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Abstract. Feynman's integral is defined with respect to a pseudomeasure on the space
of paths: for instance, let # be the space of paths q : T C1R -• configuration space of the system,
let # ' be the topological dual of # ; then Feynman's integral for a particle of mass m in a
potential V can be written

^xp{iSiJq)/h)dw(\Anq)

where
Sιnt(q)=ίV(q(t))dt

T

and where dw is a pseudomeasure whose Fourier transform is defined by

w(μ) = exp(- i W(μ)/2) = expί - -^ J J inf(t, ί') dμ(t) dμ(t')
\ 1 τ τ

for μ e #'. Pseudomeasures are discussed; several integrals with respect to pseudomeasures
are computed.

I. Introduction

The lucid and powerful formalism of quantum mechanics proposed
by Feynman [1] has been plagued by the limiting procedure involved in
the original definition of Feynman's integral. We propose here a defini-
tion which does not rest on a limiting procedure, we show the connection
between both definitions of Feynman's integral and we compute several
integrals.

Feynman's formalism of quantum mechanics can be summarized
in the following table:

1. Quantum experiments =>K(B;A)= j exp(/F(g))...
x

2. Classical limit of quantum systems =>K(B\ A)= j exp(iS(q)/h)...

* This work has been supported in part by a NATO Research Grant and by a National
Science Foundation grant [GP-15184; GP-20033].



48 C. M. DeWitt:

3. Conservation of total probability => \K(B; A)\

= J exp(iSint{q)/h)dw(]/mq)

4. Compatibility condition for dw=>\K(B; A)\ = χ(α) Ka{B,A)

1. An analysis of the quantum interferences of beams of particles
going by different paths from A to B leads naturally to the idea that the
total probability amplitude K(B; A) for the transition from A to B is the
sum of probability amplitudes exp(iF(q)) attached to each possible path q
between A and B; hence the idea "sum over paths" or "integral in the
space X of paths q".

2. In the classical limit, only the classical path must contribute
significantly. It follows that the amplitude attached to each path q is
proportional to QXp(iS(q)/h) where S is the action whose first variation
vanishes at the classical path; h is Planck's constant; in the classical
limit S(q)/h-*(X).

3. The definition of dw and the expression of K(B; A) in terms of dw
are established in this paper. The expression written here for K(B A)
with Sini(q) — J V(q(t)) dt is one of the possible ones for a particle of mass

T

m in a potential V.

4. Feynman's formalism is a global formalism of quantum mechanics.
The use of dw brings forth the global aspect of Feynman's integral be-
cause it eliminates the division of the time interval into infinitesimal ones
necessary in the original definition. Too often the time interval division
gives the impression that Feynman's integral is only a method of inte-
grating Schrόdinger's equation. Locally, Feynman's and Schrδdinger's
formalisms are equivalent. Globally they are not equivalent [2]: for
instance, the configuration space of a system is often multiply connected.
It follows from a compatibility condition on dw that K(B\ A) is then a
linear combination of partial amplitudes Ka where each Ka is an integral
over paths in the same homotopy class and where the set of coefficients
{χ(α)} form a representation of the fundamental group π. The different
representations of π correspond to different physical systems. Because
there is no unique way to label the homotopy classes by the elements
α of the fundamental group, K(B A) is determined only modulo an
overall unobservable phase factor. Thus, Feynman's formalism gives
directly an unambiguous answer to global problems. Other formalisms
use ad hoc, extraneous conditions to deal with global problems, such as
boundary conditions on wave functions, symmetry or antisymmetry
property of the wave function, etc.... and their answers are not necessarily
identical with Feynman's.
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II. Notation, Basic Definitions and Properties

i. Example: A Particle of Mass m with one Degree of Freedom
in a Potential V

In this example, the space of paths X is the space # of real valued
functions q on the time interval T = (ta,tb) which take a fixed value
q(tb) = b at tb. It will be necessary for ̂  to be a vector space, hence b = 0.
Indeed : g, g' e ̂  => g + g' e ̂  only if (q + q') (tb) = b as well as g(^) = g'(ίb) = 6.
The topology on # is the topology induced by the uniform norm
||<?|| = sup|g(ί)|

ta = h<-<tn<tn+1=tb,

OLj=Ξ=tj+ί-tj.

A stands for the pair (qa, ta).

q(t)A

to t:
H-J—H—I h

I '2

Fig. 1

The topological dual of ̂  is the space M of bounded measures on T. For
every μ e Jί and every q e <$

(μ,q}= \ q(t)dμ(t)e(C.
T

2. Fourier Transform

Let X be a topological vector space that is Hausdorff and locally
convex; let X' be its topological dual; let xeX and x ' e Γ ; let λ be a
measure of X. The Fourier transform 3Fλ of Λ is a function on X' defined by

^ Λ ^ . X J — I e αΛ^XJ .

4 Commun math Phys , Vol 28
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Note that if λ is an absolutely continuous measure dλ{x) — λ\x)dx\ in
another terminology, J^Λ would be called the Fourier transform of λ'.
Inverse image of a Fourier transform:

Y

Fig. 2

Y1

Let p be a continuous linear mapping p : X-+ Y, let p be the transposed
mapping p: Y'-+X'

p(y') = yΌp

let λp be the image of λ under p, let Be Y and let Λ = p~1{B), let χ(Λ)
be the characteristic function of A C X

def.

then:

Applications:

1. Let p = x' e X'

then:
by x'(x) = <x', x> = w



Feynman's Path Integral 51

2. Let V be a closed subspace of finite codimension of Xy let y be the
finite dimensional quotient space X/V, let p be the canonical mapping
X-+X/V; then p is an isomorphism: (X/V')-+V° where V°CX' is
orthogonal to V:

x ' e F ° o ( χ ' , χ ) = 0 VxeK

#7 p (/) = j exp(~ϊ*</,.y»dAp();) by definition
XIV

= J^/l ° p(/) by a property of inverse images

= #Ά(x') for every x' eV° by a property of transposed
mappings.

Let F(X) be the family of all closed subspaces of X which are of finite
codimension, then X' is the union of F°'s orthogonal to K's in F(X) and
the above formula gives !P'λ for all x' e X' by means of a family of integrals
of finite dimensional spaces.

3. Distributions

A measure can be considered either as an additive set function or
as a distribution of rank zero. The following notation of distributions
will be used:

Let λ and μ be two measures on X, their convolution λ * μ is defined by

(λ * μ, φ> = j dλ(x) J dμ(x) φ(x -f y)
x x

for φ in the space of <€' functions on X with compact support. The transla-
tion operator τXo is defined by

(τXQλ, φ) - J φ(x0 + x) dλ(x).

If dλ(x) = λ'(x)dx then τ;co/l/(x) = /ί/(x~xo). The dilatation operator εα

is defined by

dλ(x).

If dΛ(x) = λ'(x) dx, then εαλ'(x) = — λ' f—
α \ α

Note <εαλ * ε̂ Λ, φ> = J dA(x) j rfA(y) φ(αx + j
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4. Other Notations

Space of integration

Its dual

Measure

Promeasure

Gaussian pseudomeasure

Variance

Covariance

General case

X,xeX

Γ.x'eΓ

λ

μ = {μv)
f

1

K

Example

.Jί,μeJί

w

W

Infimum

One dimensional

IR,QelR

1R, M e R

α, Ά(x')

Finite dimensional

1R", Q e 1R"

1R", QeIR"

{«,;./= 1,...

X/V

(XIV)'

μv

n] Qv

III. Feynman's Integral

We shall show, in this section that Feynman's integral for a particle
of mass m with one degree of freedom in a potential V can be written

j exp(ίSint(g) dw(]/mq) with ft = 1

w being defined as follows:

Definition of w. The Fourier transform of w is

1 ,

If
where FF is the quadratic form on the topological dual Jt of ^ defined by

inf(ί, ί;) = 1 , ., ,~
[ί' if ί ' g ί .

We shall discuss the nature of w in Section IV; for the time being we
call it a pseudomeasure. In general we call "gaussian pseudomeasure of

covariance X" an object whose Fourier transform is exp Ά\ with

J2(μ)= j j K(t,tf) dμ(t) dμ(t'). Thus w is a gaussian pseudomeasure of
T T

covariance infimum. For clarity, we shall break down the proof in four
propositions, each illustrating a different feature of the formalism.

Feynman's integral was defined originally as the limit when n-> oo of
an ^-dimensional integral In over the space of n-tuple {q1,... qn} namely,
the path q was replaced by n of its values {qί9 ...qn}.
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Proposition 1. Let p\<β-+W by q^{Qu Qn} wzίfc Qj = c[j-qj+ι

and qn+1 = 0 then:

$dw(q)= Jexp i £ ~ ^ H Π

with (i)~^ = exp(— in/4) and aj — tj+1 — tj.
This equality connects both definitions of Feynman's integral

Proof. LetdγOi(Q) = Qxpίi-^-) — τ = = with Q elR, let dyAQγ) x •••
\ 2α / ]/2πioί

•'• x dyΛ {Qr) = dΓn{Qu . . . β Π ) ; t h e n , b y t h e c h a n g e of v a r i a b l e s {q{, ...qn}

In- ί dΓn(Qu...Qn).

We shall show that #"w ° p = ^ Γ t t . Indeed: p : lRΛ->.^ by Mκ>μ such that

f MiQt= Σ ( M . - M ^ i ) ^ with M Π + 1 - 0

where {Mj, ... Mn} are the coordinates of M in the dual basis. The equation
n

(μ,q}= Σ (Mi — Mi + 1 ) ^ ι determines
i= 1

where 5 is Dirac's measure: (δtι, q} = q(tt). Hence

W(μ)=j ίinf(ί,θ[Σ (M-M ί + 1 )J dtdf
T T L J

and

/
= exp I - —- W(μ)\ = exp I - — Σ (*j - h-1) ( M J ) "

7 = 1

On the other hand
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By analogy with the theory of distributions, we shall write formally:

\ Qxp(iSint{q)) dw{q) = <w, exp(ίSint)> .

Because w is defined by its Fourier transform, we shall often use the
following pattern to integrate with respect to vv:

= <exp(- i

For instance

<w, 1> = <exp(- iW/2), # 1 > - <exp(- i

Proposition 2. Consider a free particle of mass m—\ with one degree
of freedom; let So be the action for this system, let K(B; A) = K(b, tb; a, ta)
be the probability amplitude that the particle be at b at time tb if it is at a at
time ta, let q be the classical path from A to B, let ft= 1; let χ(q', qa = 0)
be the characteristic function of the subspace of %? which consists of func-
tions q vanishing at ta:

XiQl #α = 0) = Λ ,
[0 otherwise;

then:
K(B; A) = exp(iSo(q)) f χ(q\ qa = 0) dw(q)

= eΆp{iSo(q))/]/2πi(tb-ta).

Proof. In this paper path integration is restricted to spaces of paths
which are linear spaces. When we have to consider paths with fixed end
points, we make a change of variable q'±-*q such that the new variable q
vanish at the end points: q' = q + q where q is a fixed path such that
q(ta) = a and q(tb) = b\ a convenient choice for q, here, is the classical path
from A to B. Because the Taylor expansion of the action So of a free
particle terminates at the second variation, S0(qf) is given in terms of the
new variable by

According to Feynman's original definition

In this case it is not necessary to take the limit for n-+ oo of the n-dimen-
sional integral. By virtue of Proposition 1:

K(B; A) = exp(iS0(q))$χ(q; qa) dw(q) = exp
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The computation of <(w, χ) is straightforward:

<w, χ> = <j α i * * yan, δ} using Proposition 1
n

= <yα><5> w ^ t n α : = Σ (Xj = tb~ta using the Fourier
j = 1 transform of ya

ta))-- c.ql.d.

Proposition 3. Consider a free particle of mass m with one degree of
freedom; then:

K(B; A) = Qxp{iS0(q)) J x(qi Qa = 0) dw{γmq)

= exp(iS0(q)) ]/m/2πi(tb-ta).

Proof. Let q' = ocq + q0 where α is a constant and q0 is a fixed path,
let χiq'iq'a = 0) represent the same set as χ(q; qa = 0); then

Proposition 3 follows readily from:

Proposition 4. T/iίs proposition should be considered as a heuristic
statement until a theory of integration with respect to pseudomeasures has
been developed which determines the class of potentials for which the
path integrals are defined. Consider a particle with mass m and one degree
of freedom in a potential V; then

K(B; A) = exp(/S0®) ]/m J exp(/S int(^+ q)) χ(q; qa = 0) dw(q) (1)

or
K(B\ A) - exp(ίS(ί)) f Qxp{iΣ(q)) χ(q\qa 0) dw{]fS"{q) q) (2)

with

Σ(q) = S(q + q) - S(q) - ι

ΊS"(q) {q, q).

Proof. The first equation is proved readily by splitting the action into
a free particle term and an interaction term:

S = S0 + Sini with Sint(q)=]v(q(t))dt.

The second equation is proved readily by expanding the action around
the classical path q:

S(q + Q) = S(q) + \S"(q) (q, q) + Σ(q).
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The WKB approximation consists in setting Σ(q) = 0. With this
approximation, K(B A) can immediately be integrated by using Pro-
position 3:

K(BΆ) = exp(/S®)γS"(q)/2πi(th-ta).

Because we integrate on the space ^ of continuous functions q which are
not necessarily differentiable, Eq. (1) is valid only if the potential is velocity
independent1 and Eq. (2) is valid only if Σ(q) is velocity independent,

i.e. if ^ _ - Λ ^ _ ^ ^ - - ^
d3V{q,q) d3V(q,q) d3V{q,q) _ Q

dq2dq dqδq2 δq3

However, the method proposed here to compute Feynman's path integral
is not restricted to integration on the space ^ with respect to the pseudo-
measure w and hence not limited in general to potentials which satisfy the
above conditions. The space of integration is determined by the con-
figuration space of the system. The pseudomeasure is determined in part
by the classical limit of the system and in part by the requirement of
probability conservation [3]. Whether these requirements are sufficient
is an open question. The study of systems whose potential V violates the
above conditions, for instance a particle in an arbitrary magnetic field,
will bring some light to this question. We shall postpone until section V,
paragraph 2, further discussion of the validity of Eqs. (1) and (2).

IV. Promeasures, Pseudomeasures

The study of Feynman's integral is a study of integration on non-
locally compact spaces with respect to an object more general than a
promeasure [4] called for the time being, pseudomeasure.

ί. Promeasures

A summary of the theory of promeasures is given here as a point
of departure for a discussion of pseudomeasures. Full details on pro-
measures can be found in Bourbaki [4], This point of departure is by no
means unique, the theory of affine measures is another one [5].

Definition. The theory of promeasures generalizes the theory of
integration to spaces which are not locally compact - in particular, to a
large class of function spaces. It is restricted to topological vector spaces
that are Haussdorff and locally convex, let X, Y... be such spaces; let F,

1 The word "velocity" refers to the velocity along the classical path; we never use the
differential q of an arbitrary g e #, we never take the limit for n -• oo of such expressions as
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W... be closed subspaces of X of finite codimension; let F(X) be the set
of all closed subspaces of X of finite codimension, Ve F(X); let pv be the
canonical mapping from X into the quotient space X/V; let μv be a finite
countably additive measure on X/V such that

a) μv(X/V) = μ(X) is independent of V,

b) it satisfies the following reasonable compatibility condition
when WCV:

ftv ~ β\v ° Pvw

where pvw is defined by pυ = pvw ° p w .

Then the family μ = {μv; VE F(X)} is a promeasure.

X/W

μv(B)=/zw(A)with A = pJ,w(B)

Fig. 3

μ is also called a cylinder measure: the word cylinder comes from the
fact that if X = 1R3 and V is a line through the origin, X/V is the space of
lines parallel to V which generates cylinders.

Example. Let X be the space ^ defined in Section I. Let paths q, q'
which take the same value for a certain finite set {tx,... tn} of values oϊteT
be considered as equivalent:

q~q' o q(tj) = q'(tj) for all tj in the set.

q = q' + f with f(tj) = 0 for all tj in the set.

Let V be the space of functions f on T which vanish on the set
θv = {ί1?... tv}. Then X/V is the space of equivalence classes
{qΊq'~q} = [q]l in practice we identify [g] with {<z(ίi).. <?(£„)} which
in turn we identify with {Q1,... Q J where Q7 = q} — qj+i

I Q2\ dQ
Let μυ — y x •• x ya where dyα = exp , then μ is

\ 2α / |/2πα
Wiener's promeasure.

Wiener's promeasure is a measure. The phrase "a promeasure is a
measure" is a convenient abuse of language: a promeasure is never a
measure, it is a family of measures. However, if a measure λ can be defined
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on X, one can construct in a natural way an associated promeasure λ
on X if a promeasure μ on X is equal to the associated promeasure λ of a
measure λ, one says that the promeasure μ is a measure.

The family of topological vector spaces {X/V; Ve F(X)} is determined
by the topological dual X' of X\ indeed: F(X) can be defined by a finite
number of elements x'x, ...x'neX'\ moreover the topology which makes
X/V Hausdorff is uniquely defined. In the previous example, the space
V of functions feΉ which vanish on the set θv is defined by the finite set
{δtι eM\tx<=: θv} of Dime's measures by means of the v equations

Fourier Transform. The structural importance of X' in the construc-
tion of a promeasure explains the importance of the Fourier transform
of promeasures. The Fourier transform J^μ of a promeasure μ is the
natural generalization of the Fourier transform of a measure:

where μx, is the image by x' of μ- the image of a promeasure being defined
in a natural way from the images of the members μv which constitute the
family μ.

It can be shown that ^μ(x ') = J exp(- i<x', x » dμv(x) Vx 'e7° .
x/v

2. Pseudomeasures

Superficially, or formally, Feynman's integral can be obtained from
Wiener's integral by multiplying the variance OLJ by i. Analytical con-
tinuation of Wiener's integral has indeed given the first rigorous defini-
tions of Feynman's integral [6]. It is always interesting and puzzling to
come across topics where formal multiplication by / gives some correct
results although it changes profoundly the mathematics and the physics
of the topic considered: for example the formal replacement of t by it
changes a positive definite metric into a space time metric, a similar
replacement changes an elliptic equation into an hyperbolic equation
etc. ... The physical differences between Wiener's integration and Feyn-
man's integration are far-reaching. The former describes systems which
obey Laplace's law of probability, the latter describes quantum systems
which do not obey Laplace's law of probability but the law of interfering
alternatives [1]. How profound are the mathematical differences? The
structures of both theories are the same, the building blocks ya and ya are
different.

In the rest of this paper we shall generalize α to be an arbitrary positive
variance and obtain thereby gaussian pseudomeasures of arbitrary



Feynmarfs Path Integral 59

variance Ά. Wiener's and Feynman's integrals correspond to α = At and
Ά = W.

Comparison of ya and γa.
u

1. yα(0, u) = J dyα is the error function,
o
u

yα(0, w) = j dyα is a linear combination of Fresnel integrals,
0 S(u) and C(u).

yα(0, M) = ^(S(M) + C(w)) + y (S(w) - C(u)).

The error function and the Fresnel integrals are related via hyper-
geometric functions and it can be shown that yα(0, u) = erf(e~ iπ/4u) where
the analytic function erf(z) is equal to the error function on the positive
real axis. This relation can be used to prove some of the results obtained
by analytic continuation of Wiener's integral.

2. ya defines a bounded countably additive positive measure on the
cr-ring of Borel sets of IR; ya does not. It has been shown [7] that the fact
that J \dya\ = oo makes it impossible to use ya in the same manner that ya

is used in the construction of Wiener's promeasure. Thus as an additive
set function yα is not a convenient measure; on the other hand, as a
distribution of rank zero, it is an interesting measure:

a) γα is a tempered distribution:

Let φ be in the space Sf of rapidly decreasing ^°° functions on IR then :

<y«, φ> - ί φ(Q) dyM = ί φ(Q) y*(Q) dQ
R IR

is always defined. Hence ya e £f'.

b) y% is in the space of operators on 9" [9].

ya is in the space ΘM of multiplication operators on £?':
(YaT, φ} = <T,y (̂jo> is defined for every Te 9*1.
ya is in the space Θ'c of convolution operators on Sf'\
<y7*T, φ>is defined for every Te <f'.

The spaces ΘM and Θ'c are both subspaces of Sf\ hence <yα, φ> is
defined for φ in a space larger than 9*. Unless stated otherwise, φ is
understood in this paper to be either in the dual Θ'M of ΘM or in the space
Θc of which Θ'c is the dual.

Because it is a poor additive set function but a good distribution, we
shall not work with ya but with its Fourier transform:

= j exp(- iMQ) dya{Q)=exp(-iaM2/2).
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Construction of ^TΆ. Let Ά be a positive quadratic form on the dual
X' of a Hausdorff locally convex topological vector space X. For
example if X = <€,

J(μ) = \\ K{t, t') dμ{t) dμ(t') where K is a positive kernel.

We shall construct the Fourier transform 3FΓΆ of a gaussian pseudo-
measure ΓM on X with variance & in three steps:

a) X is finite dimensional and & is nondegenerate.
There is a unique basis {ej;j= 1, ...n} in X' which diagonalizes J .

Let {xj} be the coordinates of x' in the basis {ej}

5(χ')=« Σ (*; )2 α > °

Let / be the isomorphism: X->IR" by x\->{ej(x)} let Q e W1 and let {Qj}
be the coordinates of Q in the basis dual to {ej}:

Let ΓΛ be the distribution on 1R" defined by the cartesian product of n ya

let TΆ be the inverse image of Γn by / then:

{x')= Jexp(-i<x / ,x»dΓg(x)

= f

b) X is finite dimensional, J may be degenerate.
Let N be the linear subspace of X' which consists of the points x' such

that Q(x') = 0; let M be the orthogonal of N in X; let / be the canonical
injection of M in X and /: X' -> M' be the transposed mapping of/. There
exists on M' a non-degenerate positive quadratic form J such that

Hence we can, by the previous construction, build the distribution ΓΆ

whose Fourier transform is

set ;(Γj) equal to TΆ\ it follows that
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c) X is infinite dimensional.
Let VeF(X\ let pυ:X-+X/V (see Fig. 2). Ά°pΌ defines a positive

quadratic form Qυ on (X/V)'; hence we can, by the previous construction,
build the distribution ΓΆυ whose Fourier transform is

Because pυ is an isomorphism oϊ(X/V)r -> K°, the equation ̂ FΆv —
defines the restriction of &ΓΆ to V° C X'.

Proposition 5. The family {!FΓΆv\ Ve F(X)} characterizes tFΓΆ on X''.

Proof. 1. 3FTΆ is defined for every x ' e Γ because X ' = (J K°.
FeF(X)

2. &TΆ is coherently defined: if x' eV°nW° then «FΓgw(x;) =
indeed:

a) The origin x' = 0 belongs to each space F° associated to a F G
hence ^ΓΆ (0) must be independent of V\ we have indeed 3FΓ& (0) = 1.

In summary we have obtained a well defined Fourier transform
for the system {ΓΆv} of distributions more general than a promeasure.

Remarks, a) When Γ^ is a bounded measure on X/V, the coherence
conditions satisfied by the family {^ΓΆυ} are equivalent to the coherence
conditions satisfied by the promeasure ΓΆ = {ΓΆυ}.

b) We have constructed # T ^ using a gaussian distribution γa of rank
zero; we can repeat this construction using any tempered distribution.
This construction suggests the following definition2 for projective
systems of tempered distributions - to be called possibly tempered
"prodistributions"3 (by analogy with projective systems of bounded
measures which are called "promeasures"):

Let 3F(Xf) be the linear space of complex valued functions / on X'
such that their restrictions to any finite dimensional subspace of X' are
continuous functions equivalent to tempered distributions.

Let Tυ be a tempered distribution on X/V whose Fourier transform
^Tv is such that

^Tv = f\vo°pv where fe^(X').

The system {Tv; VeF(X)} is by definition, a tempered prodistribution,
inverse Fourier transform of /.

2 This definition has been proposed by Choquet.
3 Terminology proposed by Dieudonne who stressed the advantages of treating

measures throughout this work as distributions rather than additive set functions.
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This definition is useful only if the space it defines can be given a good
topology: for instance, a topology such that the pseudomeasure w is
a measure. As a larger or a smaller space might be more useful than the
space proposed here for prodistributions, we shall not use the word
prodistribution and shall call w a pseudomeasure until a general theory
has been developed.

V. Integration With Respect to Pseudomeasures

A theory of integration with respect to pseudomeasures remains to
be done. The following propositions provide only very partial answers,
useful mostly for applications.

ί. Images of Pseudomeasures under a Linear Continuous Mapping p

Definition. Let p : X—• Y and p be the transposed mapping: Y'-+X'.
We shall call image of the pseudomeasure ΓΆ under p the pseudomeasure
Γj whose Fourier transform is such that

x' e

p

Proposition 6. The image of the gaussian pseudomeasure ΓΆ under
X' is equal to the gaussian pseudomeasure y2{X') on 1R of variance J(x').

Proof. x ' e Γ is a linear continuous mapping from X->R by
x) = <x', x> = UE R.

On the other hand

It follows that

(x')) du - dyMxΊ(u) c.q.f.d.

We shall use this proposition to compute several integrals.

2. Some Integrals with Respect to Gaussian Pseudomeasures

f φ(<x', x » dΓΆ{x) = j φ{u) dγβ(xΊ(u).
Ί

X 1R

The integral over X has been reexpressed as an integral over 1R and can
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be computed by elementary methods. We give three integrals of particular
interest:

φ2 = |<x', x>|" I(φ2) =

I(φ4) is obtained from Iiφ^ by writing

2<x, x> <j/, x> = <x + y, x>z — <x, x>z — <y, x)z .

In this example, the class of functions φ for which l(φ) is defined can
immediately be stated: Because I(φ) can be reexpressed as an integral
over IR equal to <φ, yΆixΊ}, it is defined for φeΘ'M and φε(9c (Section IV,
Paragraph 2).

Many integrals encountered in applications of Feynman's path
integral to physical problems can, after a change of order of integration,
be computed with I(φ). We shall justify the change of order of integration
which occurs in these cases:

Proposition 7.

j dΓJ\ q(t) m(t) di\2 = j j dt dt' m(t) m(t')i\ q{t) q{tf) dΓλ .
<β \T ) T T W /

Proof. Set J the value of /(φj) for n = 0, X = <£ and dμ(t) = m(t) dt;

J — [ /π a}2 dΓo) — \ dΓJ\ q(t) m(t) dt]2Λ2

= i j J K(t, t') m(t) m(tf) dt dt'.
T T

On the other hand, set

L=$ lm{t)m{t')dtdt'ί\q{t)q(t')
T T W

J q(t) q(t') dΓΆ(q) = J <(5f, q) (βr, q) dΓΆ(q)

2

= iK(t91').
Hence L =
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This proposition can readily be extended to integrals of the following
type

^ q(t)m2(t)dt)"\.J$ q(t)mp(t)Y?

by an obvious generalization of /(φ4).

Remark. When one replaces q by a finite number of its values
{q(tj)= (δtji q}}>one i s often lead to changes of order of integration which
are justified by this proposition4.

Remark. The probability amplitude K(B Λ) (Section III, Proposi-
tion 4) can often be computed in terms of I(φ):

GO i

When it is justified to integrate K(B; A) term by term5, and to expand
Σ(q) in a power series6 then

where Jnp is an integral of the Jn type.
One method to determine the range of applicability of Eq. (2) for the

calculation of K(B; A) is to compute the radius of convergence of this
double series.

3. Integration with Respect to Pseudomeasures

<φ, Γg> = < J^φ, #T<2> and the existence of <φ, ΓΆ} can be reformulated
in terms of the existence of < J^φ, J^Γj). In general, the existence of an
integral with respect to an arbitrary pseudomeasure - not necessarily
gaussian — can be reformulated in terms of the existence of an integral
of the inverse Fourier transform of the integrand with respect to the
Fourier transform of the pseudomeasure. It is conjectured that the
integral exists if # φ is an element of ^(X'\ the linear space of complex
valued functions on X' such that their restrictions to any finite dimen-
sional subspace of X' are continuous functions equivalent to tempered

4 In the case X = (£,I(φ) has previously been computed by such manipulations;
a wrong answer, still quoted, has been obtained. The error is not due to the change of order
of integration but to an error in the computation of /(φ4) which is very laborious when T
is first divided in a finite number of intervals.

5 For instance, if the potential V is a polynome, Σ{q) consists of a finite number of
terms.

6 For instance, if V is proportional to a coupling constant smaller than 1.
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distributions; X' is the dual of the space of integration X.
As a simple example, we shall compute J(φ):

= $du~- $ dt Qxp(iut) φ(t) $

= -τr-$dtφ{t)$duexpliut- ~~u
2π R \ 2

1

~ /2π7I(μ) i

VI. Conclusion

This formalism can be extended in many directions:

1. In this paper the space X is a linear space. This implies that the
configuration space S of the physical system must be a linear space;
indeed:

let q e Z : l R - > 5 ,

q,q' eX =>q + q' eX which in turn implies,

The recent work of Eells and Ellworthy on Wiener's integral opens
up a way to study Feynman's integral for systems whose configuration
space is a Riemannian manifold.

2. The theory of Fourier transforms on locally compact groups is
well developed [9] and provides a natural framework for extending this
paper to configuration spaces which are locally compact groups7.

3. Extension to systems with n degrees of freedom is straightforward
and follows the usual pattern: let the configuration space S of the system
be an n-dimensional linear space with norm || | | s, let

qE% x -•• x% {n t i m e s ) = <gn.

The norm on <gn is defined by Ml = sup
T
p

teT

One can treat a variety of problems with the formalism presented
here; for instance, one can show that a product pseudomeasure on <€"

7 This extension has been suggested by Bott.

5 Commun math Phys , Vol 28
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which remains a product pseudomeasure under orthogonal transforma-
tions on <£" is a gaussian pseudomeasure.

4. The formalism developed here for particle physics is well suited
for fields, particularly gauge fields because it provides a well defined
procedure to restrict the domain of integration [10].

Since its inception in 1942, Feynman's path integral has not received
the attention it deserves8 it is hoped that this presentation of Feynman's
integral will contribute to its acceptance by those who can bring forth
its potentialities.
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