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Abstract. Trilinear invariant forms are described over spaces transforming under the
so-called elementary representations of SL(2, C) obtained from the GeΓfand-Naimark
principal series by analytic continuation in the representation parameters (among these
are all infinite-dimensional completely irreducible representations). All such forms are
described using a manifestly covariant technique. The method is based on a natural one-one
correspondence between the invariant forms and invariant separately homogeneous
distributions (called kernels of the forms) in three complex two-dimensional non-zero
vectors; thus the problem is completely reduced to a problem of distribution theory.
The kernels display analyticity properties in the representation parameters; the results on
this point are only sketched.

0. Introduction

0.1. Distribution Theoretic Formulation of the Problem

The problem on continuous polylinear invariant forms over spaces
transforming under elementary representations1 of the connected
Lorentz group <£\ (or of its universal covering group, SL(2, C), consisted
of all complex unimodular 2 x 2 matrices) has been raised in [2]. The
interest in the forms arises from the fact that these provide powerful tools
in studying elementary representations. For example, through the use
of the bilinear invariant forms (which have been studied thoroughly
in [2]) one can determine intertwining operators, equivalence con-
ditions, existence of invariant pre-Hilbert structures, etc. The present
paper is devoted to description of continuous trilinear invariant forms
(over the spaces mentioned above). The importance of the trilinear forms
is in their intimate connection with analysis of tensor product of two
elementary (and, in particular, of infinite-dimensional completely
irreducible2) representations of the Lorentz group (see [3] and Remark

1 For the definition and general properties of elementary representations of a complex
semi-simple Lie group, we refer to [1]. The case of SL(2, C) which is our main concern is
treated in great detail in [2].

2 A representation of a group in a topological vector space is said to be completely
irreducible if the weakly closed linear hull of the representation operators contains all
continuous operators in the representation space [1], The complete irreducibillty implies
the topological and the operator irreducibillty.
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5.5 below). Another related problem, namely, the description of Lorentz
covariant bilinear forms and covariant operators over elementary
representation spaces, has been treated in [4] such forms and operators
are basic for infinite — component field theory.

It is a standard convention to take the group 5L(2, C) as a substitute
for <g\. (This substitution corresponds to treating double-valued
representations of 3?\ on equal footing with ordinary ones.) According
to [1,2], elementary representations of SL(29 C) are in one-one cor-
respondence with pairs χ = (λ, μ), called indices, where λ and μ are
arbitrary complex numbers such that λ — μ is integral. By 3E we denote
the set of all indices. The representation Tχ of 5L(2, C) corresponding
to an index χ can be realized in the complete locally convex nuclear
space, T)χ, consisted of all (complex-valued) Ή™ functions of a complex
two-dimensional non-zero vector ζ e C2 = C2\{0} which are homo-
geneous of index χ. Here and in the following a function (or, more
generally, a distribution) / in the complex n-dimensional Euclidean
space, Cn, or in Cn:= Cn\{0} is said to be homogeneous of index χ [or,
equivalently, homogeneous of bi-degree (λ — n/2, μ — n/2}~] provided

1 ? (0.1)

where φ[£] is the following ̂ °° function in Cl :

r*a. (0.2)

A topology in Dχ is that induced by the standard topology (of compact
convergence of all derivatives) of the space $(C2) of all °̂° functions
in C2 ([5]). Now the action Tχ of SL(2, C) on Dχ is defined in the follow-
ing manifestly covariant way 3 :

(Tχ(A)f)(ζ) = f ( A - i ζ ) forall /e Dχ, AeSL(2, C), ζeC2 . (0.3)

The elementary representation Tχ is completely irreducible provided
χφ φ[+]uφ[f ] where φ[+]: = {χe 3; | both λ and μ are positive integers}
and φ[?1:= { — χ = ( — A, — μ) | χe ^P + 3}, and two such representations,
say Tχ and Tχ/ (with χ, χ'^ ^[+]u^[f]), are equivalent precisely when
χf = +χm in case χ e ^3[+3 Dχ contains the finite - dimensional subspace,
Eχ, of functions polinomial in ζ and ζ, while in case χ e φ[?] T)χ contains
an invariant (proper closed) infinite-dimensional subspace.

Most of problems on elementary representations (such as the
problem on polylinear invariant forms) need an effective realization of
the space ΐ)'χ, dual of T)r A manifestly covariant realization of ΐ)'χ can be

3 We call a group representation [like (0.3)] in a function space manifestly covariant
if it is implemented solely via argument transformations of functions.



Trilinear Lorentz Invariant Forms 191

carried out in terms of distributions4. Namely, there exists an SL(2, C)
invariant isomorphism of ΐ)'χ onto the subspace b_ χ of all distributions
in C2 homogeneous of index — χ = ( — λ, — μ) ([6]). In order to construct
explicitly this isomorphism, we define, for every index χ, the following
continuous operator Iχ from D(C2) into Dχ :

(IχF) (0 = J ^(α-1) F(aζ) J^L, VF 6 D(C2) . (0.4)
<*! M

7χ is 5L(2, C) invariant [in the self-evident sense: Iχ(FA) = (IχF)A where
F^O ^Fμ-H), V4eSI(2,C)]. Moreover, it can be proved (see
Appendix A) that Iχ is the topological homomorphism of D(C2) onto
T)χ, and its dual operator, Γχ : D'χ -» D'(C2), is an isomorphism (topological,
provided the dual spaces are endowed e.g. with the weak topologies) of
ΐ)'χ onto the subspace b_χcD'(C2). Thus we obtain the claimed iso-
morphism, which sets an element φ e £>'χ into a homogeneous distribution
Φ e b _ χ according as (Φ,F) = (φ,IχF) for all FeD(C2).

We are now in a position to translate the problem on trilinear
SL(2, C) invariant forms over elementary representation spaces into the
language of distribution theory. (Of course, the construction can be
trivially generalized to polylinear invariant forms.) For any triple5 of
indices X = ( χ , l 9 χ 2 9 χ3)

 e *3> we introduce the space ^(X) = ̂ (χί9 χ2, χ3)
of all (separately) continuous trilinear forms φ over Dχι x T)/2 x T)/3

which satisfy the SL(2, C) in variance condition:

On the other hand, let X(X) = Ϊ(χl5 χ2, ̂ 3) be the subspace of all distribu-
tionso T= T(Cι, C 2 ? C3) e ̂ ((C°2)

3) Ξ D'(C2 x C2 x C.2) (in three variables
ζj e C2) which satisfy the following conditions:

a) SX(2, C) invariance:

T(Aζl9Aζ29Aζ3)=T(ζι,ζ29ζ3), V^e5L(2,C); (0.5)

b) separate homogeneity [of triple X] :

(Cι,C 2 J C 3 λ Vfl .etV (0.6)

4 Only distributions in complex domains will be used in what follows. Here we remind of
the standard notations [5]. For every domain Ω in Cn, D(Ω) is the Schwartz space of all
complex °̂° functions with compact supports, and D'(Ω), the dual of D(Ω), is the Schwartz
space of distributions in Ω. An identification of a complex continuous function / in Ω with
a corresponding distribution of D'(Ω] is performed according as

(/, F) = J f ( z ) F(z) \d"z dnz\, VF 6 D(Ω).
Ω

5 In what follows, for a set 5 and an integer n > 0, S" denotes the Cartesian product of n
copies of S.
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We claim that there is a one - one correspondence between &~(χl9 χ2, #3)
and Z(-χl9 -χ2, -χ3) defined as follows: for every φe^(χί9χ29χ3)9

a unique distribution Te Z( — χl9 — χ2, — χ3), called a kernel of the
trilinear form φ, exists such that

T(F^F2®F3) = φ(IXlF,9Iχ2F29IX3F3)9 VF,eD(C2). (0.7)

Indeed, in view of the Schwartz nuclear theorem, X( — χ1 ? — χ2, — χ3)
can be identified with the space of all (separately) continuous trilinear
SL(2,C) invariant forms (Fl9F29F3)*->T(F1<g)F2®F3) over D(C2)
x D(C2) x D(C2) such that, for any; = 1,2,3, the form f}H > T^ (g)F2 <g)F3)
considered as a linear functional in JF} is a distribution of b_χ . Hence,
the claimed statement is obtained merely by applying three times
SL(2, C) invariant isomorphisms between ΐ)'χj and b_X j.. Note that φ
can be expressed through T by

9(AJ29f^=T(RXlfl®RX2f2®RxJ3)9 V/ eϊ^., (0.8)

where .Rχ: DX->D(C2) is a right inverse operator for Iχ (which exists but
is not unique; however the right-hand side of (0.8) is independent of a
choice of Rχj, according to Lemma A.3 of Appendix A).

0.2. The Main Result. Outline of the Proof

In the present paper we describe the spaces Z(X) of all distributions
of D'((C2)

3) satisfying conditions (0.5) and (0.6). All continuous trilinear
5L(2, C) invariant forms over T>_χ ι x D_Z 2 x T)_χ3 are thereby de-
scribed for an arbitrary triple X = (χ1? χ2, χ3) e X3. It turns out that Z(X)
is non-trivial (i.e. different from zero) if and only if X belongs to

3 ϊ

r ^ (λj — μ!) is integral > . (0.9)
' j = ι J

The fact that Z(X) consists only of zero for Xeΐ 3 \Ξ can be easily
justified by comparison between (0.5) for A= — 1 and (0.6) for a^= —1
(V/ = 1,2, 3). This is why the condition XεΞ will be assumed in all the
following. It is shown in Section 5 that dimension of Z(X) is at most 4.
(In particular, dimZ(X) = 1 if Xj Φ P-1 for all j = 1,2, 3.)

In general an explicit form of distributions of 2(X) is rather involved.
Our classification principle of the kernels originates in the following
simple observation. There are three (independent) algebraic 5L(2, C)
invariant combinations built of the variables £15 £2, £3, namely,

Zi - K2 ? C3], z2 = [C3, CJ, z3 = [C1? C2], (0.10)
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where, by definition, [ζί? f j = ζlζ^ — ζfζj, and £* denotes the αth
component of the complex vector ζj = (ζj, ζj\ If we introduce the "dual
triple" (χ1, χ2, χ3) of indices χj = (λj, μj) related to X = (χί9 χ2, χ3) by

V= (ί Σ *,) -λ,, μWi Σ J -μ,, (0.11)

(0.12)

then, for Re(/lJ + μ J)>l ( V / = l , 2, 3), the expression

defines obviously a distribution (indeed, a continuous function) Te
Moreover, in these cases distributions (0.12) exhaust Z(X). It turns out
that the multiple in (0.12) can be picked as a function of X in such a way
that the resulting expression be analytic in the representation parameters.
Indeed, there exists a family Ψ = {Ψx e£'((C2)

3) \XeΞ} such that Ψx

belongs to Z(X) and is analytic in χ1 ? χ2> Za (These requirements define
Ψx up to a multiple dependent on X) For the specification of Ψ we use,
the reader is referred to Appendix C where further properties of Ψ are
summarized without proof. (The corresponding proof is presented in a
separate paper [7].)

The relation of Ψ to the problem on Z(X) is as follows. X(X) is one-
dimensional precisely when X is not a zero of Ψ (in the sense that Ψx φ 0)
in this case Z(X) consists of multiples of Ψχ . For almost every zero X
of Ψ, %(X) is exhausted by distributions, called kernels associated with Ψ
at X, which are representable in the form

8 (0.13)

where P is an appropriate complex polynomial in three variables [indeed,
an admissible polynomial in the sense that (0.13) belongs to £(X)], and

—— is the derivative with respect to ^(λj + μj) [at fixed integral λj — μj;
A

j = 1,2, 3]. The only exceptions to this rule are triples X, called zeros of
type 4, which satisfy the condition: χ^ e^Sf23 for all j= 1,2,3 and the
finite-dimensional representation of SL(2, C) in E_χ^®E_X2®E_χ3

contains the identity representation. In the exceptional case Ϊ(X) is
spanned by the kernels associated with Ψ at X and a distribution Φx

which is specified in Section 5. Note that, with respect to permutation of
indices 1,2, 3, the distributions Φx possess symmetry properties which
are to some extent opposite to those of Ψx.

14 Commun. math. Phys., Vol 29
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The final description of X(X) in terms of distributions Ψx and Φx is
given by Theorem 5.4.

We now turn to some remarks on the proof. Undoubtedly, making
the most use of invariant terms has to simplify the consideration. With
this in mind, we employ relevant properties of the mapping

(ζi9ζ29ζ3)^(Z,9Z29Z3). (0.14)

In the subdomain O of (C2)
3 where at least one of the invariants Z l5 Z2, Z

is non-zero6:
3

(0.15)

the mapping (0.14) is regular (i.e. its rank as a rank of a holomorphic
mapping is 3), and submanifolds (Z1?Z2,Z3) = const are SL(2, C)
orbits. This makes it possible to represent every 5L(2, C) invariant
distribution in O as a distribution of the invariants (cf. Lemma 3.1).
On the other hand, the remainder set ω,

consists of singular points of (0.14) and is not an SL(2, C) orbit. These
observations suggest to divide the problem on Z(X) into the three Steps:

Step One. To describe the space, 5PO, of all SL(2, C) invariant
separately homogeneous [of triple X] distributions of D'(O).

Step Two. To describe the subspace, Z0(X), of all distributions of
Z(X) with supports in ω.

Step Three. To find the subspace, §(X), of all distributions of g(X)
which possess extensions to distributions of Z(X).

While Step One is very easy, treating effectively the other Steps
requires the auxiliary technical means developped in Sections 1 and 2
(and utilized also in [7]). The method in Section 1 reduces a space Z(X)
with "too singular" kernels to a space Z(X') with less singular kernels.
For this purpose we use special isomorphisms between ϊ(X)'s which
can be implemented by successive applications of the following (multi-
plicative and differential) homogeneous «SL(2, Q invariant ̂ operators in
D'((C2)

3): Z7 , AJ (j = 1,2, 3) and their complex conjugates, Z7 , Aj} where

d d 1 d d d d

(0.17)
d d I d d I

J2 = |

6 Note that the vanishing of any two of the invariants Z l 5 Z2, Z3 implies the vanishing
of the third one, since then ζ1} ζ2, Cs are complex-collinear vectors of C2.
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In Section 2 the SL(2, C) in variance condition is treated in the infini-
tesimal form as a system of differential equations in D'((C2)

3). It suffices
to solve the system in a certain subdomain which generates the whole
(C2)

3 by 5L(2, C) transformations.
Through accomplishing the three Steps we obtain the complete

solution to the problem.
We close this Section with the remark on the use of Appendices.

Appendix A has already been exploited in Subsection 0.1; a synopsis
in Appendix B on homogeneous distributions in Ci and in Cx is used
in Sections 3 and 5; at last, a use of Appendix C is made in Section 5.

1. Special Isomorphisms between

The result of this Section is represented by Propositions 1.4 and 1.6
where we point out pairs of triples X, X' e Ξ which are called equivalent
and which possess the property: Z(X) is an isomorphic image of Z(Xf)
under an operator in D'((C2)

3) obtained by successive applications of
operators of the form Z7 , ZJ? AJ9 Aj. The next two lemmas underline the
construction.

1.1. Lemma. Let ίf be the subspace of all distributions of D'((C2)
3)

satisfying the SL(2, C) invariance condition (0.5). Then the operators ZjAj
and AjZj coincide on ^ with (1+P)(F-F}) and (2 + V) (1 + V- P, ),

2 Q 3

respectively, where Vj = ]Γ ζ" and V = \ Σ Vj. (Of course, the
α = l ^Cj j = l

analogous statement for the complex conjugate operators is also valid.)

Proof. Let Te ̂ . By differentiating (0.5) with respect to group
parameters at the identity, we obtain the infinitesimal form of the
5L(2, C) invariance condition 7:

Σ V « fβ ^
L aβ^j~^ ,

j=l a,β=l,2 O(

for an arbitrary complex 2 x 2 matrix (αjjj) with zero trace; equivalently,

} \(*)
(1.1)

7 = 1

_ 7 We use the convention: 77(*} 7 = 0 denotes the system of the equations ΠT = 0 ana
ΠT = Q, where T is a distribution, Π is a differential operator, and Π is its complex
conjugate.
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where (<>£) is the 2 x 2 identity matrix. Now elementary manipulations
yield for all 7 = 1,2,3 :

3 fi fi
Σ 7 A nπ_ Y Y p r*rβpy* T

£<iΔiι= L L Zxβ^iίjε ~xrV ~ar^
ie{l,2,3}\{y} i=l α , 0 , y , κ = l , 2 °±i 0(*j

= (1 + P)P,.7; where ee/? = fi°" = (

We have obtained a linear system with respect to ZjAjT, which implies
ZjAjT = (l + Ϋ ) ( Ϋ - Ϋ J ) T . At last, using the expression for the
commutator in £'((C2)

3) : ΔjZj - ZjΔj = 2 + 2 F - P}, we obtain ^Zj T
= (2+F)(l + (7-(7.)Γ. Q.E.D.

Remark that, by virtue of homogeneity condition (0.6), the restrictions
of the operators P, V — Vj and of their conjugates, P7, V — F}, to Σ(X) are
equal to numbers I— 1, λj — \ and m— 1, μj — \, respectively, where λj

and μj are defined in (0.11) and the index s = (I, m)eΐ is defined via

7
7=1 j = ι

1.2. Lemma. Let X, X' be a pair of triples of Ξ such that ίφ — 1,
λj φ — ^ /or some 7 e {1, 2, 3} and X is obtained from X by equating all the
numbers λ'\ μ'1 (i= 1, 2, 3), except Λ/ 7, to the corresponding numbers λ\ μl

and the number λ'j to λj + 1. Then Aj maps isomorphically X(X') onto %(X)
and Zj maps isomorphically Z(X) onto Z(Xf). Analogous statement holds
if all the symbols I, λ\ AJ9 Zj are replaced by m, μ\ Ap Zj, respectively.

Proof. Lemma 1.1 yields ΔjZjT = (l+ϊ)(λs + $T for all Te3:(X)
and ZjAjS = (l+l)(λs + %)S for all SeS(X') This is Just the assertion
of the lemma. Q.E.D.

1.3. Definition. For any two complex numbers α, b such that a — b
is integral, we denote by J>(a\b) the following subset of the complex
plane :

j?(a',b) = {a + n\n is integral and 0^n<\a-b\} if α - f r ^ O , (1.3 a)

J(a\b) = {b + n\n is integral and 0^n<\a-b\} if a-b^O. (1.3b)

We introduce an equivalence relation, ~, on Ξ as follows: X~X if and
only if, for ally = 1, 2, 3, the following conditions are satisfied :

λj-λ'j is integral, -$φS(λJ; λfj), -
(1.4)

μj-μfj is integral, -%φ J?(μj; μ'J), -lφS(m9m
f).
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1.4. Proposition. For a pair of equivalent triples X and X' of Ξ, there
exists an operator M in D'((C2)

3) which is representable as a product of
operators of the form ZJ9 Zp ΔJ9 Δj (/= 1,2,3) and which maps iso-
morphίcally Ϊ(X') onto £(X).

3

Proof. By condition, the number Σ (\λj-λ'j\ + \μj-μfj\) = n is
7=1

integral. Since case n = 0 is trivial and case n = 1 has been actually proved
in Lemma 1.2, it suffices to reduce case n> 1 to case n=l. Indeed, there
is a finite chain {X(0), ...,X(n)} of equivalent triples satisfying the con-
ditions : X(0) = X, X(n} = X' and

Σ (l4-i)-4)1+ l/i-i)-<)l)=1 for all r = l , 2 , . . . , n .
7=1

Thus, the general case is obtained by successive applications of case n = 1.
Q.E.D.

1.5. Remark. By replacing a given triple X with an appropriate
equivalent one and by using Proposition 1.4, a simplification in an
explicit form of distributions of £(X) can in general be achieved. We
now develop such a reduction procedure for a particular case (which is
important in what follows). Define

Ξ0 = {X e Ξ \ ϊ e φί?1, and λ 7' (hence μ 7) is half-integral8 V/ = 1,2, 3).

(1.5)

Given X e Ξ0, it seems to be reasonable, by replacing X with an equivalent
triple (of SO), to make all the numbers \λj\, \μj\ as little as possible. A point

3

XeΞ 0 for which the number Σ \λj\ + \μj\ cannot be diminished by
7=1

replacing X with an equivalent triple, is called extremal. It is evident that
there is only a finite number of extremal triples of Ξ0. Moreover, for an
extremal triple X, 1= —2 if λj = — \ for all j, and 1= — 1 otherwise;
analogous statement holds when I and λj are replaced by m and μ j; thus
Im is equal to one of the numbers 1,2,4. Further, it is easy to prove
[by induction on the numbers |A J |-hi, |μj| + i] that, for every XeΞ 0 ,
there is a unique extermal triple on Ξ0 which is equivalent to X; in all the
following this triple is denoted by X. More explicitly, X is related to X via

fc = λj + l{ - IL , μj = μj + m{ - mL (1.6)

here V± (and analogously mj+) are non-negative integers defined as
follows: if λ3 is positive then 1J

+ = λj' — \ and IL =0; if λj is negative then
lj+ =0 and IL equals either — λj + % (provided λl<0 for some iή=j) or

8 By convention, a half-integer is a number of the form n + ̂  with n integral.
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— Λ/'+f (provided λl>0 for all iφj); analogously mj+ are expressed
through μj. At last, for every XeΞ 0 , we define the number v(X) = lm
[which is evaluated in terms of X and which assumes only one of the
numbers 1,2,4].

Next we can state the following

1.6. Proposition. Let X be a triple of Ξ0 (1.5) and let X be the extermal
triple of Ξ0 which is equivalent to X. Then every kernel TE Z(X) can be
represented in the form

Π (z/f (z/*? (1.7)

where feZ(X); lj

± and mj+ are as those in (1.6). Indeed, (1.7) defines a
bijection of Z(X) onto Z(X).

Proposition 1.6 is a special case of Proposition 1.4 and, as the latter,
is obtained from Lemma 1.2 by induction [first on lj

+ and mj

+ (j = 1, 2, 3),
then on IL and m 7!].

2. Characterization of Kernels of the Forms in Question
through Their Restrictions to a Certain Subdomain

The SL(2, C) invariance condition (0.5) in D'((C2)
3) can be written

in the infinitesimal form as system (1.1). Since the complex Lie algebra of
SL(2, C) can be generated by two elements, there is a subsystem which
is equivalent to (1.1), e.g.

(*) / 3 3 \(*)

τ=o, Σtf-4- τ=o. (ID
\j=ι v^j I

It is a general fact (independent of a specific °̂° action of a connected
Lie group G on a domain Ω) that the infinitesimal form of invariance
condition (in other words, the ^-invariance condition where ̂  is the Lie
algebra of G) is equivalent to the global form. Moreover, if Ω1 is a sub-
domain of Ω such that Ω = GΩ1 and, for any xeΩ 1 ? the (open) set
G(x):= {ge GlgxeΩ^} is connected, then there is a one-one (canonical)
correspondence between the subspace D'(Ω)G of all G-invariant distribu-
tions of D'(Ω) and the subspace D'(Ωιf of all ^-invariant distributions
of £>'(Ωι). The statement can be easily proved by the standard argument9.
It suffices, for every distribution hίeD'(Ω1f to define a distribution
H(g, x):= h^gx) in two variables (g, x) of the corresponding subdomain
of G x Ω and to show-that H is independent of g and can be written as
H(g,x) = h(x) with heD'(Ω)G; this then completes the proof.

By applying this remark to our problem we obtain
9 Cf. [8], Theorem 2-11.
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2.1. Lemma. Every SL(2, C) invariant distribution TeD'((C2)
3)

[which, of course, satisfies (2.1)] is characterized uniquely by its restriction,
T\Q, to the subdomain Q,

Q-{(Cι ? C 2 ,C3)e(C 2 ) 3 |CjΦθ ? Vj = l,2,3} = (d 1xC 1)3. (2.2)

On the other hand, any distribution Tx e D'(Q) satisfying system (2.1) in Q
possesses a unique SL(2, C) invariant extension Te D'((C2)

3). //, in
addition, T± satisfies (0.6) in Q then Te %(X).

Proof. By virtue of the preceding remark, the first two statements
of the lemma are implied by the following two facts. First, (C2)

3

= 5L(2, C)Q [i.e. (C2)
3 consists of elements of the form (Aζί9 Aζ2, Aζ3)

with AεSL(2,Q and (ζl9ζ29ζ3)eQ]. Second, for any (ζl9ζ2,ζ3)eQ,
the subset G(ζi9ζ2,ζ3):= {AeSL(2,C)\(Aζl9Aζ2,Aζ3)eQ} is connected;
indeed, in the special case, with ζ1=([,Q), G(ζ1,ζ2,ζ3) is parametrized
by the matrix elements A{, A2, A\ which vary in a connected domain of
C3 defined by A{*Q, A\ζ\ +A\Q*$, A\Q + A\ζ\*Q\ in general
case G(Cι, (2, Ca) is also connected since it is obtained from the special
one by applying an A e SL(2, C). At last, the final statement of the lemma
is a consequence of the first two ones; in fact, if two SL(2, C) invariant
distributions (such as both sides of (0.6)) coincide in Q, they coincide
throughout (C2)

3. Q.E.D.
Our further results make use of the notion of a change of variables

in a distribution and, more generally, the notion of a composite of a
regular mapping with a distribution.

2.2. Definition^. Let Ωί and Ω2 be domains of Cm and Cn, respec-
tively, where m ̂  n, and let u : Ωί -> Ω2 be a regular holomorphic mapping
of Ω1 onto Ω2. [The regularity of u means that the rank of u as a rank
of a holomorphic mapping equals nJ] Then, for any fixed weί22, Uw(z)

n

;=δ(w — u(z))= Y[ δ(Wi — Ui(z)) is a well defined distribution of D'(Ωι)
i= 1

which depends in °̂° way on w as on a parameter. It is easily seen that
Uw(z), considered as a "kernel", defines a continuous operator U which
maps DίΩj) onto D(Ω2) by the formula (t//)(w):=(Uw(z),/(z))z for all
feD(Ω1). Now, by definition, ίte composite F°u of the mapping u with
a distribution F e D'(Ω2) is the distribution of D'(Ω^ obtained by applying
the dual operator U': D'(Ω2)-^Df(Ω1) [which is injective] to F, i.e.
( F ° u , f ) : = ( F ( w ) , ( U w ( z } , f ( z ) ) z } w for all feD(Ω1). In particular, if m = n
and w is a holomorphic differmorphism of ΩjOnto Ω2, then the mapping
F\->F°u is an isomorphism of D'(Ω2) onto D'(Ω^ defined by

For a more detail see e.g. [9], Chapter III.
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("!,--.,«„)
( F o U , \ J \ 2 ( f ° u ) ) = (FJ) for all feD(Ω2\ where J:=

l > > Z

is the Jacobian oί u.
The well known formula of differentiating a composite of two

functions is applicable to the composite of a regular mapping with a
distribution. There is one another rule which will be tacitly used below:
If u : Ω1 -> Ω2 and v : Ω2 ~> Ω3 are regular surjections and F e D'(Ω3) then
F ° (i; ° u) = (F o i;) o M.

The following lemma, combined with Lemma 2.1, is the next step in
constructing global solutions of system (2.1).

2.3. Lemma. The restriction of an 5L(2, C) invariant distribution
Te D'((C2)

3) to Q (2.2) can be represented in the form

Z2,p1,p2); (2.3)

here the right-hand side is the composite of the regular mapping

<=3 ,3

of Q onto C2x(C1)
2 with a distribution B(zl,z2,z3,z4)e D'(C1xC1

xC1xCί) satisfying the system

d d \(*}

-z2—-\ B = 0. (2.5)
11 dz.4

Proof. The mapping (ζ{, C?, £2* Cl? Cs ? £3)^(^1, Z2,op l9 P2^ ^) is a
holomorphic diffeomorphism of Q onto Q:= C2 x(Cx)

2 xC 2 ; indeed,
it is linear with respect to the variables subjected to the change and its
Jacobian equals -1. Hence J|β(Cι, C 2 > £3)= T(Zί,Z2,pί,p2, (3, Ci) for
some TeD'(<2). In terms of T system (2.1) takes the form

(*}

After differentiating the second pair of this equation with respect to z6

andz6, we obtain that T satisfies (2.5) and partial derivatives of T with
respect to z5, z5, z6, z6 vanish. Since an intersection of any plane
(z l 5z2,z3,z4) = const with Q is connected, this implies the existence of
BeDf(C2x(Cί)

2) related to f via f(z1? ...,z6) = B(z1,z2,z3,z4)J and
satisfying (2.5). This then completes the proof. Q.E.D.

By applying Lemmas 3.1 and 3.3 to distributions of Ϊ(X) we obtain

2.4. Proposition. The restriction of a distribution Teϊ(X) to Q (2.2)
is of the form

2? C3) = Ψ^— Ψ$]— b(P^Z^P2^2) , (2.6)
P2
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where Zj and PJ (j = 1, 2) are defined in (2.4) and b(zl9 z2) is a distribution
of D'(C2) satisfying the conditions

b(azί,az2) = φf\d) b(zl9z2), Vα G C^ , (2.7)

(z1,z2) = 0, (2.8a)

(Zl,z2) = 0. (2.8 b)

Conversely, for every distribution beD'(C^ satisfying (2.7) αrcd (2.8),
f/zere exists a unique distribution TeX(X) such that (2.6) holds.

Proof amounts to translating the homogeneity condition in terms
of the distribution B of the preceding lemma. Q.E.D.

3. Step One : SL(29 C) Invariant Separately Homogeneous
Distributions in the Subdomain O of (C2)

3

2'

We now prove that any SL(2, C) invariant distribution in the sub-
domain O can be represented as a distribution of the invariants Zj (0.10).
Following this result, the homogeneity condition is imposed.

3.1. Lemma. In domain O (0.15) the rank of the holomorphic mapping
(0.14) is 3, hence the SL(2, C) invariants Z1 ? Z2, Z3 can be used as local
coordinates in O. Further, any 5L(2, C) invariant distribution F 6 D'(O]
can be represented in the form

Z2,Z3), (3.1)

where &eD'((9) and

(9\= {(zl5 z2, z3) e C3 |none or at most one of z1 ? z2, z3 is 0} . (3.2)

Proof. An arguing like that in Lemmas 2.1 and 2.3 shows that it
suffices to prove the statement only for the subdomain

where the representation of type (2.3) is valid:

i 1 | «(Ci > C 2 J f3) = fi(Z1,Z2,p1,p2); (3.3)

here F^z^ z2, z3, z4) is a distribution in the domain

{ ( z ί 9 z29 z39 z4) G C4 I (zl5 z4) e C2? (z2, z3) e C°2}

satisfying (2.5). Next we represent Ω as the union of two subdomains
Ωj . = {(Ci, C2 ? £3) e Ω I Z

7 Φ °}? 7 = 1, 2 In ΩI the regular substitution
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3 = ~(pίZ1+p2Z2) allows to rewrite (3.3) as F\Ωί(ζi9ζ29ζ3)
= ^i(Zl9 Z2, Z3) with an ̂  E D'^):^ £>'(£?! x C2). Analogously, there
exists a distribution ^(z^ z2, z3) in the domain

02:={(zl,z29z3)eC3\z2eάi,(zl,z3)E<?2}

such that ^Ίβ2(Cι, C2, £3) = ̂ 2(^1, Z2, Z3). It remains to prove that there
exists a distribution ^ eDf(&) = D'(&ί^j&2) which coincides with J^
in Θj by the principle of gluing distributions this is equivalent to the
following fact: J^ = J 2̂ in &ί n02. This last fact is implied by the equality
J^1(Z1,Z2,Z3) = ̂ Γ

2(Z1,Z2,Z3) in Ωlr\Ω2 and by the fact that the
image of ΩίnΩ2 under the mapping (0.15) is Φ1n&2. This then justifies
the validity of (3.1) in Ω and, hence, throughout O. Q.E.D.

Next we want to describe g(X) for every XeΞ and thus to solve
Step One.

3.2. Proposition. The general form of distributions of $(X) [i.e. of
distributions of D'(O) satisfying (0.5) and (0.6)] is given by (3.1) with a
distribution 2F ED'(&) of the following form:

a) if none or at most one of χ1, χ2, χ3 belongs to

J [_ ]: = {χ = (λ, μ) e X | both /I and μ are negative half-integers},

then
(3.4a)

b) if at least two of χ1, χ2, χ3 belong to 9β[l\ then

(3.4b)
7=1 ie{l,2,3}\{/>

where α7 (/ = 1,2, 3) are complex numbers, and a7 = 0 z/ χ^φ^l [Here
notations φχ and φχ of Appendix B are adopted.]

Proof. In terms of ̂  eD'(Θ] the homogeneity condition (0.6) takes
the form

It is obvious that the right-hand sides of (3.4) satisfy this condition. There
remains the necessity of Eqs. (3.4) to be verified. It is convenient to
represent & as the union of three subdomains: 0 =
where by definition

In these subdomains results on homogeneous distributions in one
complex variable (see [9] or Appendix B below) are applicable; thus we
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have

J^U)(z1? z2, z3) = a'jip^zj) Π φ$](zk) 7 = 1,2, 3 .
fe

fcφj

By requiring the compatibility of these representations in (9(l^r\Θ(^ for
ϊ Φ 7 (ιj = l, 2, 3), one obtains easily the desired result. Q.E.D.

4. Step Two: SL(2, C) Invariant Separately Homogeneous
Distributions in (C2)

3 Vanishing in O

4.1. Proposition. TTze dimension of Z0(X), the subspace of all distribu-
s of X(X) with supports in ω (0.16), is given bytions oj

[0 if

dimSoWHl tf *e^L2 ] and XΦΞ0,

(v(X) if X e Ξ 0 .

[y(X) is the function (defined in Remark 1.5) on Ξ0 (1.5), which assumes
values 1, 2,4.]

Proof. It is fairly obvious that, for a pair X, X' of equivalent triples,
the operator M established in Proposition 1.4 maps isomorphically
Z0(X') onto Z0(X), hence we may substitute the triple X by equivalent one.
It terms of b (2.6), the support property reads suppbc{0}. First, if
x φ φ[_?] then (2.7) and the support property of b imply ft = 0. Second,
if *e*ίβ[2] and XφΞ0, we may substitute X by an equivalent triple in
order to fulfill the condition I = m= — 1. Then (2.7) and the support
property yield b(z l 5 z2) — aδ(zί) <5(z2), Ξ3α e C x. It is clear that every such
distribution satisfies (2.8). Thus, in the second case dimX0(X) = 1. At last,
let us consider triples of Ξ0. Proposition 1.6 allows to confine the treat-
ment with extremal triples of Ξ0. Then we have: I = m = — 1 for v(X) = 1
either (I, τn) = (-l, -2) or (I, m)-(-2, -1) for v(X) = 2; and I = m= -2
for v(X) = 4. Further, (2.7) and the support property imply

ι / \ V^ V^

α ι + α 2 = - I - l βι+β2=-m-l

It is remarkable that every such distribution satisfies (2.8) automatically.
For example, we consider (2.8 a), since (2.8 b) is analogous. If 1= — 1,
Eq. (2.8a) is satisfied since zjδ(z1)δ(z2) = 0 for j= 1,2. If 1= -2 [hence
λj' = —\ for all j= 1, 2, 3], Eq. (2.8 a) reads

l l
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it is justified by the right-hand side of (4.1). Thus, dimX0(X) is equal to
the dimension of the space of distribution (4.1), i.e. to Im = v(X). Q.E.D.

4.2. Remark. In the proof of Proposition 4.1 we have actually put
into effect Step Two of Subsection 0.2 and described the space Z0(X).
Our purpose here is to rewrite distributions ofZ0(X) in an invariant form.
First, we observe that, for a point ( ζ l 9 C2, £3) eω, there are non-zero
complex numbers denoted by ζt : ζj such that

C; = (C ;:y C;; U=l,2,3. (4.2)

Further, we claim that an expression like

H(ζlt ζ2, C3) = «(Cι : Ca, G : C3) -̂  S(ZJ «5(Z2) (4.3)

can be given a meaning of an 5L(2, C) invariant distribution of D/((C2)
3),

provided m and π are non-negative integers; ij= 1, 2; t/(z1 ? z2) is a ^^
function in (Cx)

2, which, in addition, must be anti-holomorphic in z 3 _ ί

if m > 0 and holomorphic in z3 _ ; if n > 0. Indeed, it is easily verified that
the right-hand side of (4.3) becomes a distribution in Q of the form (2.3)
[hence satisfying (2.1)] after the substitution of C^/Cs for ζk : ζ3 (fc= 1, 2);
recalling Lemma 2.1, a precise meaning of an 5L(2, C) invariant distribu-
tion in (C2)

3 is given to (4.3).
We are now in a position to rewrite distributions of Z0(X) using

invariant symbols. We know that Z0(X) is non-trivial if and only if
ac E φ[_?]. Due to Proposition 1.4 it suffices to single out at least one point X
from every equivalence class on Ξ. In case aee ^3ί?] and X φΞ0, we may
suppose I = m = — 1, then the replacement of b(z l 9z 2) in (2.6) by
0 ^(2^^(22) yields

2 : 3 (4.4)
= aφWfa : ζk) φ^χj(ζj : ζk) 0(2,) δ(Zj) ,

where αeC 1 ? and {ij, k] = {1,2, 3} n. In case XeΞ 0 we may restrict
ourselves to extremal points [general case is obtained by applying
Proposition 1.6]. If X e Ξ0 and v(X) = 1, then I = m = — 1, and representa-
tion (4.4) is valid. If XeΞQ and v(X) = 2, then we have two possibilities:

a) 1= -1 and τn= -2, then (2.6) and (4.1) yield

; (4.5 a)

When this equality of sets holds, we say that (ίj, /c) is a permutation of (1, 2, 3).
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b) I = — 2 and m = — 1, then

'9 (4.5 b)

here a{ and αj are arbitrary complex numbers. At last, if X e Ξ0 and
v(X) = 4 [hence ̂  = μJ=-% for all = 1, 2, 3] then

2

T= £ a0. (C i :C 3 Γ 1 (C J :C3Γ1 .7 .- ^1)^2), (4.6)
ί,j=l OZ.iCZ.j

where (atj) is an arbitrary complex 2 x 2 matrix.
As a consequence of Sections 3 and 4, all the spaces £(X), £0 W> SW>

g(X) [defined in Subsection 0.2] are finite-dimensional for every XeΞ.
By the very definition of these spaces, we have

= dim2:0(X) + dimg(X) ̂  dim20(X) + dimg(X). (4.7)

5. Step Three: The Extension Problem. The Final Result

The most convenient classification of distributions of X(X) for any
triple X e Ξ seems to be that realized almost completely in terms of
distributions Ψx (see Appendix C). In Appendix C we have described the
subspace 2I(X) of all distributions of 2(X) associated with Ψ at X [i.e.
representable in form (0. 1 3)] . Now we will prove that dim 2(X) = dim 9I(X)
[hence X(X) = 9I(X)] for all X, except for a countable series. For the
exceptional X, it turns out that dim X(X) = dim Z0(X) [hence Z(X) = X0(X),
£0(X) being already described].

In order to find dimX(X) (and hence to prove the above assertion)
we have to accomplish Step Three in our programme, viz., to determine
the subspace g(X) of all distributions of $(X) which possess extensions
to distributions oϊZ(X). It is possible to make it directly. [On the basis of
Proposition 2.4, the problem reduces to extension of a distribution in C2

satisfying (2.7) and (2.8) to a distribution in C2 satisfying the same
conditions.] Another way is to prove that any distribution of g(X)
coincides with the restriction to O of a distribution of 9I(X) With this
is in mind, we use a possibility of translating the extension problem in
terms of Ψ as follows. On the basis of Proposition 3.2, it can be easily
seen (and is actually seen in the proof of Proposition 5.2 below) that
every distribution F e g(X) can be represented in the form

F = P| ^ 1 , ^ 2 , ^ 3 Ψχ\0 Thus, we obtain the following version
dχ2

of the extension problem: Given a (complex) polynomial P(z1,z2,z3)
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such that the distribution Pl-^} Ψχ\o = P\-τrτ> !Γ^> Ίrrl ψx\o

belongs to ^(X); whether ^(-^7) Ψχ\o possesses an extension to a

distribution TE Z(X)Ί

5.1. Lemma. Let XeΞ, and P(z1,z2,z3) be a polynomial in three

variables such that PI—-) Ψx\0= T\0 for some TεZ(X). Then
\oX ]

i=\ Vzi

Proof. We denote T1=P\——\ Ψx - T and represent TΛ0 in form
\ d X )

(2.3): Ti\Q(ζ1,ζ2,ζ3) = B1(Z1,Z2,p1,p2). The support property of ^
[that is, supp T± Cω] implies the corresponding support property of B1:
supp Bί C {(z1? z2, z3, z4) e C2 x (C^2 | z1 = z2 = 0}; consequently,

d W d \ P J , ,

Therefore TJ^IQ can be represented as the finite sum

T,Q(ζι,ζ2,ζ3)= Σ t χ ( ζ l 9 ζ 2 9 ζ 3 ) 9 (5.1)
χeφL2]

where tχ is a distribution of D'(Q) which satisfies the following homo-
geneity condition

t.((αC1,αC2,αC3) = <pi2V)ί)((C1,C2,C3), Vαe^. (5.2)

On the other hand, since both T and Ψx satisfy (0.6) we have

(5.3)

VαeC° 1 ?

where r = 4 In |α|. Next we express the left-hand side of (5.3) through tχ

according to (5.1) and (5.2). We observe that expressions at φ[2\a2)rn

(n= 1,2,...) in the resulting equation need equal zero; thus

= 0 for all real r .
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Differenting this equation with respect to r at r = 0 provides the desired
result. Q.E.D.

5.2. Proposition. In notations of Appendix C, dimension of Ϊ(X) is
given by

1 if Xe£\3,

3 if Xe3ι,
0 if Y ^ Q i i Q
Δ IJ ^^v)2^ΛJ3?

.4 if X€34

Proof. Note that dim ^ί(X) ̂  dim 2(X) for all X, therefore if
dimg(X) + dim20(X) ̂  dim2I(X) for some X then (4.7) implies dimϊ(X)

Let us first consider the case X e S\3 (when Ψx Φ 0 and hence
^l). There are three possibilities:

α) * φ φ[?], and at most one of χ1, χ2, χ3 belongs to ^L13;
β) ϊ G φί?], X £ S0, and χj £ φm for all j
7) Xe S0, v(X) = 1, and χj ^ φti] for all j.
In case α) dim 5(X) = 1 (according to Proposition 3.2) and

dim2:0(X) = 0 (according to Proposition 4.1), hence dim $(X) + dimX0(X)
g dim 9I(X). By the preceding note this means that dim X(X)
= dim9I(X)= 1. In cases β) and y) we have Ψx φO and dimϊ0W= l
For an arbitrary distribution TeX(X), comparison between Proposi-

tion 3.2 [part a)] and formula (C.3) gives T\0 = a-^-j- Ψx\0 for some

aeCl. Now Lemma 5.1 implies 0 = 0, i.e. suppTCω. Thus, dimX(X)

Next we direct our attention to zeros of Ψ. We will treat separately
each case of Classification C.2 in Appendix C and make use of the
information (in Theorem C.3) on 2ί(X).

1) Let Xe3ι> hence dim9I(X) = 3. By the note at the beginning of
the proof, it suffices to observe that dim$(X)=i [by Proposition 3.2,
part a)] and dimZ0(X) = 2 [by Proposition 4.1 in case XeS0 and

2 a) In this case dim g(X) - 2, dim £0(X) = 0 and dim 3I(X) - 2 by the
same note, dim£(X) = dim 91 (X) = 2.

/ d \n

2 b) In this case —^ 5^=0 for all n > 0 [due to Classification C.2]

and — — Ψx , — y Ψx are two linearly independent distributions of ϊt(X)
Λ, Λ,

[due to Theorem C.3]. Further, comparison between Proposition 3.2
[part b)] and formula (C.3) gives:
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For any Te X(X) there are al9 a2 e C1 such that

* " !.,.x\o - (5.4)

Now Lemma 5.1 implies

> x =0; (5.5)

consequently, a1=a2 = Q. Therefore, suppTCω for all TeX(X), and
nX(X) = dim£0(X) = 2.
2c) In this case dimg(X) = dim3:0(X)-1 and a\m^(X) = 2\ hence

3 a) As in case 2b), for an arbitrary Γe Σ(X), there are two complex
numbers such that (5.4) and (5.5) hold. Since

= 0 for all n

[due to Classification C.2] and —Γ Ψx φ 0, we have a1 + a2 = 0. There-

fore dim§(X)^l. Moreover, dίmZ0(X) = l and dim9I(X) = 2. Hence,

3b) This case is similar to 2c).
4) For an arbitrary Te Z(X), a representation analogous to (5.4) is

valid; indeed, there are complex numbers α 1 ,α 2 ,α 3 such that

a3 a3

W

Lemma 5.1 implies

(a1+a2)

2 f l l

δ2

dχ1 dχ2

Ψy=0. Since

2 dχ*dχ*
d

+ 2a λ

d2

Ψy = 0 for all n > 0

a2

ϊ = 1,2,3 [according to Classification C.2] and -
"X "X*

are linearly independent [according to Theorem C.3], we have a1 =a2

= a3=Q Consequently, suppTCω, and dimϊ(X) = dimX0(X) = 4.
Q.E.D.

We obtain the following important corollary: If X is not a zero of Ψ
or if X belongs to 31 u32u33, then Z(X) = 9t(X). Indeed, by definition,
$I(X) always is a subspace of Z(X); moreover, if XE Ξ\3 then both 2I(X)
and Z(X) are one-dimensional, and if Xe3ι^32u33 Λen comparison
between Proposition 5.2 and Theorem C.3 gives dim 2I(X) = dim Z(X).
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The only triples for which dim^(X) <άimZ(X) are those of 34? that is,
triples X satisfying the condition: χj€φl] for all j =1,2,3 or, equiv-
alently, XεΞ0 and v(X) = 4. In this case Z(X) is spanned by 9l(X) and
some one distribution, Φx e Z(X). Although a choice of Φx seems to be
immaterial, we point out one natural specification of Φx with an
interesting symmetry property.

5.3. Definition. Let X be the unique extremal triple among the triples
X of Ξ0with v(X) = 4; this means that λj = μ,j= —1 [and λj = μj= — j]
for all 7 =1,2, 3. In accordance with (4.6), the distribution ΦxεX(X)
is defined by

tf a2

1 S3/ V=>2 ' *r>3/ Λr-7 Λ ~ V b l "S3/ V b Z ' ^ J / Λ ^ Λ r?C/JΛ ό^s) cΔΛ ό^Ί1 £ \. L .

xδ(Z1)δ(Z2). (5.6a)

For an arbitrary triple X of Ξ0 with v(X) = 4, let μ(Λ) M(X) by the operator
defined by (C.7), then Φx e Z(X) is defined by setting

Φx=μ(X)M(X)Φχ. (5.6b)

We claim that Φx does not belong to 9I(X) and hence Z(X) is spanned
by 2t(X) and Φx. Indeed, in the special case X = X, 2Ϊ(>0 consists of
distributions (4.6) with (atj) an arbitrary symmetric complex 2x2
matrix [see Appendix C], while Φx is a non-zero distribution of the form
(4.6) with a skew-symmetric matrix (α^ ); hence Φx φ A(X). In general
case, the operator μ(X)M(X) maps isomorphically Z(X) onto Z(X)
[according to Proposition 1.6] and 9ί(X) onto 2X(X) [according to
Appendix C] therefore Φx φ 2Ϊ(X) which justifies the assertion.

It is of interest to note that the distribution Φx possesses the following
property whose verification is straightforward: for an arbitrary odd
permutation (i,;,fc) of (1,2,3), Φx(ζhζpζk)= -Φχ(ζl9 C2, C3); this prop-
erty characterizes up to a multiple Φx among distributions of X()t).
More generally, the distributions Φx possess a symmetry property which
is to some extent opposite to that of Ψx. Namely, under an odd permuta-
tion (i,j,k) of (1,2,3) Ψx behaves according to (C.2), while

Φ(,,x,,Λ)(C^ ̂  W - -(- D2ί ̂ .^^(Ci, C2, f3) (5.7)

We now summarize the results on Z(X), the space of all kernels of
trilinear 5L(2, C) invariant forms over D_ χ ι x S_/2 x D.^. Remind
that only the triples of Ξ (i.e. the triples of 3£3 satisfying the condition:

3

\ Σ (λj~ μ/) i§ integral) are to be treated; otherwise %(X) = {0}.
j=ι

5.4. Theorem. For an arbitrary triple X = ( χ ^ χ 2 ^ X 3 ) ^ Ξ the sξace
Z(X) of all SL(2,C) invariant distributions T(C1? C2 ? C3)e/y((C2)

3)

15 Commun math Phys , Vol 29



210 A. I. Oksak:

separately homogeneous of indices χι,χ2,χ3

 m Ci^^Cs* respectively,
is non-trivial, and its dimension is given by Proposition 5.2. Distributions
of 2(A) can be described in terms of the distribution-valued analytic
function Ψ on Ξ [introduced in Appendix C] and the countable family
of distributions Φx [introduced in Definition 5.3] as follows.

I. // X is not a zero of Ψ, i.e. if X satisfies none of the conditions (i),
(ii), (iii) of Theorem C.I [in Appendix C], then 2(X) consists of multiples

o f Ψ x .
II. // X is a zero of Ψ of type t = 1, 2, 3, i.e. if X satisfies one of the

conditions (i), (ii) or (iii) of Theorem C.I and, in addition, at most two of
X1?/2^3 belong to φ[_ί], then Z(X) coincides with the space $I(X) \_of the
kernels associated with Ψ at X].

III. // X is a zero of Ψ of type 4, i.e. if χj e φL13 for all j=l, 2, 3,
then an arbitrary distribution of Z(X) can be represented uniquely as sum
of a distribution of *Ά(X) and a multiple of Φx .

For a description of the space 9I(X) of the kernels associated with Ψ
at X, the reader is referred to Appendix C. (Further information involving
explicit forms of kernels of 2I(X) can be found in [7].)

5.5. Remark. We point out the connection between trilinear SL(2, C)
invariant forms over elementary representation spaces and the problem
on SL(2, C) analysis of tensor product of two elementary representations,
say Tχι and Tχ2. Let ^7l®^/2 be the complete tensor product of £>χι

and ΐ)χz (for defϊniteness, in the projective topology); it can be identified
with the subspace of S(C2 x C2) of all #°° functions /(ζ l5 C2) separately
homogeneous of indices χx and χ2 in Ci and C 2> respectively. The problem
consists of two parts. First, to describe the space t (χ 1 ? χ 2 ?X3) °f a^
continuous SL(2, C) invariant operators from Dχ ι® X>/2 into T)/3 where
(χ l 9χ2,χ3) is an arbitrary triple of Ξ. Second, to find a characterization
of an arbitrary element /e Dχι ® Dχ2 in terms of functions fχ^t = tf<= T>/3

dependent on χ3 and tet(χί,χ2ιχ3) as on parameters. The solution
to the first part of the problem is obtained by constructing a natural
one-one correspondence between t(χ 1 ? χ 2 ?Z3) an<^ ^-(~Zι? ~~#2? ~/fo)
[while the second part requires further investigations]. More explicitly,
reasoning like that in Subsection 0.1 shows that the formula

VF G D(C2),

defines the correspondence t(χι,χ2iχ3)3t+^Te%( — χ1, — χ2,#3). In-
deed, for a given ί, the corresponding distribution TeD/((C2)

3) is sepa-
rately homogeneous of indices —χl9 — Z2,χ3 [by virtue of Lemma A.3].
On the other hand, an arbitrary T(ζl9 C2 ? Cs)eX(-χ 1 ? -χ2,/3) can be
considered as a distribution in C i ^ C a dependent on C3 in °̂° way [by
virtue of Lemma 2.3]; consequently, there exists a continuous 5L(2, C)
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invariant operator b: D(C2 x C2)-»£>χ3 vanishing on the kernel of
IX1 ® IX2o ando such thatβ (T, F <g> F3) - f (ί>F) (C3) ^3(C3) |d2 C3 rf2 C3I,
VF e 7>(C2 x C2), VF3e D(C2); now applying an analogue of Lemma A.I
[which reads that ΐ*Xί® 2)χ2 is isomorphic with D(C2 x C2)/ker(7χι (x) 7/2)]
and using the canonical decomposition for b show b = t(Iχι®Iχz) for
some ίet(χ 1 ?χ 2;χ 3), which proves the assertion.

Acknowledgements. It is a pleasure to thank Doctor I. T. Todorov for many valuable
discussions. The author acknowledges gratefully Doctor Ch. Newman for reading critically
an earlier version of the paper and beneficial suggestions.

Appendix A12. Isomorphism between T)£ and b_^

Our purpose here is to establish the properties (claimed in Sub-
section 0.1) of the continuous SL(2, C) invariant operator I χ :
[defined by (0.4) for any χ e X] and of its dual Γχ: ΐ>'χ

Let Wlχ: = 7~1 (0) be the kernel of Iχ and Pχ : D(C2) -> D(C2)/SΪR;c be the
canonical mapping. Due to the universality property of quotient spaces,
there exists a unique continuous injection Qχ: D(C2)/9Jlχ->£>χ related
to Iχ by the canonical decomposition, Iχ = QχPχ. Moreover, we have

A.I. Lemma. Qχ: D(C2)/Wlχ^T)χ is an isomorphism of topological
vector spaces. (In other words, Iχ is a topological homomorphism of
D(C2) onto ΐ>χ.)

Proof. Iχ possesses at least one continuous right inverse operator,
i.e. an operator Rχ: I)χ->D(C2) such that IχRχ=l^χ. For example,
a straightforward verification shows that Rχ can be chosen in the form:
(Rχf)(ζ) = H(ζ) f(ζ), V/eϊ^, where 77 is a picked function of D(C2)
such that j H(aζ) a~2\dada\ = i. Then PχRχ is a continuous right

inverse operator for Qχ. Since Qχ is injective, this implies that PχRχ is
the two-sided inverse operator for Qχ. Q.E.D.

Let D'(C2) and ΐ)'χ be the (topological) dual spaces of D(C2) and Dr

respectively; for definiteness, they are endowed with the weak topologies.
By the very definition of Pχ, the dual operator P'χ maps isomorphically
(jD(C2)/9Jϊχ)' onto the subspace SOΐ^ of all functionals of Df(C2) which
vanish on 9Jϊr Now Lemma A.I and the equation Γχ = P'χQ'χ (dual of
Iχ = QχPχ) imply that Γχ is actually the composite of two isomorphisms.

A.2. Corollary. The operator Γχ maps isomorphically D7

χ onto the
subspace SOΐ^ of all functionals of D'(C2) which vanish on 90ΐr

12 This Appendix represents another exposition of the result of Appendix A.2 in [6].
Note that the consideration can be trivially extended to arbitrary dimension n (while here
only the case n = 2 is dealt with).
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A.3. Lemma. 9M:[ = b_ χ , where b_χis the subspace of all distributions
in C2 homogeneous of index —χ.

Proof. IfQΦe9Jl^ then,oby Corollary A.2, Φ = Γχφ for some φeX)'χ.
For any a e C1 and F e D(C2\ we have

= \a\~ 4(Φ, Fa) = |βΓ4(<p, /,Fα) = |αΓ>, (/,F)fl)

χF) = φL2]

χ(α) (Φ, F) ,

where Fα(ζ): = F(a~ 1 ζ). This implies Φ e b_ r

Conversely, let Φ e b _ r We claim that (Φ, F) = (Φ,H (IχF)) for all
F e D(C2) and a picked function H as in the proof of Lemma A.I. This
implies Φ e 9DΪ ,̂ hence there remains this formula to be proved. To this
end we integrate with \a\~2 \dada\ both sides of the equation

Then the left-hand side can be construed as the value of the distribution
Φ(0®M~2e D'(C2 x Ci) on the test function H(a~lζ) F(ζ) e D(C x
an analogous meaning can be given to the right-hand side. By virtue of
commutativity of tensor product of two distributions, we obtain

(Φ(0, F(0 j Ha(ζ) \a\~2 \da da\) = (Φ,H (Iχ F)) ,

which is just the required formula. Q.E.D.
By combining Corollary A.2 with Lemma A.3 we obtain

A.4. Theorem. The operator Γχ : T^-»D'(C2) maps isomorphically ϊ)'χ
onto the subspace b _ χ C D'(C2).

The isomorphism sets an element φ e T)'χ into the distribution
φ = i'χφ by (Φ, F) = (φ, IχF\ VF e D(C°2). Conversely, for a given Φ e b_ r

the corresponding element φeT)'χ is related to Φ by (φ,f) = (Φ,Rχf\

Note that /^ is 5L(2, C) invariant in the natural sense. Indeed, let Tχ*
denote the representation of SL(2, C) in T>^ which is adjoint to Tχ9

i.e. (T*(A) φ, /) - (φ, Tχ(^- x) /) for all φ e ΐ>'χ, f e Dr Then
10 for all φεV and ^

Appendix B. Homogeneous Distributions in One Complex Variable

We remind the reader of basic facts on homogeneous distributions
in C1 and in C1 ([9], Appendix B).

For an arbitrary index χ = (λ, μ) e 3£, the spaces of distributions in
Cl and in C1? respectively, homogeneous of index χ are one-dimensional
and consist, respectively, of multiples of the °̂° function φ[^] defined in
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(0.2) and of multiples of the distribution ιpχ defined as follows. For
Re (A + μ) > 1, ψχ is a continuous function,

ψχ(z): = (Γ(λ V μ) + £))- 1 |z|A+/χ- * ̂ 'μ-μ)argz

here and in the following λV μ = %(λ + μ + \λ — μ|), λ f \ μ = ^(λ + μ — \λ — μ|).
It is clear that [for Re(A + μ)> 1] ψχ is a distribution-valued analytic
function in χ [in the sense of analyticity in \ (λ + μ) at fixed integral λ — μ]

3
and satisfies the identities: ψχ(z)= — — ψ(λ+ι,At)(z) f°r ^~μ^0, and

o

) f°r λ — μ^O. By induction on n, these identities

provide a (unique) analytic continuation of ψχ into {χ e X | Re(A + μ)
> 1 — n} and hence into the whole X. In this way the homogeneous
distribution ψχ is constructed for all χ e X. In particular, if χ e ^β[l\
i.e. if both A and μ are negative half-integers, then a straightforward
calculation gives

8 Γμ-

dz

where (5 is a distribution in C1 defined by (<5, F) = F(0) for all F e
and ψ-χ(z) is a polynomial in z and z. It is easy to see that, for any χ e X,
the restriction oϊψχ to C^ coincides with (Γ((λ V μ) + 1))~ 1 ̂ 1]; therefore
suppιpχ = Cl for χ ̂  φ[_ί] and suppιpχ = {0} for χ e φ[_ί].

At last, for any χ, define φχ e ^(C^ by setting φχ = Γ((λ V μ) + ̂ )φχ

where — — is the derivative with respect to \ (λ + μ) (at fixed λ — μ). It is
Sχ

easy to see that φχ is an extension of the distribution φ[^] from C^ into C^.
For χ^φ[i] this extension is homogeneous, while for χe^β[l] it is the
so-called associated homogeneous distribution of the first order, since

_

φχ(Z) + l n | f l | l

 φ;t(z), V α e C , .

Appendix C. The Family of Kernels with Analytic Dependence
on the Representation Parameters

We now construct the family Ψ = {ΨX | X e Ξ} mentioned in Intro-
duction. First of all, we note that Ξ can be considered naturally as a
complex analytic manifold (which consists of countably many disjoint
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copies of C3). Below the following parameterization on Ξ is used. Every
triple X = (χ l5 χ2> #3) e Ξ characterized by its "dual triple" (χ1, χ2, χ3) e £3

[where χj = (λj,μj) are defined in (0.12)] or, equivalently, by two triples
OΛc2, c3) and (fc1,^2, fc3) where c 7 Ξ ^ (/1J + μ7) ranges in the complex
plane and kj = ̂ (λj — μj) is an integer or a half-integer. The numbers
c1, c2, c3 will be considered as local coordinates on Ξ and, by definition,

-7— -̂ Ξ — - -. At last, for every triple XeΞ, we introduce the index
dχj dcj 3 3

x Ξ (I, m) by (1.2) and the numbers c, ϊ by c = — \ + £ cj and I = £ ^7

j=ι j = ι
C.I. Theorem. Lef !FX be ί/zβ distribution (indeed a continuous

function) of D'((C2)
3) defined for Rec7 > \ (Vj = 1, 2, 3) by

| + lT ΓI W(Z/) . (C.I)

Ψx can be considered as a distribution valued analytic function in X "which
possesses a unique analytic continuation into the whole Ξ, Ψx belonging
to Z(X) for all XeΞ. Furthermore, a triple X e Ξ is a zero of Ψ (i.e. X
satisfies the condition Ψx ~ 0) if and only if (at least) one of the following
conditions (i), (ii), (iii) is fulfilled:

(i) at least two of χ1, χ2, χ3 belong to 9β[l]

(ii) x E φ[.?], and χj e φ[

+

1] for some] e {1, 2, 3}
(iii) are Sβ[2], and one of the triples (/I1, A2, vί3), (μ^μ2,.^3) consists of

negative half-integers while the other consists of negative half -integer and
two positive half -integers.

Here, by definition,

φt«ι = {χ = (λ, μ)eX\ both λ — n/2 and μ — n/2 are non-negative integers} ,

The proof of this theorem (as well as of all the other statements in
this Appendix) is given in [7]. Of the properties of Ψx the next two ones
deserve mentioning. First, Ψx behaves under permutations of indices as
follows; for an odd permutation (i, j, k) of (1, 2, 3), we have

*(*>.*,.*&> tj> W = (- !)2' "WΛ. C2, C3) . (C.2)

Second, we remind that mapping (0.14) is regular in 0; this implies

1 3

Π fora11 XeΞ (C3)
O

We intend to adapt Ψ to description of the spaces £(X) For this
purpose we introduce the subspace $I(X) of all distributions
which are said to be associated with ΨatX and which can be represented
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in form (0.13) where P(z1? z2, z3) is a complex polynomial in 3 variables.
/ 3 \

[Note that in general P\-^ττ\ Ψx need not belong to 2(X).] It turns out
\cX I

that, for X a non-zero, 9I(X) consists of multiples of Ψx . Thus it suffices
to confine our attention to zeros of Ψ. At first we classify zeros. It is
convenient to devide the set 3 of all zeros of Ψ into four parts 3ί
(ί=l, 2, 3, 4) according to character of location of zeros near points
of Zt. More precisely, by definition, Xe3t provided Xe3 and there are
exactly t— 1 non-collinear vectors α^α1, α2, α3)eC3, called zero

/ 3 d Y
direction vectors at X, such that £ α1 —Γ \ ψx =Q for all integers n ̂  0.

\ i = l ^# /

C.2. Classification of Zeros. The subsets 3t C 3 (ί = 1,2, 3,4) exhaust
4

zeros of *F, i.e. 3 = (J 3t The subsets 3ί can be described in the following
r = l

way.

1) 3ι is tne set of isolated zeros of Ψ, i.e. the set of all triples X
satisfying condition (iii) of Theorem C.I.

2) Xe32 ^ an<^ onty ^ one °f ^e following three conditions 2 a),
2b), 2c) is satisfied:

2 a) x £ φc21, and χ7 e ^J^1 for exactly two values of j;
2b) x 6 φί?1, χ* 6 φ^1, χ7'e φ[_1] and χfc e {χ = (λ, μ)\λ and μ are half-

integers of different signs} for some permutation (ij, k) of (1,2, 3);
2c) 3eeφ [f ], χJΈφ[

+

1] for exactly one value of j, and χl> ̂ [

+

1]u^L1]

for at least one value of ί.
3) X E 3 3 if and only if one of the following two conditions is satisfied:
3 a) K e y™ and χl e φ[_1], χj e φ[_1], χfc e φ[

+

1] where {j, j, fe} = {1,2, 3}
3b) i e φ[_23 and ̂  e φ[

+

1], χj e φ[

+

1], χk e ^L1] where {/,;, *} = {!, 2, 3}.
4)34-{^eΞ|χ^φL1 ] for all ;=1,2,3}.
Zero direction vectors at Xe3 can be described (up to multiples)

in each case as follows.
1) No zero direction vectors.
2) The corresponding zero direction vector a^(a1, a2, a3) is defined

by the following conditions, respectively:
2a)-2b) α' = 0 if χzeφ [_1], /e{ l ,2,3};

3

2c) Σ αr = 0, and α< = 0 if χ z e φ[

+

1], fe {1,2, 3}.
r=0

3) The corresponding zero direction vectors α(1) and α(2) are deter-
mined by the following conditions, respectively:

3a) α|1) = α(1) = 0, α|2) + α/2) = α^2) = 0;
3b) α{1) = α/1) + αf1) = 0, α{2) + αf2) = α/2) = 0.
4) The three zero direction vectors α(1), α(2), α(3) are defined by
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C.3. Theorem. Let X be a zero of Ψ of type t (t = 1, 2, 3, 4). Further,
let α(1), ...,<!(,_!) be zero direction vectors at X (as in Classification C.2)
and {α(1), ..., α ( ί_ 1 ) 5 b(1), ..., b(4_ ί}} be a basis in C3. Define the following
polynomials in 3 variables:

P(r}(zl9 z29 z3) - (b(r) z), P(ι,m)(zί9 z2, z3) = (α(i) z) (α(m) z) , (C.4)

where r = 1, . . . , 4 — ί l ^ / < m ^ ί — 1, and, by definition, α z = £ α1 z f.
i = l

TTien ί/ze s£ί o/ distributions P(r) ^rv ¥*, P(ί m> ~^T7 ^x /(9rms fl

'
in the subspace 91 (X) o/ ί/ie kernels associated with Ψ at X. The dimension
of 9ί(X) coincides with the number of polynomials (C.4), i.e.

dim2φO = 2 if Xe32u33, dim2I(X) = 3 17X83^34. (C.5)

C.4. Special Case. We close this exposition by considering in more
detail zeros of type 4. Note that X belongs to 34 precisely when X e Ξ0

and v(X) = 4. Among such triples is a unique extremal one equivalent to
all the others. This triple, denoted by X, is defined by setting λj = μj = —\
for all 7= 1, 2, 3. The corresponding space 2I(X) consists of distributions
(4.6) where (a^ is an arbitrary symmetric complex 2 x 2 matrix. For an
arbitrary Xe34> elements of $I(X) can be expressed through those of
91 (X) in analogy with Proposition 1.6. Indeed, an element

is related to the corresponding element

by the formula

T = μ(X)M(X)f, (C.6)

3 _

where μ(X) is an appropriate multiple and M(X) = Y[ (Aj)~λj~^ (Aj)~μj~^.
j = ι

A straightforward calculation yields

(C.I)
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