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Abstract. We discuss the behaviour of the BCS model in the limit of infinitely many
degrees of freedom. A new limiting procedure, based on spin waves, is proposed, by which
the usual convergence difficulties can be overcome.

Introduction

This article is concerned with the behaviour of the Bardeen-Cooper-
Schrieffer model [1] in the limit of infinitely many degrees of freedom.
Since this problem has already been extensively studied by several
authors [2-5], some explanation is needed for the publication of a new
paper on this subject.

The method used by the above authors is, in essence, the following:
for any finite number, say Q, of degrees of freedom, the system is deter-
mined by a C*-algebra 9ID and a Hamiltonian HQ. The algebras 9lD

form an ascending series,

if Q < Q\ thus it is possible to define a new C*-algebra 91^ by

91^ = norm completion of (J 9lD

n
91^ is the smallest C*-algebra containing all 91^.

Now one constructs suitable representations n of 91^ - mostly the
thermodynamic representations [6] which are readily obtained using the
results of Thirring and Bogoliubov, Jr. [7] - and asks the following
questions:

i) does 7i (HQ) converge, at least on a dense set?
ii) does n(expiHQt) converge towards a unitary operator?

iii) does, for S e 71(91 )̂

7r(exp iHQt) Sn(Qxp - iHQt)

converge and determine an automorphism of the algebra 91^? (This
automorphism may, of course, be representation-dependent.)
23 Commun. math. Phys., Vol. 23
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It turns out that the situation is somewhat paradoxical. For tempera-
ture 0, n(Hn) converges weakly but not strongly on a dense set towards
Bogoliubov's reduced Hamiltonian HB. Due to this fact, n(expiHQi)
behaves completely irregularly and does not converge to a unitary
operator. Nevertheless, HB gives the correct time dependence in the
sense that

n(expiHQt) Sn(exp — iHQt)-+Qxp(iHBt) SQxp(—iHBt)

For finite temperatures, we cannot expect n(HQ) to converge in any
sense, but, according to Ref. [8], one has to subtract suitable elements
X^G(9100) /. Then one arrives at a similar situation: n(HQ) — KQ is
convergent, but only weakly, exp[it(n(HQ)- KQ)] behaves irregularly,
but again w-lim(n(HQ) — KQ) gives the correct time dependence in the
above-mentioned sense.

Thus the usual methods do not permit us to answer questions i) and
ii) in a satisfying manner. One might argue that therefore the above
described limiting procedure is not adequate to the problem. This idea
is also confirmed by the occurence of certain pathologies discovered by
Jelinek and Thirring [9] (see Appendix 1).

In this paper we propose another limiting procedure based on spin
waves. While in the theory of ferromagnetism the usefulness of the
concept of spin waves has been well known for a long time [10], we shall
see that they also can be used with success in the BCS theory. Thus the
words "spin wave" are not to be understood literally. We shall not consi-
der the usual Bloch spin waves themselves, but shall rather construct a
formal analogue of them which bears all the essential features.

As Bogoliubov [2] pointed out, the fundamental quantities in BCS
theory are the quasi-particle creation and annihilation operators which
are obtained from the ordinary creation and annihilation operators by
means of a "Bogoliubov transformation". The BCS ground state (for the
infinite system) is the quasi-particle vacuum, and the Hilbert space of
the system is spanned by all w-quasi-particle states. For infinite tempera-
tures, roughly speaking, the quasi-particle vacuum is replaced by some
"thermal background" and the Hilbert space is spanned by all states
differing from this background by a finite number of quasi-particles or
holes.

Now we take the view that the above-mentioned states are not of
physical relevance, but rather coherent linear combinations of them
where each of these states enters with infinitesimal weight. We shall
formulate this idea in a mathematically rigorous way, and shall see
that our method enables us to give satisfactory answers to all three
questions i)—iii).



Spin Waves 321

Just one remark on the strategy of this paper. It is divided into
two parts. Part 1 is concerned with generalities on the finite system,
and the construction of spin wave operators and vectors (also for the
finite case). In Part 2, the limit Q-+co is performed by means of Trotter's
theory of approximating sequences of Hilbert spaces. We shall see
that the infinite BCS system occurs in two kinds of phases, normal-
conducting ones and super-conducting ones. These phases are not in
thermal equilibrium in the usual sense but only in a restricted sense.
Nevertheless we obtain "all" thermal Green's functions. Furthermore,
it will be possible to decide whether a given phase is stable or not, a
problem which lies completely outside the scope of the usual approach.

1. The Finite System

A. Generalities

In the following, we shall deal with the strong coupling version
of the BCS model [11] which is particularly simple. It is based on the
assumption that an interaction only occurs between pairs formed by
electrons placed around the Fermi surface. Thus it seems to be reason-
able not to consider the original Hilbert space of the system, but to
take into account pair excitations only. The Hilbert space J^n obtained
in this way is a tensor product of Q two-dimensional Hilbert spaces,

In J^Q an orthonormal basis is formed by the vectors

l*i) ® ta) ® • • • ® l*o) 9 (1-2)
where

©"•
The first alternative states that the pth pair state is occupied, while the
second states that this is not the case. As can be seen easily, the number Q
of all pair states is proportional to the volume of the super-conductor.

Let us introduce the operators <r<,a)(a = l,2,3) as Pauli matrices
acting on the pth mode of JfQ:

... ® 1 , (1.3)

and let us define the operators a* in a similar way. Then clearly a*
annihilates and o~ creates the pth pair. Furthermore, since

f (1.4)
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the quantity e(l — o-£3)) where e stands for the Fermi energy, turns out
to be the operator of the kinetic energy of a pair.

The BCS Hamiltonian now takes a very simple form

tfG = £ £ (1 - <r<3>) - ST1 £ a-< . (1.5)

Thereby we have chosen our units so that the "critical temperature"
is \. A detailed discussion of this Hamiltonian may be found in the
literature stated above. For the "quasi-spin method" just formulated,
cf., the paper of Baumann, Eder, Sexl and Thirring [12].

B. Mixed States

If one wants to discuss thermodynamic properties of the system,
one has to encounter mixed states. As it is well known (see, e.g., Ref. [8]),
it is possible to use a Hilbert space formalism for their description.
One simply takes as a new Hilbert space 9)Q the set of all operators
acting on 3tfQ (or, in the general case, if the original Hilbert space is not
finite-dimensional, the set of all Hilbert-Schmidt operators) and defines
a scalar product by

(R,S)~*>tr(R*S). (1.6)

R~»SR (1.7)

defines an operator S acting on §>Q. Similarly

R^RS (1.8)

defines an operator S, and thus the commutator map

R~»[_S9K] (1.9)

defines the operator S = S — S. The map

S^S (1.10)
is an isomorphism, while

S<~»S (1.11)
is an anti-isomorphism.

Since
* * (1.12)

Q being the density matrix, the thermal expectation value of the operator S
equals in the new language the matrix element of S taken with £% the
latter quantity now being considered as an element of 9)Q. In 9)Q, the
equation for the time evolution of an operator

i-^R=lH,K] (1.13)
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takes the form of a Schrodinger equation:

i~\R) = H\R) (1.14)

where \R} shall indicate that the former operator R is now considered
as vector in $$Q.

From usual textbooks, see, e.g. [13], one knows that $>Q can be
identified with

The operator S corresponds to
S<g>l, (1.16)

while S corresponds to
1®ST. (1.17)

Since fflQ is itself a tensor product, we obtain, by rearrangement of
the modes, the following final form for 9)Q:

%Q = {C2®C2)®(C2®C2)®--®(C2®C2). (1.18)
Then

() i) (1.19)
pthmode

and
of = {\®\)® -- ®{\®o{«)T)® --> ®(1(8)1). (1.20)

Now, of course,

o^T = o«\ o*2>T=-o*2\ (7<3>*W3> (1.21)
and

o+T=o~, o~T=o+. (1.22)

C. Bogoliubov Transformations

As already mentioned in the Introduction, the main tool in mathe-
matical BCS theory is the Bogoliubov transformation. It takes, in terms
of the pair annihilation and creation operators, a very simple form:
it is a map

where
xf = M^af\ (1.23)

M being a real orthogonal (3,3) matrix. This map clearly being an
automorphism, for the "quasi-pair" operators r̂ a), the same commu-
tation relations are valid as for the a^H.
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The matrix M depends on two angles 0 and 0, and reads explicitly as

cos# sin# 0 \
— cos 0 sin 0 cos 0 cos 4> — sin 0 . (1-24)

\ —sin© sin<P sin© cos# cos©/
In particular,

4 3 ) = - s i n 0 ^ 2 ) + cos<9^3)

2e-i0<j+ =tf) + icos0Tf) + ism0T£) (1.25)
2eiO

 G~ = T£> - i cos 0 T<,2) - i sin 0 T<?> .
In the following Sections we shall only consider the T'S. It is obvious
that it can be calculated with them in the same way as with the cr's.
The vectors

/ / 0 / 2 \

and (1.26)

thereby replace the vectors I I and I I since

= T"|-) = 0, T(3)|±) = ±|±)

' | + ) | )
By means of these vectors we can define the quasi-particle vacuum
|vac>oin Jfo:

/Q Q |vac>o = | + ) ® | + ) ® - ® | + ) (1.28)
and the n-quasi-particle states \px,..., pn}Q by

IPi > • • • > Pn>Q = V • • • Tpn I v a c ) ^ (1.29)

if i4=k).
All these states together form an orthonormal basis for JfD, replacing

the basis described by formula (1.2).

D. Spin Wave Operators

We shall now introduce spin wave operators along the lines of
Dyson's paper [14]. The spin wave operators are quantities T ^ [ / 1 ]

defined by Q

rg>[A] = fl"* £ eUpxf (1.30)
P=i

where X is of the form 2nk/Q, fc = 0,1, ...,& — 1. (We shall denote the
set of all these A's by AQ)
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The commutation relations for the T^}[A]'S are

[iff W» xjf>M] = 2iO-*«""#>[A + /*] , (1.31)

in particular
) W , TJ M ] ± 2 O T S [A + /4

(We make the convention that expressions like X + p or —X should
always be understood modulo 2TL)

The index X is not conserved under conjugation, but transformed
into —X:

(tg'M)* = $>[-*],

(T£[A])* = T S [ - A ] .

Formula (1.4) tells us that

Tg>[0] = O*-2O"*iVr
fl (1.34)

where NQ denotes the "quasi-pair number operator"

f X < = S tfl[-A]4[A]. (1.35)
p = 1 A e yl j2

E. Spin Wave Vectors in 2tfn

These vectors are obtained by application of the T^[/1]'S to |vac>fi:

l^i > • • • > K>Q = To [Ax] ... To [AJ |vac>^ (1.36)

(The Xt need not be pair-wise different.)
They have more complicated properties than the \pl9 ...,pn>^'s.

Firstly, one sees easily that the one-spin wave states are mutually ortho-
gonal and also orthogonal to |vac>fi. However, if n > l , one finds only
that

Q a i , . . . ,AJ / i 1 , . . . , / i m > f 2 = 0 (1.37)

if n #= m. If n = m, then one can show that [15]:

) (1.38)

if the two lists (X1,..., Xn) and (^ , . . . , jin) are essentially different, i.e.,
cannot be obtained from another one by permutations. (Note that if
this were the case, then \Xl9 ...,XnyQ = \fil9 ...9[znya since alle T^[A]'S

commute.)
For the norm one finds that

) . (1.39)
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Here we introduced the multiplicity function ax which denotes how
often an index X occurs in the list (Xl9...,Xn).

The action of the spin wave operators on these vectors is given by

K, • • •, K>n = I/Ui, • • •, K>n

(this follows simply from the definition),

(Xt means that the index Xt is suppressed),

Thus, is almost a onumber:

(1.41)

(1.42)

(1.43)

F. Spin Ffa#e Vectors in 9)Q. Definition and Simple Properties

The construction of the analogue of the above defined vectors in
the spaces §>Q is rather cumbersome.

To begin with, let us introduce an orthonormal basis for C2®C2

consisting of the four vectors

(1.44)

By means of these vectors, an orthonormal basis for &Q is given by the
vectors \p±,..., pz; q±,..., qm; rx , . . . , rn}Q defined as tensor products

where
\Q+) i f ^ { p l 9 . . . , p 2 }

| ^ ) ) if ie{ql9...,qj

\Q~) if ie{rl9...,rn}

\giy)) otherwise.

(1.45)
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Physically, |g(3;))<g)|0(y))® ••• ® \g{y)) would correspond to the density
m a t r i x f ° \l ( a \

exp[pB X < 3 )) / t rexp \BB £ T<,3)J (1.46)

the connection between y and /? being given by

y = tanhpB. (1.47)

Now the spin wave vectors \X1,..., Xx\ nx,..., \im\ vx,..., vn}Q are defined
by the expression

l + m + n

Q 2

^ e ^ P 1 + - + ̂ . ^ « . + - + v I n + - ) | P i ) . . . ) P ! . ^ ) . . . ^ m . r i ) . . . 5 r n > n .

PI,---,PI

n.....r. ( 1 4 8 )

(all different)

Straightforward calculations show that for them similar properties hold
as for the \X1,..., /lM>o's, namely

D <A 1 , . . . ,A / ; / i 1 , . . . , / i m ;v 1 , . . . ,v n

• |A /
1 , . . . , ^ ; i u i , . . . , / 4 , ; v /

1 , . . . , v ; ,> o = 0

if / =j= l\ or m + mr, or n 4= ft'. If / = /', m = m\ and n = n'? one finds that

JX^I , . . . , Az; fix,..., /im; v x , . . . , vn

)

if at least one of the three lists (A 1 ? . . . ,^) , (ji±,..., / i j , ( v l 5 . . . , v j is
essentially different from its dashed counterpart.

Finally, for the norm, one obtains

A *) (1.51)

where aA, bM and cv are the multiplicity functions for the three lists.

G. The Effect of the Spin Wave Operators

The generalizations of formulae (1.40)—(1.43) are

l-y
\Xl9 ...,AZ, «;\Xl9 . . . ,A Z , « ; / * ! , . . . , / i m ; v l 9 . . . , vB>f l

1 + y
( ^ | l A ; / i u ; v v v > + )

+ 0(fl-*)
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-\- y

, x; v l 9 . . . , vB>o (1.54)

0(fl"*).

The corresponding formula for the f̂ ) [x]'s would be rather complicated.
However, observing that the behaviour of the <J'S under transposition
is very simple, it suffices to calculate the effect of the operators (^[x])7

on the spin wave vectors. For simplicity, we shall write rj^lx] instead of
(rt)M)r

Then, one only has to substitute

^ M - > i f S M , (1.55)

y->-y

in formulae (1.50) and (1.51), and

^M-f^M (1-56)

(y remaining unchanged), in formula (1.52) in order to get the new
relations.

The connection between the <fs and the *fs is established by the
formula

8®m=L«nf\x\, (i.57)

where the matrix L is related to the matrix M by

L^ = (-Y~1M^. (1.58)
Thus, in particular

of<3> = - sin 0 rj{2) + cos 0 rji3)

2ei0d+ =rj(1)-i cos 0rji2)-isin0 rii3) (1.59)

2e'i0d~ = rj(1) + i cos 0rj{2) + i sin 0rj{3)

(we suppressed the index X).
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Finally, let us consider the operator
) [0] - ,g> [0]). (1.60)

This operator can be interpreted as "relative quasi-pair number
operator" since

Ngl\Al9...9},l;iil9...9iim;v1,...9vnya (l.olj
= (n-I)\Al9...9Al;iil9...9iim;vl9...9vnya.

2. Transition to Infinitely many Degrees of Freedom

A. Trotter's Theory

Formulae (1.38) and (1.39) can be interpreted in such a way that,
for £2->oo, the spin wave vectors |A l5..., Aw>^ approach an ortho-
gonal system, the norm of each of these vectors tending to (Jlak !)*. A more
sophisticated formulation of this idea is obtained by the use of Trotter's
theory of "approximating sequences of Hilbert spaces" [16].

We say that a sequence of Hilbert spaces JVQ (which, for the moment,
need not be the spaces considered in Part 1) is approximating a Hilbert
space ^ if there exists a sequence of linear maps $Q\ ^ - > ^ # such
that, for any vector Ix)^ e J ^ we have

ll#J*>Jl>^ll|x>ooL (2.1)
and, if, in addition:

sup| |*J |<oo. (2.2)
Q

[In order to avoid misunderstandings, we write || ••• \\Q for the norm in
•#o> II •' IIoo f ° r the norm in ^ . The no rm of <PQ is defined by

Now the usual definition of strong convergence of a sequence of vectors
can be generalized as follows: we shall say that a sequence of vectors
\%yQ e J^Q is (strongly) convergent towards Ix)^ e Jtf^ — in which case we
shall write |X>G->|X>OO - if

Ill*>ii-*i>|x>coll0->0. (2.3)

A sequence of bounded operators SQ in 34fQ is said to be convergent
towards a not necessarily bounded operator S^ in jff^ - SQ^S^ - if,
for any Ix)^ in the domain of S^ we have

SO*o|x>«)->SJx>fl0. (2.4)
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The main result of Trotter's theory is: suppose that the sequence of
self-adjoint operators SQ converges towards the essentially self-adjoint
operator S^. Then, for any bounded continuous function /,

. (2.5)
Thus, in particular

for real t.

B. Application to the Spaces JfQ and 9)Q

It is almost obvious how Trotter's theory applies to the sequences
J^Q and 9)Q. Let us first construct the limiting space ^ of the sequence
J^Q. (In order to avoid immaterial complication, Q shall run only through
the powers of two.)

In jfm an orthogonal basis will be given by a vector

and vectors

where the Xt belong to the set A = \JAQ which consists of all numbers
of the form In-k- 2~j. Thereby two vectors

are considered to be equal if the two lists (Ax,..., Xn) and (^ , . . . , /in)
are not essentially different.

The norm of Ivac)^ is 1, the norm of \XU ..., A ^ is (77^!)^. The
maps <PQ are determined by

i, ...,^n>fl if this vector is defined in
Jfo, i.e., all Xt belong to AQ9 (2.7)

10 otherwise.

The validity of relations (2.1) and (2.2) follows readily from formulae
(1.38) and (1.39) and the relation

ll*flll=lVQ (2.8)

which is derived in Appendix 2.
The above considerations can be generalized easily to the case of

the sequence 9)Q. It will be approximating a space 9){y) in which an ortho-
normal basis is given by vectors

(iJa,!^!^!)--!^,...,^;^,...,^^!,...^^ (2.9)

where again we disregard the order of the indices within the three lists
0*!,...),(/*!,...) and (v l5...).
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The maps <PQ are to be replaced by the maps <P$ determined by

)\A1,...,Ai;ii1,...,ltm;vl9...9vn>a)

\l1,...,Al;[i1,...,nni;vu...,vn>Q if this vector is 2 1 Q )

defined in §#, v

, 0 otherwise.

As before it can be shown (cf., [15]) that conditions (2.1) and (2.2) are
fulfilled.

C. The Limit of the Spin Wave Operators

It is readily seen that the sequences of operators T^ [//] are convergent
in the sense of Trotter, their limits % * \ji\ being defined on the set of all
finite linear combinations of |A±,..., Aw>00's. (Unless otherwise stated,
we shall always understand that the domain of operators acting on Jf^
is this set.) Explicitly, the T* \ji\ are given by

and
T : M | A 1 > . . . , A I 1 > 0 O = ^ ( _ A I | A 1 > A 2 J . . . ,!„>„ + - (2.11)

Furthermore

Tg>M-O*5 M > 0 -0 . (2.12)

With some elaboration, one also can show that

4J>...Ag>-Ag>...4? (2.13)
where A% stands for any of the above operators x% M or

o), and

(cf. [15]).
Thus the rj[/i] obey boson commutation relations:

^ ,_ M . (2.14)

The Hermitian combinations

and
Z / | / 5 ( T £ M - T - [ - / * ] ) (2-15)

are essentially self-adjoint (this follows from standard arguments,see, e.g.,
Putnam [17], Chapter 4) and may be considered as some sort of co-
ordinate and momentum operators of the spin wave with frequency \i.
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Finally, we remark that the sequence NQ converges towards N^
given by

iVroO|A1,...,^>flO = n|A1 , . . . ,^>o o (2.16)
hence

N»= Et;[-2]4[1]. (2.17)

Analogous results are true for the operators T ^ M and ^ [ x ] . We
find that

*SM->^,,IXI- (2.18)

The operator on the right-hand side being defined on the set of all finite
linear combinations of \X1,...,Xl; / i ^ . . . , / ^ ; vl9...9vn}a0's. (Again we
shall always understand that operators acting on §^ ) are defined on
this domain.) The effect of the T J > ) ? M on the \A1,...,Al; ^ 1 ? . . . , / i m ;
vi> •••> v«>oo's is easily deduced from formulae (1.50) and (1.51).

Also
43)M^^M (2.19)

if x + 0. In contrast to the sequence T ^ M , the limits f^y[x] are not
zero but can equally be easily deduced from formula (1.52). This formula
also tells us that the sequence (^[O] —y£2*) is convergent:

(Tg>[O]-j>fl*)->*„,,. (2.20)

One obtains thus the commutation relations

I > - * ^ . , M , y-*T». ,M] = 5«,-x' (2-21)
and

F l , M , 43,VM] = K . ,M, Z».J = 0 _ (%' * 0). (2.22)
Again it can be shown that the Hermitian combinations of TJ> ) 7M'S
are essentially self-adjoint, as well as the T ^ M ' S and ^ y are. The
algebra generated by all these operators is of type III. Similar statements
are true for the rfs.

Concerning the sequence NQ\ it is plain that its limit N£]y exists and
equals

y'1 Z P f » , y [ - ^ ] ^ t y M - ^ , y [ - x ] ^ , y M ) - (2«23)

D. The Ground State of the BCS Model

The first problem we want to discuss in our spin wave formalism
is that of the ground state of the BCS model in case of infinitely many
degrees of freedom. We shall show that, if the angles 0 and 0 are properly
chosen, the Hamiltonians HQ converge towards an essentially self-
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adjoint operator H^, and consequently,

exp(iHot)-+exp(iH*t) (2.24)

so that the well-known difficulties of the usual treatment (cf., the
Introduction) do not occur in our new method.

In terms of the spin wave operators, HQ can be written as

-6fl*o&3)[0]-<7o[0]o2[0] (2.25)

(here, and in the following, we shall always skip irrelevant c-numbers).
Thus after performing a Bogoliubov transformation, we arrive at the
expression

Ho = Ifl+ 110 + 1110 + 1 ^ (2.26)
where

lQ = -ecos©Q*Tg>[0] -isin2<9(Tg>[0])2, (2.27)

(2.28)

*sin© Tg>[0] , (2.29)

- i sin 0 cos 0 (rg* [0] ig> [0] + ig>[0] ig)[0]).

Now always
IIIO ->i cos <9, (2.31)

- icos2 0(rg>[0])2, (2.32)
whereas

Ifl ^ (2s cos 0 + sin2 0) N^. (2.33)

The crucial quantity is YVn. We obtain convergence only if either
sin 0 = 0 or

2£ = cos<9, (2.34)

the latter condition will be referred to as "gap equation".
If sin© = 0, then \imHQ exists but is not semi-bounded from below.

Thus we do not obtain a description of the ground state of the infinite
system. We are rather dealing with the "normal conducting phase"
which is unstable at low temperatures. We shall discuss this question in
more detail in Section G.

If, however, the gap equation holds, then HQ converges towards

isin2<9(42)[0])2+ £ T ; [ - A ] T £ [ X | (2.35)

("superconducting phase").
This result can be interpreted in the following way: in the infinite

case the spin waves behave like a system of independently moving
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bosons, indexed by the set A. The operators T* [A] and T~ [ — X] annihilate
or create, respectively, the Xth boson. Thereby, all but one "particles"
behave like harmonic oscillators with frequency one, while the remaining
one behaves like a free particle.

There is an essential difference between Bogoliubov's reduced
Hamiltonian and the Hamiltonian H^ which we have obtained above.
Bogoliubov's Hamiltonian has a pure point spectrum, whereas H^
contains also a continuum in its spectrum. This continuum contribution
is caused by the spin wave with frequency 0. We shall discuss later on
what this means physically.

E. The Limit of the Sequence HQ(y < 1)

By virtue of formula (1.57), we can decompose HQ in an analogous
manner as before HQ\

^0 = 1^ + 11^ + 111^ + ^ . (2.36)

The connection between lQ and 1^ (and similarly between the other
terms) is given by

Ifl = T o - I o (2-37)

[cf., Eq. (1.7)], TQ being obtained from lQ by substituting

Tg>[A]-^qg>[A]. (2.38)
Now

IJ,-»(2ecos0 + y sin2 ©)#£ ' , (2.39)

(2.40)
4 W 5 ^LV'^c-LUj; —Woa'.yl"""-icos20[(T<i:,[o])2-(^;,[o])2].

(2.41)

As before, the crucial quantity is IV^. In order to get convergence, we
must require that either sin 0 = 0 ("normal-conducting phase") or

2s = ycos0 (2.42)

("super-conducting phase"), the latter equation will be referred to as
"temperature dependent gap equation". The reason for this name will
become clear in the next Section.

If (2.42) is fulfilled, IV^ converges to

, y y ^ y (2.43)

and thus HQ converges to

gy g» (2.44)
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where H^] equals

i s i n 2 e I W ' ^ r t U ^ ^ _ ^ ^ ^ (245)

and H™^ equals

V 00 yL ^ J ''oo vL'^'J '/oo VL ^ J 'loo^L. J/ ' y^.^\j)

A*0

Therefore the following equations of motion are valid:

dt2

d

(a = 1,2)

if A =t= 0, and

i ) , [ 0 ] = 0 (a = 1,2)i^),[0]
d (2.48)

In the normal-conducting case we find similarly

tf^tf^ + ̂ T- (2-49)
where H™^ equals

(2e3;-
1 -1) [ T - , , [ 0 ] T J , , [ O ] -if-,,[0] < , [ 0 ] ] (2.50)

and

, , , ,
X 4=0

The first group of equations of motion are obtained from Eq. (2.47)
by changing y into 2s, while the second group is now

-jp < , P > ] = (y-28)T<«>,[0] (a = 1,2)

F. Thermodynamic Properties

We are now going to discuss the question whether the operators
^ y [ 2 ] and Xoo,y

 a r e describing an infinite system in thermal equilibrium.
This would be the case if the KMS condition

f f{t - ip) (BAty dt = J f{t) <AtB} dt (2.53)
24 Commun. math. Phys., Vol. 23
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(where the function / is the Fourier transform of a class Q) test function)
were true. Thereby, A and B denote polynomials in the above-mentioned
operators,

[H^ stands either for the normal-conducting Hamiltonian (2.49) or
for the super-conducting one (2.44)], and <... > means the matrix element
with the spin wave with l = m = n = 0.

Now it is clear that in general the KMS condition must be violated
since the T(^ ̂ [0] (a = 1,2) behave in the super-conducting case like a free
particle, whereas we meet a runaway situation if in the normal conducting
case 2e < y. However, this "non-thermal" behaviour of the spin wave
operators referring to the 0 mode is not too surprising. In fact, the
Hamiltonian of the finite system is invariant under all permutations of
the indices p, as well as the operators (7$°[0] are. Comparing this situation
with ordinary many-body systems, one sees that the cr^O] are just the
analogues of the centre-of-mass variables, and thus have to be disregarded
in questions of thermal equilibrium. We shall discuss this point in detail
in the next Section.

It is readily verified that the KMS condition is true if A and B do not
contain spin wave operators referring to the 0 mode. (See also Verbeure
and Verboven [18].) Hence we can say that all X 4= 0 modes are in thermal
equilibrium at a certain temperature which is uniquely determined by
(2.53).

To prove this, let us first assume that

and compare the matrix elements

(AnBns) (2.55)
with the expression

(1 - e-p) tr [>-^*«(a*)Maw] (2.56)

where the a and a* are the ordinary annihilation and creation operators
from quantum mechanics. Once this has been done, the general result
is easily deduced and it is thus found that the KMS condition in the
above stated restricted form is true if

(2.57)

in the normal-conducting case, and

(2.58)

in the super-conducting case. These relations are in agreement with
Thirring's results [7].
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Finally, it remains to establish the connection between the thermal
Green's functions for the finite system

of?...
and our Green's functions

f? a^)/tre-^ (2.59)

A simple combinatorial argument shows that
Q

SSL L e
(2.60)

- lim £ e'C^pi+-) lim « ° . . . < " % o
^-''OO P i , . . . , Pn = l fi-*OO

where all Af have to be different from 0. Utilizing the standard results on

Hm «. . .<-%,„
[7], one finds

lim <og'>[A1]...og->[AJ>/,,0 = <ffi«^[A1]...a^[AJ> (2.61)
2

if /? is smaller than the inverse critical temperature j80 determined by

(2.62)

(The matrix element on the right-hand side of formula (2.61) refers to
the normal-conducting phase.)

Hm <ogl)[A1]...og->[AJ>^>0=

the matrix element in the integrand referring to the superconducting
phase. Since the gap equation only fixes 0, the angle 0 remains free
and we have to average over all possibilities.

It can also be shown [15] that any of the expressions

can be constructed from the

respectively, (Xi + 0). Therefore the thermodynamic information yielded
by the X =|= 0 modes is as complete as the information which one obtains
in the usual treatment.
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G. Stability of Phases

As a last point we have to discuss the physical meaning of H^y)

and Hs^y\ We shall see that there is a close connection between these
quantities and the stability of phases.

To begin with, let us consider the normal conducting phase at high
temperatures, i.e., if y<2s. Then the equations of motion (2.52) tell us
that not only

<*£!,[0]> = <42!,[0]> = <Xoo,y> = 0 (2.64)

for all times, but that also the fluctuations

<(*£!,[0])2> etc., (2.65)

remain bounded if time increases.
This is no longer true when the corresponding frequency becomes

imaginary, i.e., if y > 2s. Then the fluctuations become larger and larger.
If the system were large but finite, this would mean that the vector

s^Q-1 Z > p = £T*<a0] (2.66)

is displaced more and more until it arrives at a new position. Since a
phase is completely characterized by the limit of the expectation value
of sQ, we conclude that the normal conducting phase has the tendency
to go over in another phase, i.e., is unstable.

The temperature JSQ1 where the normal-conducting phase changes
from being stable to unstable is given by

2s = y. (2.67)

and, inserting (2.57), we find the equation

which coincides with Eq. (2.62). For the super-conducting phase the
situation is different. Since

^ -^> y [0 ] = j[fl#?>, T£>,[0]] (2.68)

where Hg^ stands for the expression

isin2
 0(TS!,[O]) 2 - Jan© cos© Zoo,y*i}y[0] , (2.69)

we see that a displacement of the system in the T1 direction does not
cost energy. This corresponds to the fact that the Hamiltonian of the
finite system is invariant under rotations around the 3 axis. Thus we
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expect that any super-conducting phase characterized by y and #
(G is fixed by the gap equation) has the tendency to mix up with all
other phases characterized by the same value of y but other angles <P'.
(This is the analogue of the usual spreading of a wave packet in quantum
mechanics.)

The situation may be illustrated by the following figure:

Fig. 1

However, <x̂ >}>> remains bounded in time and thus there are no further
possibilities of phase transitions.

Another point of view is the following: if we consider the BCS
model as a ferromagnet (with long-range interaction), then the parameter
y means the average spontaneous magnetization since

(2.70)

The connection between © and y is given by the gap equation and is
shown in the next figure:

Fig. 2
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whereas the relation between y and P is graphically:

Fig. 3

The two curves are given by Eqs. (2.57) and (2.58). However, in the
super-conducting case, one must be careful; while the equation

j ; = tanhj?}//2

has a non-trivial solution for all ft ^ 2, the gap equation

2s = y cos 0

can only be fulfilled if y ^ 2e, i.e., if fi ^ p0.
If now fi> Po> then the "ferromagnet" may occur in two phases,

and clearly the phase with higher order is preferred, i.e., the phase
with larger y is expected to be stable, and indeed the lower y corres-
ponds to the normal conducting phase which we have seen to be unstable
in this region.

The author is greatly indebted to Professor W. Thirring for many useful discussions.
He also wishes to thank Dr. F. Jelinek for help in earlier stages of this work.

Appendices

1. Some Pathologies

In the conventional treatment, one meets the following strange
situation: let us decompose HQ into two parts,

(A.1)

(A.2)

Q

rrint r>~l V ~— *+ /A i \
nQ = ~ ** lu °P Gq ' V A < : V

Let n be a thermodynamic representation of the algebra of the cr's
at a certain temperature T, above the critical temperature. Then

(A.4)

T < 3 >
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that means, that for high temperatures the system cannot be distinguished
from the free system characterized by HQITI only. Since the free system
does not exhibit a phase transition if it is cooled down, we arrive at the
paradox that in the infinite case one and the same Hamiltonian describes
two systems which thermodynamically behave completely differently.

If, in particular, 8 = 0 and T_^ j , then all thermodynamic representa-
tions coincide and are the "chaotic" hyperfinite type II x factor representa-
tion - a very strange situation since Hugenholtz' theorem [19] predicts
a type III factor representation for finite temperatures. There is no time
evolution, i.e., TT (cr̂ a>) is always constant in time. A careful analysis shows
that in this case the concept of temperature loses its meaning - or one
could equally say that the system is in thermal equilibrium with any
system of temperature _ \ [20].

2. Derivation of the Relation \\&a\\ = 1

Since Q^X1,..., Xn \ \i±,..., / O a = 0 if n =(= m, it suffices to show that,
for fixed n, the inequality

I )-*|A1 , . . . ,An> f l |
2g £ \C(Xl XJ2 (A.5)

| | (Al , . . . , An) \\n ( A i , . . . , A n )

is true. Thereby the Cs are arbitrary coefficients and the summation
is taken over all essentially different lists.

But this inequality is an immediate consequence of Dyson's theorem
[14] which says that the operator

£ (naxir
1\Xl9...9Xn>QQ<Xl9^9Xn\ (A.6)

( A i , . . . , A n )

acts as the unit operator in the subspace of 34?Q spanned by all

Thus, if M denotes a matrix with elements

^A1>...>An),(M1,...,Mn) = ( n f l A!^!)" i o<Ai , . . . ,^ l iM 1 , . . . , / x I I > o (A.7)

we have
M = M* = M2. (A.8)

Consequently

Z ^(*i....,AI1)^(Ai,...,An),(A«i,...,Mn)^i,...,^.)= Z I^Ui An)l • (A.9)
( A i , . . . ) , ( p i , . . . ) ( A i , . . . )

This proves the assertion since the expressions on the left-hand side
of formulae (A.5) and (A.9) coincide.
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