Asymptotic Completeness for Multi-Particle Schroedinger Hamiltonians with Weak Potentials

Rafael Jose Iorio, Jr. and Michael OCarroll
Departamento de Matemática, Pontificıa Universidade Católica, Rio de Janeiro. Brasil

Received March 15, 1972

Abstract

We show that the non-relativistic quantum mechanical n-body Hamiltonians $T(k)=T+k V$ and T, the free particle Hamiltonian, are unitarily equivalent in the center of mass system, i.e., $T(k)=W_{ \pm}(k) T W_{ \pm}(k)^{-1}$ for k sufficiently small and real. $V=\sum_{i} V_{i}$, a sum of $\frac{n(n-1)}{2}$ real pair potentials, V_{i}, depending on the relative coordinate $x_{i} \in R^{3}$ of the pair i, where V_{i} is required to behave like $\left|x_{i}\right|^{-2-\varepsilon}$ as $\left|x_{i}\right| \rightarrow \infty$ and like $\left|x_{i}\right|^{-2+\varepsilon}$ as $\left|x_{i}\right| \rightarrow 0 . T(k)$ is the self-adjoint operator associated with the form sum $T+k V$. There are no smoothness requirements imposed on the V_{t}. Furthermore $W_{ \pm}(k)=\underset{t \rightarrow \pm \infty}{s-\lim } e^{i T(k) t} e^{-\imath T t}$ are the wave operators of time dependent scattering theory and are unitary. This result gives a quantitative form of the intuitive argument based on the Heisenberg uncertainty principle that a certain minimum potential well depth and range is needed before a bound state can be formed. This is the best possible long range behavior in the sense that if $k V_{i} \leqq C_{t}\left|x_{i}\right|^{-b}$, $0<b \leqq 2$ for $\left|x_{i}\right|>R_{t}\left(0<R_{t}<\infty\right)$ and all C_{i} are negative then $T(k)$ has discrete eigenvalues and $W_{ \pm}(k)$ are not unitary.

0 . Introduction

In this article we treat the scattering and spectral problem for an n-body system in non-relativistic quantum mechanics with weak potentials. We show that the method of Kato [1] used to show asymptotic completeness and unitarity of the wave operators for weak potentials in the two-body case can be applied to obtain similar results in the n-body case. More precisely we show that in the center of mass system Hilbert space $H=L^{2}\left(R^{3 n-3}\right)$ the self-adjoint operators $T(k)=T+k V$ (the selfadjoint operator associated with a form sum) and T (the free particle Hamiltonian) are unitarily equivalent for sufficiently small, real k. The potential $V=\sum_{i} V_{i}$ is a sum of pair potentials, V_{i}, which are real-valued measurable functions depending on the relative coordinates $x_{i} \in R^{3}$ of the pair i. Writing

$$
A_{i}=\left|V_{i}\right|^{1 / 2}, \quad B_{i}=\left(\operatorname{sign} V_{i}\right) A_{i}
$$

the result follows from the crucial fact that the operators $A_{i}(T-z)^{-1} B_{j}^{*}$ admit bounded analytic extensions for $\operatorname{Im} z \neq 0$, the bound being in-
dependent of z for $\operatorname{Im} z \neq 0$ and moreover that this is sufficient, i.e. compactness is not necessary.

The equivalence of T and $T(k)$ is implemented by the unitary operators

$$
W_{ \pm}(k) \text {, i.e., } \quad T(k)=W_{ \pm}(k) T W_{ \pm}(k)^{-1}
$$

where $W_{ \pm}(k)^{-1}=W_{ \pm}(k)^{*}$. The operators $W_{ \pm}(k)$ admit an absolutely convergent power series expansion in k. Pair potentials behaving like $1 /\left|x_{i}\right|^{2-\varepsilon}$ as $\left|x_{i}\right| \rightarrow 0$ and like $1 /\left|x_{i}\right|^{2+\varepsilon}$ as $\left|x_{i}\right| \rightarrow \infty$ are allowed ($\varepsilon>0$) (see Theorem 1.1 for the precise conditions). There are no conditions of smoothness imposed on the potential functions. We also show that the operators

$$
\begin{aligned}
W_{ \pm}(k) & =\underset{t \rightarrow \pm \infty}{S-\lim _{t} e^{i T(k) t} e^{-i T t}} \\
W_{ \pm}(k)^{-1} & =\underset{t \rightarrow \pm \infty}{s-\lim _{i}} e^{i T t} e^{-i T(k) t}=W_{ \pm}(k)^{*},
\end{aligned}
$$

i.e., are the wave operators of time-dependent scattering theory. Thus the wave operators exist and their ranges are all H. This result of course also gives information about the spectrum of $T(k)$, in the center of mass system; namely, it is absolutely continuous, the singular continuous spectrum being absent. Thus there can be no point spectrum and we have a quantitative form of the heuristic argument using the Heisenberg uncertainty principle on the potential shape and well depth which will exclude bound states. Furthermore the long-range behavior of our result can not be improved. What is meant by this is that for pair potentials which fall off like $1 /\left|x_{i}\right|^{b}, 0<b \leqq 2$, for $\left|x_{i}\right| \rightarrow \infty$, no matter how small $k>0$ is there is an infinite point spectrum if all V_{i} are negative. For a proof of this fact see Simon [2]. Thus the $W_{ \pm}(k)$ can not be unitary since the ranges of $W_{ \pm}(k)$ are orthogonal to the point spectrum of $T(k)$.

In Section I we introduce necessary notation and state our results. In Section II we give the proofs of the results.

For other results on n-body completeness in the general case see Hepp [3] and for repulsive potentials see Lavine [4]. For n-body spectral results see Simon [2], Balslev and Combes [5] and Albeverio [6].

1. Results

Throughout this paper we will maintain the notation of Kato [1]. We consider the n-particle self-adjoint Schroedinger Hamiltonian operator $T(k)$ which formally equals $T+k V$ where T is the free particle self-adjoint center of mass kinetic energy operator and $V=\sum_{i} V_{i}$, the potential, is a sum of $n(n-1) / 2$ pair potentials V_{i}, such as $i=(l m)$,
$l, m=1,2, \ldots, n(l<m)$. Each V_{i} is a real-valued, measurable function depending only on the difference coordinates, $x_{i} \in R^{3}$, of the pair i and k is a real parameter. We write $V_{i}=B_{i}^{*} A_{i}$, where

$$
A_{i}=\left|V_{i}\right|^{1 / 2}, \quad B_{i}=\left(\operatorname{sign} V_{i}\right)\left|V_{i}\right|^{1 / 2}
$$

The operators T and A_{i}, B_{i} are defined as maximum multiplication operators on the Fourier transform of $H=L^{2}\left(R^{3 n-3}\right)$ and H, respectively. Thus T is self-adjoint and A_{i}, B_{i} are closed.

In order that the theorem of Kato [1] be directly applicable we introduce the Hilbert space $H^{\prime}=H \oplus H \oplus \cdots \oplus H(n(n-1) / 2$ summands) and let $V=B^{*} A$. The operators A and B are defined by
$X u=\left(X_{1} u, X_{2} u, \ldots, X_{\frac{n(n-1)}{2}} u\right)$ for $u \in D(X)=\bigcap_{i} D\left(X_{i}\right) \subset H, \quad X=A(B)$,
$X_{i}=A_{i}\left(B_{i}\right)$ and are closed linear operators as mappings from $D(X) \subset H$ to H^{\prime}. We point out however that it is not necessary to introduce H^{\prime} and the results will still be valid but the Kato proof will then require modification. The resolvent of the self-adjoint operator T will be denoted by $R(z)$.

We not state the crucial lemma from which our results will follow.
Lemma 1.1. The norm of the closure, $\left[C_{i} R(z) D_{j}\right]$, of the operator $C_{i} R(z) D_{j}$ for $\operatorname{Im} z \neq 0$ where $C_{i}, D_{i}=A_{i}, A_{i}^{*}, B_{i}, B_{i}^{*}$ has the majorization

$$
\begin{align*}
\left\|\left[C_{i} R(z) D_{j}\right]\right\| \leqq & \left(2 m_{j} c_{i j}\right) /(4 \pi) \cdot\left(a^{-1}+b^{-1}\right) \\
& \cdot\left[\left\|V_{i}\right\|_{L^{p / 2}\left(R^{3}\right)}\left\|V_{j}\right\|_{L^{p / 2}\left(R^{3}\right)}\right]^{b 2^{-1}(a+b)^{-1}} \tag{1.1}\\
& \cdot\left[\left\|V_{i}\right\|_{L^{q / 2}\left(R^{3}\right)}\left\|V_{j}\right\|_{L^{q / 2}\left(R^{3}\right)}\right]^{a 2^{-1}(a+b)^{-1}}
\end{align*}
$$

where i, j are the same pair or not completely disjoint pairs. In (1.1) $a=-3 p^{-1}+1>0, b=3 q^{-1}-1>0,1 \leqq q<3<p \leqq \infty$ and $m_{j}^{-1}=m_{k}^{-1}$ $+m_{l}^{-1}$ with $j=(k l), k<l$. The constant

$$
c_{i j}=1 \quad \text { if } \quad i=j \quad \text { and } \quad c_{i j}=\left(m_{k}+m_{l}\right) m_{k}^{-1} \quad \text { for } \quad k<l,
$$

$i=(l m), j=(k l) ; c_{i j}=\left(m_{k}+m_{l}\right) m_{l}^{-1}$ for $k<l, i=(k m), j=(k l)$. For i, j completely disjoint pairs we have

$$
\begin{align*}
\left\|\left[C_{i} R(z) D_{j}\right]\right\| & \leqq 2\left(\sup _{z}\left\|\left[A_{i} R(z) A_{i}\right]\right\|\right)^{1 / 2}\left(\sup _{z}\left\|\left[A_{j} R(z) A_{j}\right]\right\|\right)^{1 / 2} \tag{1.2}\\
& \leqq 2 \max _{i, j}\left(\sup _{z}\left\|\left[A_{i} R(z) A_{j}\right]\right\|\right)
\end{align*}
$$

where the sup is taken over all $z, \operatorname{Im} z \neq 0$.
By specializing theorems $1.5,3.9$ and 4.1 of Kato [1] to our case and using the same notation as in Lemma 1.1 we have

Theorem 1.1. For some constant $N<\infty$ let V be such that

$$
\begin{align*}
\max _{i j} 2(n(n-1) / 2) & {\left[\left(\frac{2 m_{j} c_{i j}}{4 \pi}\right)\left(a^{-1}+b^{-1}\right)\right] } \\
\cdot & {\left[\left\|V_{i}\right\|_{L^{p / 2}\left(R^{3}\right)}\left\|V_{j}\right\|_{L^{p / 2}\left(R^{3}\right)}\right]^{b 2^{-1}(a+b)^{-1}} } \tag{1.3}\\
\cdot & {\left[\left\|V_{i}\right\|_{L^{q / 2}\left(R^{3}\right)}\left\|V_{j}\right\|_{L^{q / 2}\left(R^{3}\right)}\right]^{a 2^{-1}(a+b)^{-1}}<N }
\end{align*}
$$

(the factor 2 occurring after max in (1.3) can be dropped for $n=2$ or 3) then for any real k with $|k|<1 / N$
a) $T(k)$ is the unique self-adjoint operator determined from the resolvent

$$
\begin{equation*}
R(z, k)=R(z)-k\left[R(z) B^{*}\right](1+k Q(z))^{-1} A R(z) \tag{1.4}
\end{equation*}
$$

where $Q(z)=\left[A R(z) B^{*}\right]$ is a bounded operator from H^{\prime} to H^{\prime} and $\|Q(z)\|<N$ for $\operatorname{Im} z \neq 0$.
b) The operators T and $T(k)$ are unitarily equivalent, i.e.

$$
T(k)=W_{ \pm}(k) T W_{ \pm}(k)^{*}
$$

where $W_{ \pm}(k)$ are unitary and are defined by

$$
\begin{equation*}
\left(W_{ \pm} u, v\right)=(u, v) \mp(k / 2 \pi i) \int_{-\infty}^{+\infty}\left(A R(\lambda \pm i 0) u, B R(\lambda \mp i 0, k)^{*} v\right) d \lambda \tag{1.5}
\end{equation*}
$$

with $u, v \in H . W_{ \pm}(k), W_{ \pm}(k)^{*}$ admit absolutely convergent (in operator norm) series expansions in k.
c) The operators $W_{ \pm}(k), W_{ \pm}(k)^{*}$ of part b are the wave operators of scattering theory, i.e. on all H we have

$$
\begin{aligned}
W_{ \pm}(k) & =s-\lim _{t \rightarrow \pm \infty} e^{i T(k) t} e^{-i T t} \\
W_{ \pm}(k)^{*} & =\underset{t \rightarrow \pm \infty}{s-\lim _{t \rightarrow \infty} e^{i T t} e^{-i T(k) t}}
\end{aligned}
$$

and the scattering operator $S=W_{+}(k)^{*} W_{-}(k)$ is unitary.

Remarks

1. $T(k)$ defined through (1.4) agrees with the definition of $T(k)$ defined by the quadratic forms method of Simon [7] as each $V_{i} \in L^{3 / 2}\left(R^{3}\right)$ by (1.3) and $L^{3 / 2}\left(R^{3}\right) \subset R$ (the Rollnik class).
2. In (1.5) $A R(\lambda \pm i 0) u$ are H^{\prime} valued functions of λ and exist a.e. for $-\infty<\lambda<\infty$ as boundary values of the analytic vector $A R(z) u$. Similar remarks apply to $B R(\lambda \mp i 0, k)^{*} v$.
3. For the case $n=2$ Kato [1] (see Theorem 6.1) showed that $V \in R$ is sufficient for the conclusions of Theorem 1.1 to hold for small k.

2. Proof of Lemma and Theorem

Proof of Lemma 1.1. We will make estimates to establish sufficient conditions on the V_{i} so that the operators

$$
\begin{equation*}
C_{i} R(z) D_{j} \quad C_{i}, D_{j}=A_{i}, A_{i}^{*}, B_{i}, B_{\imath}^{*} \tag{2.1}
\end{equation*}
$$

admit norm bounded analytic extensions, $\left[C_{i} R(z) D_{j}\right]$, where the bound is uniform for $\operatorname{Im} z \neq 0$.

More precisely, we will show

$$
\begin{align*}
& \sup \left\|\left[C_{i} R(z) D_{j}\right]\right\| \\
& <\left[\left(\frac{4 \pi}{2 m_{j}}\right)^{-3 p^{-1}} a_{i j}^{-3 p^{-1+1}}\left(-3 p^{-1}+1\right)^{-1}\left\|V_{i}\right\|_{L^{p / 2}\left(R^{3}\right)}^{1 / 2}\left\|V_{j}\right\|_{L^{p / 2}\left(R^{3}\right)}^{1 / 2}\left(c_{i j}\right)^{3 p-1}\right. \\
& +\left(\frac{4 \pi}{2 m_{j}}\right)^{-3 q^{-1}} a_{i j}^{\left.-3 q^{-1+1}\left(3 q^{-1}-1\right)^{-1}\left\|V_{i}\right\|_{L^{q / 2}\left(R^{3}\right)}^{1 / 2}\left\|V_{j}\right\|_{L^{q / 2}\left(R^{3}\right)}^{1 / 2}\left(c_{i j}\right)^{3 q^{-1}}\right]} \tag{2.2}
\end{align*}
$$

where $a_{i j}>0,1 \leqq q<3<p \leqq \infty$ and $m_{j}^{-1}=m_{k}^{-1}+m_{l}^{-1}$ for $j=(k l), k<l$. The constant $c_{i j}=1$ if $i=j$ and $c_{i j}=\left(m_{k}+m_{l}\right) m_{k}^{-1}$ for $k<l, i=(l m)$, $j=(k l) ; c_{i j}=\left(m_{k}+m_{l}\right) m_{l}^{-1}$ for $k<l, i=(k m), j=(k l)$. The expression (2.2) holds for i, j the same pair or not completely disjoint pairs. Minimizing the right hand side of (2.2) with respect to the $a_{i j}$ we have

$$
\begin{align*}
\left.\sup _{z} \|\left[C_{i} R(z) D\right]\right] \| \leqq & \left(2 m_{j} c_{i j}\right)(4 \pi)^{-1} \cdot\left(a^{-1}+b^{-1}\right) \\
& \cdot\left[\left\|V_{i}\right\|_{L^{p / 2}\left(R^{3}\right)}\left\|V_{i}\right\|_{L^{p / 2}\left(R^{3}\right)}\right]^{b 2^{-1}(a+b)^{-1}} \\
& \cdot\left[\left\|V_{i}\right\|_{L^{g / 2}\left(R^{3}\right)}\left\|V_{j}\right\|_{L^{g / 2}\left(R^{3}\right)}\right]^{a 2^{-1}(a+b)^{-1}}
\end{align*}
$$

where $a=-3 p^{-1}+1>0$ and $b=3 q^{-1}-1>0$.
For i, j completely disjoint pairs we have

$$
\begin{align*}
\sup _{z}\left\|\left[C_{i} R(z) D_{j}\right]\right\| & \leqq 2\left(\sup _{z}\left\|\left[C_{i} R(z) C_{i}\right]\right\|\right)^{1 / 2}\left(\sup _{z}\left\|\left[D_{j} R(z) D_{j}\right]\right\|\right)^{1 / 2} \tag{2.3}\\
& \leqq 2 \max _{i, j}\left(\sup _{z}\left\|\left[C_{i} R(z) D_{j}\right]\right\|\right)
\end{align*}
$$

We now make the estimates required to establish (2.2).
Since $A_{i}=A_{i}^{*} \geqq 0, B_{i}=A_{i} U_{i}=U_{i} A_{i}$ where U_{i} is a partial isometry it is sufficient to bound the norms $\left\|A_{i} R(z) A_{j} u\right\|$ where

$$
u \in D\left(A_{j}\right)=D\left(A_{j}^{*}\right)=D\left(B_{j}\right)=D\left(B_{j}^{*}\right)
$$

For the case of i, j the same and i, j different but not disjoint pairs we reduce the calculation to two body considerations and follow a method of Kato [1]. For i, j disjoint pairs we reduce the problem to the case where the pairs are the same.

Case 1. $i=j$, i.e., $i=(k l)$. We have

$$
\begin{equation*}
\left\|A_{i} e^{-i \boldsymbol{T} t} A_{i} u\right\|_{2}=\left\|A_{i} e^{-i T_{2} t} A_{i} u\right\|_{2} \tag{2.4}
\end{equation*}
$$

where T_{i} is the relative kinetic energy of the pair i. We show that

$$
\begin{equation*}
\left\|A_{i} e^{-i T_{\mathrm{t}} t} A_{i} u\right\|_{2} \leqq\left(4 \pi t / 2 m_{i}\right)^{-3 p^{-1}}\left\|A_{i}\right\|_{L^{p}\left(R^{3}\right)}^{2}\|u\|_{2}, \quad u \in D\left(A_{i}\right), t>0 \tag{2.5}
\end{equation*}
$$

where $m_{i}^{-1}=m_{k}^{-1}+m_{l}^{-1}$ so that, using the representation

$$
R(z) u=i \int_{0}^{\infty} e^{i z t} e^{-i T t} u d t, \quad \operatorname{Im} z>0
$$

we have for $\operatorname{Im} z>0$

$$
\begin{align*}
\left\|A_{i} R(z) A_{i} u\right\|_{2} & \leqq \int_{0}^{\infty}\left\|A_{i} e^{-i T t} A_{i} u\right\|_{2} d t \tag{2.6}\\
& \leqq \int_{0}^{a_{i i}}\left\|A_{i} e^{-i T_{i} t} A_{i} u\right\|_{2} d t+\int_{a_{u 1}}^{\infty}\left\|A_{i} e^{-i T_{i} t} A_{i} u\right\|_{2} d t
\end{align*}
$$

For $\operatorname{Im} z<0$ we obtain a similar majorization. We obtain (2.2) by substituting (2.5) with p for the first integrand of (2.6) and (2.5) with q replacing p in the second integrand of (2.6). We now derive (2.5). Denote the coordinates by $\left(x, x_{R}\right)$ where $x \in R^{3}$ is the relative coordinate of the pair i and x_{R} are the other $3 n-6$ coordinates. We have for $t>0$

$$
\begin{align*}
\left(e^{-i T_{2} t} A_{i} u\right) & \left(x, x_{R}\right) \\
= & \left(4 \pi i t / 2 m_{i}\right)^{-3 / 2} \int \exp \left[-2 m_{i}|x-y|^{2} / 4 i t\right] A_{i}(y) u\left(y, x_{R}\right) d y \tag{2.7}
\end{align*}
$$

The spatial integrations are understood to be over R^{3} and are to be interpreted as limit in mean relations. With $v\left(x, x_{R}\right)=\exp \left(-2 m_{i}|x|^{2} / 4 i t\right)$ - $A_{i}(x) u\left(x, x_{R}\right)$ we have, using the Hausdorff-Young inequality [1],

$$
\begin{equation*}
\left[\int\left|\left(e^{-i T_{i} t} A_{i} u\right)\left(x, x_{R}\right)\right|^{r^{\prime}} d x\right]^{1 / r^{\prime}} \leqq C_{i}\left(r^{\prime}, t\right)\left[\int\left|v\left(x, x_{R}\right)\right|^{r} d x\right]^{1 / r} \tag{2.8}
\end{equation*}
$$

with $r^{\prime-1}+r^{-1}=1, C_{i}\left(r^{\prime}, t\right)=\left(4 \pi t / 2 m_{i}\right)^{3\left(r^{-1}-2^{-1}\right)}$. But

$$
\begin{equation*}
\left[\int\left|v\left(x, x_{R}\right)\right|^{r} d x\right]^{1 / r} \leqq\left\|A_{i}\right\|_{L^{2} p\left(R^{3}\right)}\left[\int\left|u\left(x, x_{R}\right)\right|^{2} d x\right]^{1 / 2} \tag{2.9}
\end{equation*}
$$

with $r^{-1}=2^{-1}+(2 p)^{-1}$. Thus

$$
\begin{align*}
& \int\left|\left(A_{i} e^{-i T_{i} t} A_{i} u\right)\left(x, x_{R}\right)\right|^{2} d x d x_{R} \leqq \int\left[\int\left|A_{i}(x)\right|^{2 s} d x\right]^{1 / s} \tag{2.10}\\
& \cdot {\left[\int\left|\left(e^{-i T_{i} t} A_{i} u\right)\left(x, x_{R}\right)\right|^{2 s^{\prime}} d x\right]^{1 / s^{\prime}} d x_{R} }
\end{align*}
$$

with $s^{-1}+s^{\prime-1}=1,2 s^{\prime}=r^{\prime}$, which upon substituting (2.8) and (2.9) in (2.10) gives (2.5).

Case 2. $i \neq j$ but i and j not disjoint pairs. It is sufficient and for definiteness we consider $i=(23), j=(12)$. In analogy with case $1,(2.4)$, we
have

$$
\begin{equation*}
\left\|A_{23} e^{-i T t} A_{12} u^{\prime}\right\| \leqq\left\|A_{23} e^{-i T_{j} t} A_{12} u\right\|, \quad u=e^{-l\left(T-T_{j}\right) t} u^{\prime} \tag{2.11}
\end{equation*}
$$

where in this case T_{j} is the relative kinetic energy of the pair j. The relative coordinates of 1 and 2 we denote by $y_{1} \in R^{3}$ and y_{1} plays the role of the variable x of case 1 . We denote the coordinates by $\left(y_{1}, x_{R}\right)$. We have with $\left\|A_{12} u\left(\cdot, x_{R}\right)\right\|_{L^{r}\left(R^{3} . d v_{1}\right)}<\infty$,

$$
\begin{equation*}
v\left(y_{1}, x_{R}\right)=e^{-\left|y_{1}\right|^{2} 2 m_{j} / 4 i t}\left(A_{12} u\right)\left(y_{1}, x_{R}\right) \tag{2.12}
\end{equation*}
$$

$m_{j}^{-1}=m_{1}^{-1}+m_{2}^{-1}$, and from the Hausdorff-Young inequality

$$
\begin{equation*}
\left\|e^{-i T_{J} t} A_{12} u\left(, x_{R}\right)\right\|_{L^{r}\left(R^{3}, d y_{1}\right)} \leqq C_{j}\left(r^{\prime}, t\right)\left\|v\left(, x_{R}\right)\right\|_{L^{r}\left(R^{3}, d y_{1}\right)} \tag{2.13}
\end{equation*}
$$

where $r^{\prime-1}+r^{-1}=1$. Then

$$
\begin{equation*}
\left\|A_{23} e^{-i T_{J} t} A_{12} u\right\|_{2}^{2}=\int\left|A_{23}\right|^{2}\left|\left(e^{-i T_{J} t} A_{12} u\right)\left(y_{1}, x_{R}\right)\right|^{2} d y_{1} d x_{R} \tag{2.14}
\end{equation*}
$$

We use the Holder inequality in y_{1} with $s^{-1}+s^{\prime-1}=1$ to obtain

$$
\begin{align*}
\left\|A_{23} e^{-i T_{J} t} A_{12} u\right\|_{2}^{2} \leqq & \int\left[\int\left|A_{23}\right|^{2 s} d y_{1}\right]^{1 / s}\left[\int \mid\left(e^{-i T_{j} t} A_{12} u\right)\right. \\
& \left.\left.\cdot\left(y_{1}, x_{R}\right)\right|^{2 s^{\prime}} d y_{1}\right]^{1 / s^{\prime}} d x_{R} \tag{2.15}\\
\leqq & \left(m_{12} / m_{1}\right)^{3 / s}\left\|A_{23}\right\|_{L^{2}\left(R^{3}\right)}^{2} C_{j}\left(r^{\prime}, t\right)^{2} \\
& \cdot \int\left\|v\left(, x_{R}\right)\right\|_{L^{r}\left(R^{3}, d y_{1}\right)}^{2} d x_{R}
\end{align*}
$$

with $r^{\prime}=2 s^{\prime}$. In arriving at (2.15) we have used the fact that $A_{23}\left(x_{2}^{\prime}-x_{3}^{\prime}\right)$ $=A_{23}\left(m_{1} m_{12}^{-1} y_{1}+\sum_{i} b_{i} x_{R}^{i}\right), x_{2}^{\prime}, x_{3}^{\prime}$ denote the coordinates of 2 and 3 , $m_{12}=m_{1}+m_{2}$, and where $\sum_{i} b_{i} x_{R}^{i}$ is a linear combination of the other x_{R} coordinates (see Appendix 1 of Simon [2]). Thus we have

$$
\left.\left.\left|\int\right| A_{23}\right|^{2 s} d y_{1}\right|^{1 / s}=\left(m_{12} / m_{1}\right)^{3 / s}\left\|A_{23}\right\|_{L^{2 s}\left(R^{3}\right)}^{2} .
$$

In the case where A_{13} occurs in place of A_{23} we have $A_{13}\left(x_{1}^{\prime}-x_{3}^{\prime}\right)=A_{13}$ $\left(m_{2} m_{12}^{-1} y_{1}+\sum_{i} c_{i} x_{R}^{i}\right)$. Using the Holder inequality again in (2.15) we obtain

$$
\begin{align*}
\left\|v\left(, x_{R}\right)\right\|_{L^{2}\left(R^{3}, d y_{1}\right)}^{2} & =\left[\int\left|A_{12} u\left(y_{1}, x_{R}\right)\right|^{r} d y_{1}\right]^{2 / r} \\
& \leqq\left[\int\left|A_{12}\right|^{r k} d y_{1}\right]^{2 / r k}\left[\int\left|u\left(y_{1}, x_{R}\right)\right|^{r k^{\prime}} d y_{1}\right]^{2 / r k^{\prime}} \tag{2.16}
\end{align*}
$$

where $k^{-1}+k^{\prime-1}=1$. Let $r k^{\prime}=2$ then

$$
\begin{equation*}
\left\|A_{23} e^{-i T_{J} t} A_{12} u\right\|_{2}^{2} \leqq\left(m_{12} / m_{1}\right)^{6 / q}\left\|A_{23}\right\|_{L^{a}\left(R^{3}\right)}^{2}\left\|A_{12}\right\|_{L^{a}\left(R^{3}\right)}^{2} C^{2}\left(r^{\prime}, t\right)\|u\|_{2}^{2} \tag{2.17}
\end{equation*}
$$

with $q=2 r(2-r)^{-1}$ or as $\left\|u^{\prime}\right\|_{2}=\|u\|_{2}$ we have

$$
\begin{align*}
& \left\|A_{23} e^{-i T t} A_{12} u^{\prime}\right\|_{2} \\
& \leqq\left(m_{12} / m_{1}\right)^{3 / q}\left\|A_{23}\right\|_{L^{q}\left(R^{3}\right)}\left\|A_{12}\right\|_{L^{q}\left(R^{3}\right)}\left(4 \pi t / 2 m_{j}\right)^{-3 / q}\left\|u^{\prime}\right\|_{2} \tag{2.18}
\end{align*}
$$

which is analogous to (2.5). Proceeding in the same manner as from (2.5) to (2.6) we obtain (2.2) for this case.

Case 3. $i \neq j$ with the pair i disjoint from the pair j. We have for $\operatorname{Im} z>0$ with the sup taken over $v \in D\left(A_{j}\right),\|v\|=1$,

$$
\begin{align*}
\left\|A_{i} R(z) A_{j} u\right\| & \leqq \sup \left|\int_{0}^{\infty}\left(v, A_{i} e^{i T t} A_{j} u\right) d t\right| \\
& =\sup \left|\int_{0}^{\infty}\left(e^{i T_{j} t} v, A_{i} e^{-i\left(T-T_{j}\right) t} A_{j} u\right) d t\right| \tag{2.19}\\
& =\sup \left|\int_{0}^{\infty}\left(A_{j}^{*} e^{i T_{j} t} v, A_{i} e^{-i\left(T-T_{j}\right) t} u\right) d t\right| \\
& \leqq\left(\sup \left(\int_{0}^{\infty}\left\|A_{j}^{*} e^{i T_{j} t} v\right\|^{2} d t\right)^{1 / 2}\right)\left(\int_{0}^{\infty}\left\|A_{i} e^{-i T_{i} t} u\right\|^{2} d t\right)^{1 / 2}
\end{align*}
$$

where T_{i}, T_{j} are the relative kinetic energies of the pairs i, j respectively. From Lemma 3.6, Eq. (3.9) and Theorem 5.1, Eq. (5.3) of Kato [1] we have (recalling that $A_{k}: D\left(A_{k}\right) \subset H \rightarrow H$)

$$
\begin{gather*}
\int_{-\infty}^{\infty}\left\|A_{k} e^{-i t T_{k}} w\right\|^{2} d t \leqq 2\|w\|^{2} \sup \left\|A_{k} R\left(z, T_{k}\right) A_{k}^{*} u^{\prime}\right\| /\left\|u^{\prime}\right\| \tag{2.20}\\
\operatorname{Im} z \neq 0, \quad u^{\prime} \in D\left(A_{k}^{*}\right), \quad u^{\prime} \neq 0
\end{gather*}
$$

for $k=i$ or $j, w \in H$ so that

$$
\begin{align*}
\left\|A_{i} R(z) A_{j} u\right\| \leqq & 2\left[\sup \left\|A_{i} R\left(z, T_{i}\right) A_{i}^{*} v^{\prime}\right\| /\left\|v^{\prime}\right\|\right]^{1 / 2} \tag{2.21}\\
& \cdot\left[\sup \left\|A_{j} R\left(z, T_{j}\right) A_{j}^{*} u^{\prime}\right\| /\left\|u^{\prime}\right\|\right]^{1 / 2}\|u\|
\end{align*}
$$

where the sup in (2.21) is taken over $\operatorname{Im} z \neq 0, v^{\prime} \in D\left(A_{i}^{*}\right), u^{\prime} \in D\left(A_{j}^{*}\right)$, $v^{\prime} \neq 0, u^{\prime} \neq 0$. The resolvents $R\left(z, T_{m}\right)$ in (2.21) are the resolvents of the operators T_{m}. By noting that each term in the brackets of (2.21) just reduces to the type given by (2.6) we arrive at (2.3).

Proof of Theorem 1.1. Since T is self-adjoint it is obvious that all the hypotheses of Theorems 1.5, 3.9 and 4.1 of Kato [1] are satisfied except for the T-smoothness [1, Definition 1.2] of A and B and that

$$
\begin{equation*}
\left\|A R(z) B^{*} u\right\| \leqq N\|u\|, \quad \operatorname{Im} z \neq 0, \quad u \in D\left(B^{*}\right) \subset H^{\prime} \tag{2.22}
\end{equation*}
$$

Thus our proof consists in showing that these two hypotheses are satisfied. From Remark 1.10 of Kato [1] we see that T-smoothness of A_{i} and B_{i} imply that A and B are T-smooth. From the hypothesis (1.3) we see (referring to Lemma 1.1) that $\left\|\left[A_{i} R(z) A_{i}\right]\right\|$ is bounded uniformly for $\operatorname{Im} z \neq 0$. Since $A_{i}=A_{i}^{*} \geqq 0, B_{i}=A_{i} U_{i}=U_{i} A_{i}$ this implies the T-smoothness of A_{\imath} and B_{\imath} using Theorem 5.1, Eq. (5.3) of Kato [1].

Eq. (2.22) is valid since

$$
\begin{align*}
\left\|A R(z) B^{*} u\right\| & \leqq \sup _{\|v\|=1}\left|\left(v, A R(z) B^{*} u\right)\right| \\
& \leqq \sup _{\|v\|_{1}}\left[\sum_{i j} \mid\left(v_{i}, A_{i} R(z) B_{j}^{*} u_{j}\right) \|\right. \tag{2.23}\\
& \left.\leqq \sup _{\|v\|_{1}} 1\left(\sum_{i j}\left\|v_{i}\right\|^{2}\left\|u_{j}\right\|^{2}\right)^{1 / 2}\left(\sum_{i j}\left\|\left[A_{i} R(z) B_{j}^{*}\right]\right\|^{2}\right)^{1 / 2}\right] \\
& \leqq \max _{i, j}\left\|\left[A_{i} R(z) B_{j}^{*}\right]\right\|(n(n-1) / 2)\|u\|
\end{align*}
$$

and by the hypotheses (1.3) the right-hand side of (2.23) is less than $N\|u\|$ for $\operatorname{Im} z \neq 0$.

References

1. Kato, T.: Wave Operators and Similarity for Some Non-selfadjoint Operators. Math. Ann. 162, 258-279 (1966).
2. Simon, B.: On the Infinitude or Finiteness of the Number of Bound States of an N-Body Quantum System, I. Helv. Phys. Acta 43, (6) 607--630 (1970).
3. Hepp, K.: On the Quantum Mechanical N-Body Problem. Helv. Phys. Acta 42, (3) $425-458$ (1969).
4. Lavine, R.: Commutators and Scattering Theory. I. Repulsive Interactions. Commun. math. Phys. 21, 301-323 (1971).
5. Balslev, E., Combes, J. M.: Spectral Properties of Many-body Schroedinger Operators with Dilatation-analytic Interactions. Commun. math. Phys. 22, 280-294 (1971).
6. Albeverio, S.: (to appear in Ann. Phy.).
7. Simon, B.: Quantum Mechanics for Hamiltonians defined as Quadratic Forms. Princeton, New Jersey: Princeton University Press. 1971.

R. J. Iorio, Jr.
Departamento de Matemática Ponificia Universidade Católica
Rio de Janeiro, Brasil

