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Abstract. Two examples are presented: The first shows that a potential V(x) can be
in the limit circle case at oo even if the classical travel time to oo is infinite. The second
shows that V(x) can be in the limit point case at oo even though the classical travel time to
infinity is finite. The first example illustrates the reflection of quantum waves at sharp
steps. The second example illustrates the tunnel effect.

In this paper we give two examples of motion on a half-line which
illustrate two physical differences between classical and quantum me-
chanics. It is useful to study the half-line case since the necessary
techniques and estimates are elementary and the complications which
arise in higher dimensions are absent. We say that a potential V(x) is
classically complete at oo if the classical travel time to infinity is infinite
for all initial conditions. We say that V(x) is quantum mechanically

complete at oo if the differential operator — r-^- + V(x) is in the
2m dxz

limit point case at oo. At first glance it seems that the two notions of

completeness might be the same since —.τ + V(x) is in the limit
2m ax

point case at oo if one need not specify boundary conditions at oo. In a
rough intuitive sense, this should happen if the classical travel time is
infinite. But, in fact, this rough intuition is correct only if the derivatives
of V(x) are "small" compared to V(x). We present two examples illus-
trating this fact. In the first example, V(x) is classically incomplete at oo
but quantum mechanically complete; in the second, V(x) is classically
complete at oo but quantum mechanically incomplete. The examples
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were suggested by Nelson in unpublished lectures at Princeton. The two
examples are interesting because in both cases the differences arise from
quantum phenomena not found in classical mechanics; namely, the
reflection of quantum waves at sharp steps in Example 1 and the tunnel
effect in Example 2. This illustrates the point that questions which at
first appear to be merely technical mathematical problems often turn
out to be closely related to the physics of the situation being described.

In the following brief discussion we always assume that V(x) is a
real-valued continuously differentiable function on (0, oo). If x(t) and v(t)
are position and velocity of a classical particle moving in the potential V,
the Hamiltonian is H(x, v) = ^mv2 + V(x) and the classical equations
of motion are:

x(t) = ι>(t), v{t)=-±V'(x(t)). (i)

For each pair <x0, v0}, standard arguments give the existence and
uniqueness of a solution <x(ί), v(φ for \t — to\ sufficiently small and
satisfying x(ί0) = x0, v(t0) = v0. An elementary argument using uniqueness
and the conservation of energy shows that if a global solution (i.e., for all
t>t0) fails to exist, then there is a τ>t0 so that either Limx(t) = 0 or

i->τ

Limx(ί) = oo. The second alternative can only occur if sup V(x) < oo and
t-*τ

00 dx
if the classical travel time (from x = 1), f —, —, is finite for

E > sup V(x). If the second alternative holds we say that V(x) is classically

incomplete at oo.
In the quantum mechanical case, let H be the linear operator

- — γ-j- + V defined on the dense set CJ(0, oo) in L2(0, oo). H is
2m ax

essentially self-adjoint on CJ(0, oo) if and only if the ordinary differential
equation

-^φ"(x)+V(x)φ(x) = 0 (ii)

is the limit point case both at 0 and at oo i.e., if and only if exactly one
nontrivial solution (up to scalar multiples) of (ii) is square integrable near
0 and exactly one is square integrable near oo. (For proofs, see [1,
Chapter 9] or [2, § XIII. 2].) If H is not essentially self-adjoint, one must
choose a self-adjoint extension by fixing boundary conditions at 0 or at
oo (or both). In the case where exactly one solution of (ii) is square
integrable near oo (limit point case) we say that V(x) is quantum
mechanically .complete at oo.
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As mentioned above, a rough intuition says that V(x) should be
quantum mechanically complete at oo if and only if the classical travel
time to infinity is infinite because then one should not have to specify
boundary conditions at oo. The following result shows that this is in
fact true if the derivatives of V are small compared to V.

Theorem (Wintner [4]). Let V(x) be a twice continuously differentiable
function on (0, oo) which satisfies V{x)-> — oo as x—• oo, and suppose that

ί
ί(-v)1/2J

3/4 ( - dx<co

for some c>0. Then V(x) is quantum mechanically complete at oo if and
only if V(x) is classically complete at oo.

We now present two examples which show that if V\x) is not small
compared to V(x\ then the classical and quantum notions of completeness
at oo are independent.

Example 1 (V is classically incomplete but quantum mechanically
complete at oo). The potential V(x) will be a sequence of plateaus at
heights —π2kA smoothly connected by steep cliffs on the short intervals

00 dx
(αfe, βk) about the points x = k; see Fig. 1. Since f , < oo, the

k k F o V^Vfr)
classical motion under this potential is incomplete at oo. However, if the
steps are sharp enough the quantum motion will be complete. The reason
for this behavior is that part of the quantum wave is reflected at each of
the sharp steps and the steps are arranged so that most of the wave never
escapes to infinity.

-X2

- 2 y

-3V

a2β7

Fig.l
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What we need to do is to construct V(x) so that there is a solution
of (ii) which is not in L2 near infinity. To understand the idea, consider
the case of infinitely sharp steps, i.e. otk = k = βk. For xe(n — l,n) let
φ(x) = cos(n2πcx — π) with c = ]/2m. Then φ satisfies (ii) except at the
integers and clearly φφ L2(0, oo). In the following construction we just
smooth out the sharp steps on the intervals (αfc, βk) in such a way that the
corresponding solution φ remains outside L2.

On each short interval (αfc, βk\ k = 1,2, 3,..., we define V(x) to be any
monotone decreasing function so that V(x) is continuously differentiable
on (0, oo). We now show how to choose the ock and βk. Take oc1 = 1 and
define φ(x) = cos(πcx-π) on (0,1]. At x = l , 0(1) = 1 and ψ'(l) = 0.
We want to choose /^ so that the solution has not descended much at β1.
Since F(x) < 0 the solution φ(x) of (ii) which equals cos (πcx — π) on (0,1]
will be concave downward between 1 and its next zero, r1# On the
interval / = (1,min{r l92}), φ(x) satisfies

φ(x) - 1 = 2m J (J F(ί) φ(ί) dί)
1 /

which implies that

sup|7(ί)|) (sup|0(ί)|) (2m)

Choose /?! so close to 1 that \φ{βγ)- 1| ^ 1/4, the point being that this
estimate holds no matter how we patch together the steps just as long as
V(x) is greater than - 2 4 π 2 in {a1,βι\ On (βuoc2) the solution has the
form φ(x) = Λ2cos(22πcx~y) where we must have |v42| ^ 1 — | since
φ(βx) ^ 1 — i Now, choose α2 to be the closest point to 2 where
^42cos(22πcx — 7) has a maximum. At α2, 0 ( α 2 ) ^ l —i, so using the
same idea as above we can choose β2 so that (/>(/?2) ̂  1 — i — | . Continuing
in this manner we construct a solution 0(x) of (ii) so that φ(x)
= Ancos(n2πcx-yn) on (j5n_1?αn) and such that \<χn-n\ + \βn-n\^0
and |AΠ| ^ 1/2 for all n. Thus, φ(x) will not be in L2(0, 00), which implies
that V(x) is in the limit point case at 00, i.e. V(x) is quantum mechanically
complete at 00.

Example 2 (V(x) is classically complete but quantum mechanically
I 00

incomplete at 00). The potential V(x) will be of the form —^ — x 4 + £ σk(x)
X k=l

where σk(x) is a very narrow smooth spike centered at x = k with radius
of support dk. The spikes are chosen so that V(k) = k; see Fig. 2. Since
V(x) is not bounded from above near infinity the classical motion is
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Fig. 2

complete at infinity. We will show that if the supports of the spikes are
1 d2 1 °°

chosen to be narrow enough, then — —^ -\ 2 — χ 4 + Σ σk(x)
Lm uX X k=l

will not be essentially self-adjoint on Q?(0, 00). Since V(x) is in the limit
point case at x = 0 [2, p. 1415], this shows that V(x) can not be in the
limit point case 00, i.e., V(x) is not quantum mechanically complete at 00.
The physical reason for this behavior is that if the spikes are narrow
enough, the quantum particle can tunnel through even though the
classical particle is turned back. Thus to a quantum mechanical particle

the potential V is not very different from Vx = — ^ — x 4 which, by

Wintner's theorem, is not quantum mechanically complete at 00.
We will show that if the supports of the spikes are small enough there

is an α, 0 5Ξ α < 1, so that

Σ σk
fc=l

<a2 b2\\φ\\2
(iii)

for all φe C£(0, 00). The symmetric form of the Kato-Rellich theorem

[3, Chapter V, Theorem 4.5] then implies that — — y + Vγ and
ZΛYl (XX

d2 °°
+ Vί+ Σ σfc a r e either both essentially self-adjoint on

1

2m dx
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Q?(0, oo) or both not essentially self-adjoint. Since —

1
not essentially self-adjoint, it follows that —

1 d2

2m dx2

d2

is

+ V1 + ]Γ σk~γ
2*YYl (XX fc= 1

is not essentially self-adjoint.
To prove (iii) we use a simple a priori estimate. For each positive

integer m and each x0 e 1R, let I*0 = {x | |x — xo | ^ 1/m}. Then, there is a
constant C (independent of x0) such that

(iv)

for all 0eCo(R). To prove (iv), let η be a C00 function with support
in the interval (— i , i) which is indentically one on (— | ,£) . We have

and (iv) follows by carrying out the differentiations, integrating by parts
in the η' φ' term, and then using the Schwarz inequality.

Let σk(x) be a non-negative C00 function with support in the interval
(k — dk,k + dk) with dk g 1/4. Furthermore let σk reach a maximum

value of - —^ + fc4 + fc = Mk at x = fc. Then for all φ e Cg(0, oo)

(2m)2 1

Now choose dk so that 2MkdkC(2m)2 ^ | and so that

Then

Σ σ
2 oo

= Σ
k=ί

2m
- + V.Φ

Ml [

2 " 2 ^
φ"+Vtφ 2\\φ\\
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This proves the estimate (iii) which implies as discussed above that V(x)
is not in the limit point case at oo.

As an interesting exercise, the reader is invited to work Example 1
using the technique of Example 2 and Example 2 with the technique of
Example 1.
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