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Free Energy of Gravitating Fermions
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Abstract. We calculate rigorously, in a suitable thermodynamic limit, the free energy
of a system of nonrelativistic fermions which interact with attractive r~ ̂ potentials. It
is shown that the effective field approximation becomes exact in this limit and results
in the temperature-dependent Thomas-Fermi equations.

1. Introduction

The quantum mechanical Hamiltonian

" P? e^ I1-1)- _
ί=1 έlvli l^ί<j^N \xi xj\

describing N particles interacting with r"1 potentials is the relevant
quantity if weak .and nuclear interactions as well as relativistic effects
can be neglected. In spite of the vast domain of applicability only few
results have been rigorously derived from it, if N>2. Dyson and
Lenard [1] have shown that, for K = 0, £ et = 0 and certain combinations

i

of statistics, the ground state energy of (1.1) for large N is proportional
to N. Lebowitz and Lieb [2] announced a proof that the free energy FN

then is well-behaved.
Levy-Leblond [3] proved that, for κ> 0 and £ et = 0, the ground

i
state energy for identical fermions is proportional to N7/3 for large N.

We propose to calculate exactly the limit JV->oo of N~Ί/2FN for
nonrelativistic identical fermions interacting with their gravitational
forces. The reason why this can be done is that, owing to the long range
of the force, the temperature-dependent Thomas-Fermi equations
become exact.

The system exhibits an interesting thermic behaviour which resembles
certain features of stars and which has been discussed previously for
simplified models [4].

* On leave of absence from the University of Heidelberg, Germany.
** On leave of absence from the University of Vienna, Austria.
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There is a region where the microcanonical heat capacity is negative.
In the canonical ensemble that region is bridged by a phase transition.

In this paper we shall concentrate on the mathematical problem
of the asymptotic equality of the exact and the Thomas-Fermi free energy.

We denote by F(N9 β, R) the free energy of a system of N identical

fermions enclosed within a spherical volume —— R3 at temperature

T=l/kβ (k = Boltzmann's constant). The fermions interact with their
gravitational forces only. We will choose units h= 1, Fermion mass = 1,
and K = gravitation constant = 1.

The free energy is defined by

-/Ml/2 Σ P?-l/2 Σ \xi-xj\-1

where 2tf (N, R) is the Hubert space of square integrable, complex valued,
totally antisymmetric wave functions of N arguments xί9x29...9xN

which vanish if at least one \xt\ ^ R. By the unitary transformation
'^x^p-^Rp expression (1.2) can be rewritten as

(1.3)

We will investigate the limit λ — > oo of

(1.4)

, β, λί/3R) = λ-Ί/3Fκ==0(λN, λ~4/3β, λ~ί/3R)

for fixed AT, β, R and for λN eN.
The limit along the particular "ray" (1.4) is dictated by the Thomas-

Fermi equations and their law of corresponding states. It means that
the system becomes hotter and contracts if N is increased. The usual
limit (β constant, R ~ N1/3) could be taken if we would choose K ~ N~2/3.
It should also be noted that for non-interacting particles the two limits
coincide since

holds.
We define

with
λN

K=l/2λ~5/3R-2 X P? (1.6)
i = l

and for various interactions V.
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For
λN

we have

i.e. the function of which we want to study the limit λ-κ>o. If AT has
been chosen sufficiently large, β and R small1 the limit is the desired
free energy since then

lim /(A, TV) w /(I, TV) = F(N, β, R). (1.9)
λ->oo

For technical reasons we cannot directly prove our assertion for the
singular Newton potential

We shall have to replace it by
s

Vμs(x>y)= Σ Va<Pa(x)<Pa(y) (U1)
α = l

where φa are the normalized and real eigenfunctions appearing in the
expansion of the continuous potential (μ > 0)

~χ- °°
= Σ vaφa(x)φa(y) (1.12), v _ .

I* "I

considered as an integral kernel operator.
The φa satisfy the equation

f d*yl~e "* ' φa(y) = vaφa(x) (1.13)
-

with positive eigenvalues va.
Again for technical reasons we include the self-interaction and define

λN s

R-1 Σ v^x^-λ-1 ΣJα

2 (1.14)

1 A typical "neutron star" of 1057 particles at a temperature of 5 MeV
and enclosed into a sphere of 100km radius corresponds to (λN, λ~4/3β, λ~1/2R) with
N=l, β = 60h2κ-2mΰ5, R = 29h2κ-ίmΰί and A=10 5 7. Since N,β and R are of order
unity (if measured in their natural units) and since λ— 1057 is sufficiently large, we will
describe the above "neutron star" by the limit λ-+ao. For N= 1057, ^^(SMeV)"1 and
R = 100 km we would have reached the same accuracy for λ = 1.



Free Energy of Gravitating Fermions 25

where

In Chapter 2 we shall prove that these approximations are arbitrarily
good in the sense that

lim lim lim {/(A, Vμs) - f(λ, V^} = 0 (1.16)
μ-> oo s->oo A->oo

holds. This also shows that our result does not depend on the singularity
but on the long range of the Newton potential. In particular, the addition
of sufficiently short range forces will not affect it.

Next we add to Vμs a term

where (σ1? σ2, . . ., σs) e 1RS.
It will turn out that for suitable σ's the effect of this term is negligible:

we prove in chapter 3 that

lim { inf /μ, Vμs + WμB\_σ\) - /(A, Vμs)\ = 0 (1.18)
λ->oo (.σeIRs ^ )

is true.
The interaction Vμs + PΓμs [σ] is linear in the operators Ja, it describes

a system of non-interacting particles in the external field generated by σ.
We will demonstrate in Chapter 4 that the barometric formula results in
the limit λ -> oo : If the external field U : [0, 1] ->1R is a regulated function
(i.e. the uniform limit of step functions, see Ref. [8]) and

λN

Σ U(\xt\) (1.19)

the corresponding interaction then

ΛΓα 1 ί

lim /(A, V)=-— - -R*$dr4πr2gβ(-x-βU(r)) (1.20)
λ-^co P β 0

where

and α is the solution of

i
J dr 4πr2 g'β(-u-β U(r)) = N . (1.22)
o

α is unique since g'(z) is strictly mono tonic.
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In Chapter 5 it will be shown that lim and inf in (1.18) can be inter-
λ->oo σεlR s

changed, that the infimum is actually attained for a σμsεIR6, and that this
σμs is a solution of the self-consistency equation, i.e.

W"(x)= Σ σ?vaφa(x) satisfies
α = l

Uμs(x) = - f d3y vμs(x, y) g'β(-βR2

with

These are the well known temperature dependent Thomas-Fermi
equations for particles interacting with the potential vμs. In Ref. 5 we
discuss uniqueness and properties of its solutions. In particular, we
demonstrate that the solution is insensitive to small changes of v (and
can therefore be calculated on a computer): we shown that Uμs tends
with μ, S-+00 to a solution U of the Thomas-Fermi equation with the
Newton potential, α and F converge to the corresponding values.

Putting (1.16), (1.18), (1.20), and the results of Chapter 5 and Ref. 5
together, we arrive at the final result:

For all N eN, β > 0 and R > 0 we have

lim λ-Ί

λ->oo

β M<ι X '

where U(x) and α are determined by

f ^3χ/ rW = ~ J

(2π)3

 ι+g/ϊ(4 + JliϋW)+β

and

R3 j rf3xίτ& - ̂ - =N. (1.26)J (2π)3

 + Λ2ϋ(jc))+α

If (1.25) and (1.26) admit, as is actually the case, for some values AT, β, R
several solutions, that one for which the right-hand side of (1.24) is
smallest is to be chosen.
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2. Replacing^ by Vμs

The operator V^ of (1.7) is bounded with respect to K of (1.6): for
all Ψe@κ-@κ is the standard domain of K such that K is self-
adjoint [6]2- there exist positive numbers a and b such that

\\VsΨ\\^a\\Ψ\\+b\\KΨ\\ (2.1)

holds. The infϊmum of all such b, the JC-bound of F>, is zero [6]. There-
fore, according to an investigation by Maison [7], f ( λ , KV^) of (1.5)
exists, is entire in κ9 and holomorphic in β in the half-plane Reβ>0.
The derivative with respect to K can be expressed as an expectation
value of the interaction:

V^) = <V^ (2.2)

—
Lτ

The domain of the self-adjoint operator K+V^is also 2K. The eigen-
functions φα of (1.13) are continuous, hence the operators Jα are bounded,
and so is Vμs. Thus, /(/I, Vμs) exists as well.

The difference between Vμs and V^ is

λN oo ^ '

Σ Σ WaM<Pa(Xj)

with
λN p-μ\xt-xj\

-

ίφ j = l

By Mercer's theorem [8] the sum (1.12) converges uniformly in S{ x S1?

consequently the norm of the last term in (2.4) converges to zero uniformly
with respect to λ if s-»oo. Therefore,

lim lim [/μ, Vμs) - /μ, Vj, + VYJ] = 0 (2.6)
S-^ OO Λ->00

holds for all μ > 0 in virtue of the general property

)\£\\B\\. (2.7)

Now, Vγ is smaller than — V^ , thus the (K + V^ ) - bound of VΎ is also
zero. Consequently, the mapping t-+f(λ, V^ + tVY) is entire. For real t

2 There the infinite volume case is studied, however, the result also holds for finite
volume.
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it increases with ί since Vγ ̂  0 and it is concave (this is a general property
of /(A, A + tB)). We then find

It is now our task to show that the expectation value of the Yukawa-
interaction Vγ vanishes uniformly in λ if μ—»oo. For this we will calculate
a lower bound of μ~ί/5K— Vγ.

Following Dyson [1] we decompose this Hamiltonian as follows:

,-μ\Xi-xj\

(2.9)
\Xi ~ Xj\

where
n = λN , M = μ1/5/ί5/3fl2(/UV - 1)

and

Each of the ftf is an Hamiltonian describing the motion of n — 1 particles
of mass M in the attractive Yukawa-potential of the n'th. The particles
do not interact. The ground state of ht is obtained if the n particles are
filled into the n lowest states (recall that we deal with fermions).

The single particle bound states lie certainly higher than those of the
hydrogen atom, namely εv = — Mα2/2v2 with multiplicity v2(v = 1, 2, . . .).
However, the Yukawa-potential can bind at most n0 states, for which
number the upper bound

n0 < 2 j? dr r 2Mα ̂ —\ - {sup r2 2Mα
lo r J Uo

I2M^» <"°>

is known [9]3. nQ corresponds to a hydrogen atom principal quantum
number v0 with Vφ/3 = nθ9 therefore the ground state of ht is higher than

- 1/2 Mα2 l/ϊήv ^ -2α2M(Mα/μ)1/2 .

We conclude that μ~1/5K— VΎ is bounded from below by
-2rcα2M(Mα/μ)1/2 so that we obtain

(2.11)

It remains to show that <X>^ is bounded independently of λ.

Again this estimate for infinite volume is a fortiori also valid for finite volume.
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The mapping

(2.12)

is analytic in the half-plane Re t > 0, increases with real t and is concave.
Hence the derivative with respect to t for t = 2, which is just
is smaller than

where the suffix β/2 means that definition (1.5) applies with β being
replaced by β/2.

The first term can be bounded above by

*N pL
- 2

which is nothing else but the usual free energy for non-interacting
fermions. It is known [10] that the free energy of a system of λN non-

interacting particles within a spherical volume λ-^-R3, if divided by Λ,

converges with A->oo towards the well-known limit. Since Λ J V e N there
is an upper and a lower bound, fL(N,β,R)^f(λ,ϋ)^fv(N,β,R\ so
that

/(A, Vs) ^ /μ, 0) ̂  fυ(N9 β, R) (2.13)

holds for all λ.
The second term can be bounded from below since with Levy-

Leblond's estimate [3] for the ground state of identical fermions with
gravitational interaction, we find K + 2κVtAr^—κ2NΊ/3 for all R and
λ so that K + 2Vs^ 1/2K - 2ΛΓ7/3 and

/μ, 2Vjr)p/2 ^ 1/2 /μ, 0),/4 - 2N7/3 ̂  l/2fL(N9 β/4, R) - 2N7/3 (2.14)

holds for all λ.
With (2.13) and (2.14) we have established an /l-independent bound

for <^>v> This result together with (2.11), (2.8) and (2.6) complete the
proof of equation (1.16):

lim lim lim {/(A, Vμs) - f(λ, V^} = 0 .
μ— ̂  oo s— > oo Λ->OO

3. The Effective Field Approximation

It has been demonstrated in the preceding section that, for the
purpose of calculating the free energy, the original interaction V^ can
be approximated by a finite sum of squares of bounded hermitian
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operators Ja. In this chapter we shall show how a further simplification is
achieved if a product of operators is replaced by the product of the
operator and its expectation value. The justification of replacing a field
by what is usually called the effective field was originally demonstrated by
Bogoliubov Jr. [11] in connection with the BCS theory of super-
conductivity.

Let us define

1 -β\λκ+
φ(tJ)=-j\nΎre I — J (3.1)

where

-β{λK +
ι = l J

(3.2)
~βλK+ Σ l-

Tre I «= 1

foryelR s.
φ(tj) is increasing and concave in ί, hence

0 = 1

holds.
The fluctuation on the right-hand side can be further estimated [12]

by

Now, the integral

(3.5)

holds - recall

o

dδ(j}
defines a ξ e 1RS with 0 ̂  ξa ̂  1, and since

that δ(/) is the difference between two φ's the derivative of which with
respect to ja is an expectation value of Ja - we arrive at

Σ 2 \ \ J a \ \ . (3.6)
α = l

δ(ξ) can now easily be estimated by

Σ 2μj|+ι/2μα||.||[jα?μκ,jfl]]|| (3.7)
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so that

0^ 0(1,0) -0(0,0) (3.8)

^ Σ β "
has been established. We have used that the double commutator is equal

λN

to 1/2/1-5 / 3R~3va £ (Fφα(^))2 and that

φa=sup\φa(x)\, (3.9)

*)l (3.10)

are both finite since the eigenfunctions φa are continuous and continu-
ously differ entiable in S1 (cf. Eq. (1.13)).

With the positive definite operator FFμs[σ] as defined in (1.17) one
finds comparing (1.5) with (3.1)

(3.11)

which, together with (3.8) proves Eq. (1.18), namely

lim { inf /(A, Vμs + Wμs[_σ-]} - f(λ, Vμs)\ = 0.
λ-»αo (.σeIR5 J

4. The Barometric Formula

With
s •, / ^

(4.1)
α = l K ^ Λ V / «

and

β=1

we may write for the interaction appearing in Eq. (1.18):

λN

Vμs + Wβs[_σ~] = - 1/2R3 j d3xσ(x) U(x) + A'1 Σ W (4-3)
Si i = l

The first term on the r.h.s. of (4.3) is a onumber and will appear as an
additive contribution to the free energy. It presents no problem for the
limit λ-»oo. In this chapter we concentrate on the second term, in
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particular, we want to study the limit λ -> oo of

λN

λN

-βλK+ Σ U(χt)\

(4.4)

for fixed β, # and various A-independent external potentials U(x).
Note that fixed U corresponds to σα~Λ,1/2, but this is no difficulty

for Eq. (1.18) since the infimum there extends over all of 1RS.
Another remark concerns rotational symmetry: the truncation of

the eigenfunction expansion (1.12) to (1.11) can always be done in such a
way that the rotational symmetry of vμs(x9 y) is preserved. Since then
Vμs of (1.14) is also invariant under rotations the expectation value
appearing in Eq. (3.11) of the J's will define a spherically symmetric
σ(x). Therefore, the infimum in (3. 1 1) needs to be with respect to spherically
symmetric σ(x) only. Since U(x) of Eq. (4.2) equals — R2 §d3yvμs(x,y)σ(y)
we have to consider spherically symmetric external potentials only if s
is chosen such that vμs is spherically symmetric.

The problem thus separates into a radial and an angular part.
Correspondingly, the eigenvalues ε of

can be labelled by a radial quantum number n and the angular quantum
number /. A lower bound for the ε's is readily available

υ) (4.6)

where
v= inf U(r) (4.7)

O ^ r ^ l

is finite since U is a finite sum of functions which are continuous in
the unit ball Sί.

For this reason U can be approximated by a piecewise constant
potential Uτ with a finite number g of steps: for all η>0 there is an
integer g such that for

i f - ^ < ; i=ί,...,g (4.8)
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we have

sup \U(r)-Uτ(r)\£η.
O^r^ί

We furthermore consider a potential Uw which is Uτ + infinite
walls at r = i/g. This means that we impose in addition the restriction
that the wave functions have to vanish at r = i/g. Both Uτ and Uw are
extensions of the same potential ί/0 defined on the dense set of wave
functions vanishing at r = i/g. The intersection of this domain with the
domain of K gives 00, the domain of H0 = β(p2/2 + U0(r/λ1/3R)). H0 is
not self-adjoint but has defect indices (g, g). Its self-adjoint extension Hw

and Hτ have domains £20 + 2W and ̂ 0 + ̂ Γ respectively where Q)w

and $)Ύ are ^-dimensional subspaces. Clearly ε^^εj/ and from the
minimax-principle (En is an n-dimensional subspace)

%t

τ = inf sup (χ(r) Y?\Hw,τχ(r) Ύ?) (4.9)
EnC&o + @w,τ χeEn

we learn

£n-gj~η ^£ι~n ^εnj^<ι + η£%ι + *l (4.10)

This implies for the partition functions the following inequalities

- Σ vn,ιε%ι-Nλη - Σ vn,z£n,ί

Σ> -' ^Σ> nj

 (411)

I 9 oo W \

< Y' e

Σ' indicates the sum over all occupation numbers compatible with

Σvn>l = λN.
n,l

In terms of the corresponding free energies (4.4) we deduce from
(4.6) and (4.11)

- φ(λ, UW9 N)-Nη^- φ(λ, U, N) (4. 12)

inf φ(λ,Uw,N
f).

- '

Now, the eigenfunctions of Hw have their support in one of the
shells (i — 1) 5Ξ rg ^ ΐ, we can therefore replace the radial quantum number n
by the pair (i, m) where z labels the shell and m the radial excitation

3 Commun. math. Phys., Vol. 24
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in this shell. We shall require the following estimate later on:

l/2βR-2λ~213

<Fw (4.13)
= εi,m,ί

(πmg)2+ 1(1+!)!-—-} +2Uf for i > l (

(πmg)2+ 41(1+ l)g2 + 2U1 for i = l j

Introducing the partition function of the Γth shell

λ,N)= y> e m,ι (4.14)
V

we obtain for the partition function with walls

-λβ
,vw,N)= y e ί = ί (4.15)

( N l t . . . , N g )
ΣNι = N

Since Uw is constant inside a shell the free energy φ(i)(λ, N) is the
free energy of non-interacting particles plus NUt. One knows [10]
that φ(i\λ9 N) decreases with increasing λ. By standard arguments [10]
one can demonstrate that this property also holds for φ(λ, UW9 N). Since
the latter is bounded below by φ(λ,Q,N) — vN - which is known to
converge for λ ->oo - we conclude that φ(oo9 Uw, N) = lim φ(λ, UW9 N)

• , λ->oo
exists.

From (4.12) we deduce that φ(ao9U9N) also exists and is arbitrarily
close to φ(oo9 UW9 N) for η sufficiently small.

The explicit form of φ(co,UW9N) can be calculated by studying
the grand canonical ensemble.

The standard proof of the equivalence of the canonical and the
grand canonical ensemble can easily be formulated to apply to the case at
hand. The grand canonical partition function is the sum of those for the
individual shells which are the usual expressions for non-interacting
particles (this can be seen by inspecting the limits (4.13) of the eigen-
values). In the limit λ -> oo the sums over eigenvalues approach integrals
in momentum space, and with η-+Q (0->oo) the sum over shells becomes
a space integral. We will not write down all the necessary epsilontics
since this is an exercise in elementary analysis.

The result is

lim φ(λ, U,N)=
β βo o 12 π2 (4.16)
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with α being the unique solution of

^^(l + eβ(ε+u^^Γ^ (4.17)
o o I/ ^ ;t

This completes the proof of the barometric formula (1.20) to (1.22).

5. The Final Result

It is a by-product of the investigations in the preceding section
that φ(λ, U, N) converges from above towards the limit. Therefore, the
limit and the infimum operation in Eq. (1.18) can be interchanged.

We have thus to investigate the infimum of

where ασ is a solution of

R3 J d3xg'βlβR2 t vaσaφa(x)-κσ\=N. (5.2)

Since σ depends on α this solution need no longer be unique.
The derivative of (5.1) with respect to σb is

- J d3yg'βίβR2 Σvaσaφa(y)-xσ}φb(y)\. (5.3)
M^l \ a = l / }

Note that the derivative of ασ does not appear because of the subsidary
condition (5.2).

We see that the free energy (5.1) increases with \σb\ if |σj >R2Nφb.
Hence the infimum in Eq. (1.18) can be restricted to an infimum

over the compact cube |σj ^2R2N max φb.
1 ^b^s

Since (5.1) is continuous and continuously differentiable with respect
s

to any σb the infimum is attained at a point σμs(x) = Σ σaS(Pa(χ) where

α = l

all partial derivatives (5.3) vanish.
(5.2) and (5.3) are exactly the self-consistency Eqs. (1.23) we referred to
in Chapter 1.

Since the limit s-»oo, μ-»oo of (5.1) is identical with the right-hand
side of (1.24) we have completed our proof.

Acknowledgement. We would like to thank Dr. D. Maison and Dr. A. Wehrl for
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