X is a zero of ¥ of type t =1,2,3, i.e. if X sdtisfies one of the
conditions (i), (ii) or (iii) of Theorem C.1 and, in addition, at most two of
12, 1% 12 belong to P, then T(X) coincides with the space W(X) [of the
kernels associated with ¥ at X].

I If X is a zero of ¥ of type 4, i.e. if Yy e PM for all j=1,2,3,
then an arbitrary distribution of T(X) can be represented uniquely as sum
of a distribution of W(X) and a multiple of ®,.

For a description of the space (X) of the kernels associated with ¥
at X, the reader is referred to Appendix C. (Further information involving
explicit forms of kernels of 2(X) can be found in [7].)

5.5. Remark. We point out the connection between trilinear SL(2, C)
invariant forms over elementary representation spaces and the problem
on SL(2, C) analysis of tensor product of two elementary representations,
say T,, and T,,. Let D, ®D,, be the complete tensor product of D,,
and D,, (for definiteness, in thoe projective topology); it can be identified
with the subspace of £(C, x C,) of all ¥~ functions f({,, {,) separately
homogeneous of indices y; and y, in {; and {,, respectively. The problem
consists of two parts. First, to describe the space t(x;, x,;x3) of all
continuous S L(2, C) invariant operators from D, ® D,, into D,, where
(%1 X25 x3) is an arbitrary triple of Z. Second, to find a characterization
of an arbitrary element fe D, ®D,, in terms of functions f. ot =LfED,,
dependent on y; and tet(y,,x,;x3) as on parameters. The solution
to the first part of the problem is obtained by constructing a natural
one-one correspondence between t(yy, x,;x3) and T(—yxy, — X2, —X3)
[while the second part requires further investigations]. More explicitly,
reasoning like that in Subsection 0.1 shows that the formula

(T,F,@F,®F;) = [t(L,, F;®1,F,) ({5) F3(3) [d*(3 T, VFe D(Cy),

defines the correspondence t(yxq,x;;x3)2t>TeI(—y1, —X2s x3)- In-
deed, for a given ¢, the corresponding distribution T'e D’((Co ,)?) is sepa-
rately homogeneous of indices —y;, —y,, 3 [by virtue of Lemma A.3].
On the other hand, an arbitrary T({,,{,,{3)e T(—x1, — X2, X3) Can be
considered as a distribution in {,, {, dependent on {5 in ¥ way [by
virtue of Lemma 2.37; consequently, there exists a continuous SL(2, C)
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invariant operator b: D((,O'2 X CL’Z)——>DX3 vanishing on the kernel of
I, ®1I, and such that (T, F®Fs) = [(bF)((s) F5(Cs) |42 (s d2 Ty,
VFeD(C 5 X ¢ 2), VE € D(C 2), now applying an analogue of Lemma Al
[which reads that ®, ® D,, is isomorphic with D(C2 X Cz)/ker( ®L,)]
and using the canonical decomposition for b show b=1t(I,, ®I ) for
some t € t(xy, X2 ; x3)» which proves the assertion.

Acknowledgements. It is a pleasure to thank Doctor I. T. Todorov for many valuable
discussions. The author acknowledges gratefully Doctor Ch. Newman for reading critically
an earlier version of the paper and beneficial suggestions.

Appendix A 2. Isomorphism between D, and d_,

Our purpose here is to establish the properties (claimed in Sub-
section 0.1) of the continuous SL(2, C) invariant operator I, : D(C 2)—D,
[defined by (0.4) for any y € X] and of its dual [, : D] —»D’(C 5)-

Let M, := I, *(0) be the kernel of I, and P, : D(CZ)—eD(CZ)/iIR be the
canonlcal mapping. Due to the umversahty propertx of quotient spaces,
there exists a unique continuous injection Q,: D(C,)/M,— D, related
to I, by the canonical decomposition, I,=Q,P,. Moreover, we have

A.l. Lemma. Q,: D(CO‘Z)/‘JJE —»DX is an isomorphism of topological
vector spaces. (In other words, is a topological homomorphism of
D(Cz) onto D,.)

Proof. I, possesses at least one continuous right inverse operator,
ie. an operator R,:D —>D(C2) such that I,R,=1g,. For example,
a straightforward Ver1f1cat10n shows that RX can be chosen in the form:
(R, N)O=H() f(), VfeD,, where H is a picked function of D(CZ)
such that | H(a{)|a|"*|dadal=1. Then P,R, is a continuous right
Cy
inverse operator for Q,. Since Q, is injective, this implies that P, R is
the two- s1ded inverse operator for Q, . Q.E.D.
Let D'(C,) and D), be the (topological) dual spaces of D(CZ) and D,,
respectively; for deflnlteness they are endowed with the weak topologles
By the very definition of P,, the dual operator P, maps isomorphically
(D(CZ)/EIR ) onto the subspace M, of all functionals of D'(C,) which
vanish on 9M,. Now Lemma A.l and the equation I, = P,Q), (dual of
L,=Q,P,) imply that I is actually the composite of two isomorphisms

1

A.2. Corollary. The operator I, maps isomorphically D) onto the
subspace M, of all functionals of D’(C 2) which vanish on I,

12 This Appendix represents another exposition of the result of Appendix A.2 in [6].
Note that the consideration can be trivially extended to arbitrary dimension n (while here
only the case n =2 is dealt with).

15%
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A.3. Lemma. M, =d_,, where d_  is the subspace of all distributions
in C, homogeneous of index —y.

Proof. 1f @ € M; then, by Corollary A2, &=1I,¢ for some ¢ e D).
Foranyae C1 and F eD(C 2), we have

(@(al), F(O)=lal”*(®, F)) =lal”*(¢, I,F,) = la|~*(o, (L F),)
=lal"*oMa™") (o, L,F) = ¢'%}(a) (,F),

where F,({):= F(a™'{). This implies # e d_,.

Conversely, let ®ed_,. We claim that (@, F)=(®, H - (I, F)) for all
Fe D(C ) and a picked function H as in the proof of Lemma A.1. This
implies @ € M, hence there remains this formula to be proved. To this
end we integrate with |a|~? |da da| both sides of the equation

(@, H,-F)[=|a|* (D,-, H F,-)] = ¢Pa ) (®,H F,-.); VaeC,.

Then the left-hand side can be construed as the value of the distribution
P(0)®lal"2e D'(C, x C,) on the test function H(a"1{)- F({)e D(C, xC});
an analogous meaning can be given to the right-hand side. By virtue of
commutativity of tensor product of two distributions, we obtain

(@), F(O)- f H(C) lal~? |[da da)) = (®, H - (I, F)),

which is just the required formula. Q.E.D.
By combining Corollary A.2 with Lemma A.3 we obtain

A.4. Theorem. The operator I : D] —>D’(C ) maps isomorphically D',
onto the subspaced_,C D’ (Cz)

The isomorphism sets an element @ e D) into the distribution
&=1I,¢by(D,F)=(p,,F),VFe D(CZ) Conversely, for a given #ed_ ,
the corresponding element ¢ e D is related to @ by (¢, f)=(P, R f ),
VfeD

Note that I is SL(2, C) invariant in the natural sense. Indeed, let T}*
denote the representation of SL(2,C) in D), which is adjoint to T,
ie. (TFA) e, f)=(p, T(A™")f) for all ¢e®,, feD, Then
(L, TH(A) @) () =L,0) (A~ ") for all pe D), and AeSL(2,C).

Appendix B. Homogeneous Distributions in One Complex Variable

We remind the reader of basic facts on homogeneous distributions
in € ; and in C; ([9], Appendix B).

For an arbitrary index y =(4, u) € X, the spaces of distributions in
¢ , and in C,, respectively, homogeneous of index y are one-dimensional
and consist, respectively, of multiples of the #* function ¢! defined in
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(0.2) and of multiples of the distribution v, defined as follows. For
Re(4+u)> 1, p, is a continuous function,

V(@)= (DAY )+ 4) 7 2l o=t glammamss

here and in the following AV pu=3(A+u+A—pul) AA p=5 A+ pu—|A—pul).
It is clear that [for Re(d+p)>1] v, is a distribution-valued analytic
function in y [in the sense of analyticity in 4 (A + p) at fixed integral A — u]

. - 0
and satisfies the identities: y,(z) = Ewu+1’u)(z) for A—u=0, and
0 .\
p,(2) = R u+1)(2) for A—u=0. By induction on n, these identities
z

provide a (unique) analytic continuation of v, into {y € X|Re(L+ )

>1—n} and hence into the whole X. In this way the homogeneous
distribution v, is constructed for all yeX. In particular, if ye P,
i.e. if both A and u are negative half-integers, then a straightforward
calculation gives

_ (__1)—(1/\11)—% O\ A%/ o\ r %
p,(z)= m (g) (52—) [27(2)]

— (=t iy () prs),
4

where § is a distribution in C, defined by (6, F) = F(0) for all F e D(C,),
and y_,(z) is a polynomial in z and Z. It is easy to see that for any y € X,
the restriction of i, to C, coincides with (I'(2 V ) + £))~* ¢U'J; therefore
suppy, =C, for y ¢ P and suppy, = {0} for y e PUL

At last, for any y, define ¢, e D'(C,) by setting ¢, =TI'((2V p)+ 2y,

6 B, and 6, = (= )0 x (MY )= )5y if e B

0
where " is the derivative with respect to 1 (1 + p) (at fixed A — p). It is
X

easy to see that ¢, is an extension of the distribution ¢! from C,into C,.
For y ¢ P! this extension is homogeneous, while for y e P! it is the
so-called associated homogeneous distribution of the first order, since

(=1 (Avu) o
ey ) el

,a2)= 010 {6, + Inl
Appendix C. The Family of Kernels with Analytic Dependence
on the Representation Parameters

We now construct the family ¥ = {¥y | X € £} mentioned in Intro-
duction. First of all, we note that & can be considered naturally as a
complex analytic manifold (which consists of countably many disjoint
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copies of C;). Below the following parameterization on Z is used. Every
triple X = (¥4, %2, x3) € Z characterized by its “dual triple” (', %, x°) € X3
[where y/ = (A/, u/) are defined in (0.12)] or, equivalently, by two triples
(c',c?,¢? and (k', k%, k®) where ¢/=41(//+ /) ranges in the complex
plane and k=3 (4 — ) is an integer or a half-integer. The numbers
¢!, ¢2, ¢ will be considered as local coordinates on = and, by definition,
0

a3y At last, for every triple XeZ, we introduce the index
X
x=

- 3 3

(I, m) by (1.2) and the numbers ¢, by c= — 4+ Y cJandf= ) K.
ji=1 j=1

C.1. Theorem. Let Py be the distribution (indeed a continuous

function) of D'((C,)?) defined for Rec’> 3 (Vj=1,2,3) by

3

l‘”x (Cp Cz’ (3)2 T

Termey Hre@- e

Yy can be considered as a distribution valued analytic function in X which
possesses a unique analytic continuation into the whole Z, ¥, belonging
to T(X) for all Xe E. Furthermore, a triple X€Z is a zero of ¥ (i.e. X
satisfies the condition Yy =0) if and only if (at least) one of the following
conditions (i), (ii), (iii) is fulfilled:

(i) at least two of y', 2, x> belong to P! ;

(1) xe P2 and ¥ e P for some je {1,2,3};

(i) xe€ P2, and one of the triples (A*, A2, A3), (u', u%, u3) consists of
negative half-integers while the other consists of negative half-integer and
two positive half-integers.

Here, by definition,

P = {y = (4, w) € X|both 1 — n/2 and u — n/2 are non-negative integers} ,
PU={—y=(-4 —plre PY}.

The proof of this theorem (as well as of all the other statements in

this Appendix) is given in [7]. Of the properties of ¥y the next two ones

deserve mentioning. First, W% behaves under permutations of indices as
follows; for an odd permutation (i, j, k) of (1, 2, 3), we have

q](xi,xj,;(k)(éis Cja Ck) = (— 1):” q](xl,xz,)u)((la CZ; C3) . (Cz)
Second, we remind that mapping (0.14) is regular in O; this implies
1 3
- (Z.
e+ f+D <,-131 va2)|

We intend to adapt ¥ to description of the spaces T(X). For this
purpose we introduce the subspace (X) of all distributions T'e I(X)
which are said to be associated with ¥ at X and which can be represented

Y lo(1, (2, (3) = forall XeZ. (C.3)

o
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in form (0.13) where P(z,, z,, z3) is a complex polynomial in 3 variables.

0
[Note that in general P( %
that, for X a non-zero, A(X) consists of multiples of ¥y . Thus it suffices
to confine our attention to zeros of ¥. At first we classify zeros. It is
convenient to devide the set 3 of all zeros of ¥ into four parts 3,
(t=1,2,3,4) according to character of location of zeros near points
of Z,. More precisely, by definition, X € 3, prov1ded X e J and there are
exactly t—1 non-collinear vectors a=(a’,a? a3)eC 3, called zero

3 0
direction vectors at X, such that ( Y a ) ¥, =0 for all integers n=0.

< ay!
i=1
C.2. Classification of Zeros. The subsets 3,C 3 (t=1, 2, 3, 4) exhaust
4
zerosof ¥,i.e. 3 = U 3. The subsets 3, can be described in the following

t=1

) ¥, need not belong to T(X).] It turns out

way.

1) 3, is the set of isolated zeros of P, ie. the set of all triples X
satisfying condition (iii) of Theorem C.1.

2) Xe 3, if and only if one of the following three conditions 2a),
2b), 2¢) is satisfied:

2a) x¢ P2, and y/ e PU! for exactly two values of j;

2b) xe PBL yie P e PU and e {y=(4, u)|4 and u are half-
integers of different signs} for some permutation (i, j, k) of (1,2, 3);

2¢) xe P2 4/ e P for exactly one value of j, and i ¢ PLIL P
for at least one value of i.

3) X e 3, if and only if one of the following two conditions is satisfied:

3a) xe P2 and y'e P, e PUL y* e P where (i, j, k} = {1, 2, 3};

3b) xe P2 and y'e P, y/ e P, v e PU where {i, j, k} = {1, 2, 3}.

4) 3,={XeZ|yeP! for all j=1,2,3}.

Zero direction vectors at X e 3 can be described (up to multiples)
in each case as follows.

1) No zero direction vectors.

2) The corresponding zero direction vector a =(a', a?, a?) is defined
by the following conditions, respectively:

2a)-2b) o' =0 if e P Ie{1,2,3};

3

2¢) Y =0, and o' =0 if y'e B, Ie{1,2,3}.
r=0

3) The corresponding zero direction vectors a;;y and a,, are deter-
mined by the following conditions, respectively:

3a) a(l,—am—o azz)+ai2)=a{f2)=0;

3b) a(l)—a(1)+a(1)—-0 .az2)+a(2)=a{2)=0.

4) The three zero direction vectors a(), ag), ag, are defined by
a;y=0fori=+j(i,j=1,2,3)
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C.3. Theorem. Let X be a zero of ¥ of type t (t=1,2,3,4). Further,
let agyy, ..., a1y be zero direction vectors at X (as in Classification C.2)
and {ag), ..., Qg 1y, b1y, ..., Ba—p} be a basis in C;. Define the following
polynomials in 3 variables:

P(r)(Zl’ Z,23) = (b(r) " 2), P(z,m)(zp 2, 23) = (a(l) " 2) (a(m) z), (C4)
3

where r=1,...,4—t; 1Sl<m=t—1, and, by definition, a-z= ) a'z,.
i=1

oX
in the subspace W(X) of the kernels associated with ¥ at X. The dimension
of W(X) coincides with the number of polynomials (C.4), i.e.

dimAX) =2 if Xe3,U35, dimAX) =3 if Xe3,U3,. (C.5)

C.4. Special Case. We close this exposition by considering in more
detail zeros of type 4. Note that X belongs to J, precisely when X e Z,
and v(X) =4. Among such triples is a unique extremal one equivalent to
all the others. This triple, denoted by X, is defined by setting 1/ = i/ = — %
for all j=1,2, 3. The corresponding space (X) consists of dlstrlbutlons
(4.6) where (a;;) is an arbitrary symmetric complex 2 x 2 matrix. For an
arbitrary X e 3,, elements of 2A(X) can be expressed through those of
A(X) in analogy with Proposition 1.6. Indeed, an element

Then the set of distributions E,«%) Yy, P(,m)(i> Yy forms a basis

0

ror( 2,

) ¥y € A(X)

is related to the corresponding element
0 5
T=P| o) Pulei € UX)

by the formula

T=pX)MX)T, (C.6)

3
where 11(X) is an appropriate multiple and M(X) = [] (4" %~ #(4)~»~%.
i=1
A straightforward calculation yields '

M(X) = ( )~ i ﬁ 1)+ Ikl -4 y
HOMX) ==y Hi) (=1 W i(4)
(C.7)
=(—1)"ctl-1 -1 —ci+ ki~ %
( ) <11;_[1( ) )T(—x1,—xz,—)c3)<acl ’ agz s aca)
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