
Commun. math. Phys. 23, 199—230 (1971)
© by Springer-Verlag 1971

Local Observables and Particle Statistics I
SERGIO DOPLICHER

Centre Universitaire de Marseille-Luminy

RUDOLF HAAG
II. Inst. of Theoret. Phys., Univ. Hamburg

JOHN E. ROBERTS

Dept. of Physics, Princeton University

Received July 28, 1971

Abstract. We consider the family of those states which become asymptotically indis-
tinguishable from the vacuum for observations in far away regions of space. The pure states
of this family may be subdivided into superselection sectors labelled by generalized charge
quantum numbers. The principle of locality implies that within this family one may define
a natural product composition (leading for instance from single particle states to n-particle
states). Intrinsically associated with the rc-fold product of states of one sector there is a
unitary representation of P(n), the permutation group of n elements, analogous in its role to
that arising in wave mechanics from the permutations of the arguments of an n-particle
wave function. We show that each sector possesses a "statistics parameter" λ which deter-
mines the nature of the representation of P(n) for all n and whose possible values are 0, ±d~l

(d a positive integer). A sector with λ φ 0 has a unique charge conjugate ("antiparticle"
states); if λ = d'1 the states of the sector obey para-Bose statistics of order d, if λ = —d'1

they obey para-Fermi statistics of order d. Some conditions which restrict λ to ± 1 (ordinary
Bose or Fermi statistics) are given.

I. Introduction

We continue here our discussion of the superselection structure of
elementary particle physics. The setting has been described in some
detail in [1] and [2] so a few remarks may suffice here. We consider the
net 91 of algebras of local observables* as the basic mathematical object
in the theory, and we consider a set £f of states over 91 as representing,
in an appropriate idealization, the states of interest in elementary
particle physics.

1 This is a correspondence 0->$I(0) between finite regions in space-time and C*-
algebras. As in [2] we shall always take & to be a closed double cone (the intersection of a
closed forward light cone with a closed backward light cone). The symbol & denotes the
causal complement of (9 i.e. the infinitely extended region containing all points spacelike
to &. The algebra 51(0') is defined as the C*-algebra generated by all 21(0,-) with 0t any
double cone spacelike to (9. The C*-algebra generated by all 51(0) is again denoted by 21.
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Let us discuss first the criterion applied here to characterize £f.
Recall the connection between states and Hubert space representations.
Each representation has an affiliated family of states, the normal states
of the representation (given by vectors and density matrices in the repre-
sentation space). The pure states affiliated with one irreducible represen-
tation form a superselection sector in the sense of [3] pure states affiliated
with inequivalent irreducible representations are separated by a super-
selection rule. Instead of describing ίf we may thus equally well describe
the "classes of representations of interest". We do this here by:

1.1. Criterion. Let π0 be the vacuum representation of 31. We consider
as "interesting for elementary particle physics" all representations π which
are strongly locally equivalent to π0 in the sense that

π|3l(tf') = π0|3ί(tf') (1.1)

for sufficiently many double cones Θ 2. More precisely, tfπ, the set of double
cones for which Eq. (ί.l) holds, shall contain all translates of some double
cone. &> is the set of all states affiliated with the representations satisfying
Eq.(l.l).

The physical meaning of the selection criterion 1.1 may be illustrated
by the following remark. Take a sequence of increasing double cones &n

which exhaust space-time in the limit n->oo:

Θn + ̂ &nl (J&n = R4 (1.2)
n

Then one has for ω e if

Iim||(ω-ω0)yi=0 (1.3)
n—>oo

where ω0 denotes the vacuum state and φ\φ>n the restriction of a linear
form φ to the subalgebra 3l(0ή).

The argument leading from criterion 1.1 to Eq. (1.3) will be given in
the appendix. There we shall also see how Eq. (1.3), supplemented by
some rather natural assumptions, leads back to the criterion 1.1.

Note the close connection between the relationship (1.1) of representa-
tions and the asymptotic coincidence of states in the very strong sense
of Eq. (1.3). We see from this that the selection criterion 1.1 is too stringent
for Quantum Electrodynamics. If it were applied there it would exclude
from consideration all states with nonvanishing electric charge because,
by Gauss' law, a localized electric charge produces a constant flux of

2 In words: π and π0 when restricted to the algebras of appropriate outer regions shall
be unitarίly equivalent.
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electric field strength through any surrounding sphere, i.e. it gives rise
to an effect which is measurable in any &n and does not decrease as
w-»oo. The selection criterion stated above is aimed only at theories
without long range effects, essentially at hadronic physics neglecting
electromagnetic or weak interactions. Within this limited regime the
criterion appears to be suitable. Thus the states considered in any con-
ventional field theoretical model for hadron physics satisfy the criterion
(essentially because they are generated from the vacuum by field operators
commuting with the observables at spacelike distances)3.

Let us now turn to the structural assumptions on 91 which, together
with criterion 1.1, constitute the input of this analysis. First note that as
in [2] we may identify the local algebras 91(0) with weakly closed
operator algebras on a Hubert space J^0, the space containing the state
vector Ω0 of the vacuum. This is possible without loss of generality
because of the local unitary equivalence of all representations of interest.
The symbol π0 then becomes redundant and we shall frequently omit it.
Thus

= π0(9I(0)) = π0(9I(0))" C Λ(Jf0) . (1.4)

The central assumption of our study is the duality relation in the
vacuum representation :

91(0')' = «(0) for each double cone 0 . (1.5)

It expresses locality and, in addition, the impossibility of enlarging
the local observable algebras 91(0) in the vacuum representation in any
way consistent with locality.

The only other assumption used occasionally in the present paper
concerns a property which Borchers [4] derived from standard structural
assumptions of Quantum Field Theory :4

Property B. If E e 9ί(0) is a nonzero projection then, for any 0t con-
taining 0 in its interior, there is an isometry We 91(0^ with WW* = E9

W* W = 1 (i.e. within 91(0^ the projection E is equivalent to the identity).
We give now a brief survey of the results and sketch the line of

argument.
It is convenient to refer all representations of interest to the Hubert

space J^Q. Consider one such representation π on a Hubert space Jfπ.
Due to the "strong local equivalence" of the representations we may
choose a double cone 0 from JΓπ and a unitary operator V mapping J«f0

3 Compare [1], Section VI.
4 These assumptions themselves, namely Poincare invariance, positivity of the energy

and weak additivity will not be explicitly used in the present paper, although they will be
needed in a subsequent finer analysis.

15 Commun. math. Phys., Vol. 23
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onto 2tfn so that (on Jf0)

π(A)V=VA, ,4 e 91(00- (1.6)

Defining then for any A

(1.7)
one finds that

(1.8)

It suffices to prove Eq. (1.8) for the case where A belongs to some local
algebra 91(0^ with 0! D 0 since such elements lie dense in 91 in the
uniform topology and by the definition (1.7) ||ρ(^4)|| ^ \\A\\. In this case
ρ(A) will commute with 9l(0i) and hence, by duality, will belong to
81(0!). Thus

(1.9)

gives a representation equivalent to π.
The characteristic properties of the mapping ρ are:
(i) it maps 91 into 91 preserving the algebraic relations (multiplication,

linear combinations and adjoints).
(ii) It is "localized" in some region 0 by which we mean that it acts

like the identity map in 91(0') (see Eq. (1.6)):

ρ(A) = A, Aε 91(00 . (1.60

In the following we shall call a map with these properties for short a
localized morphίsm of 91 with localization region or support in 0. We can
sum up the discussion of the last two paragraphs by

1.2. Proposition. The following two conditions are equivalent:

a) π I 91(00 ̂  π0 I 9Ϊ(00 (1ΊO)

b) π ^ π 0 o ρ 5 , (1.11)

where ρ is a localized morphism of 9Ϊ with localization region 0.

Among localized morphisms there is an obvious equivalence relation:
ρλ ^ Q2 shall mean that the representations π0 ° ρ1 and π0 ° ρ2 are unitarily
equivalent. We denote the equivalence class of ρ by ρ. One has

1.3. Lemma 6. ρί = ρ2 if and only if ρί = σρ2 with σ e J> .
5 We have written π 0 °ρ rather than ρ on the right hand side of (1.11) in order to

distinguish the morphism ρ from the representation it generates (Eq. (1.9)); the latter results
from the composition of the morphism with the defining representation π0.

6 As in [2],«/ denotes the set of localized inner automorphisms of 31. If U is a unitary
element of 9Ϊ then συ is the corresponding inner automorphism συ(A) = UAU~ί.
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The proof of this lemma is omitted since it is analogous to that of
Lemma 2.1 in [2].

The morphisms which concern us here have some further properties
because the representations of interest satisfy (1.10) not only for one
region but for all the translates of it. Thus we define a set Δt(Θ) of
morphisms saying that ρ belongs to Δt(Θ) if it is localized in (9 and if for
every region resulting from Θ by translation there exists a morphism
localized there which is equivalent to ρ. The union of the Δt(&) as (9
varies is denoted by Δt. Clearly equivalence classes ΔJJ' are in one-to-one
correspondence with the equivalence classes of representations of interest.

The description of representations of interest in the form (1.9) puts
into evidence one essential property of this family of representations. They
have a natural composition law, corresponding to the multiplication of
the respective morphisms. It is easy to see that the product of morphisms
respects the class division; in fact we shall find that ΔJJ> is an Abelian
semigroup. The physical picture relating to this structure is the product
composition of states which are localized far apart7. Take two mor-
phisms QiGA^Oi), ΐ = l,2. Correspondingly we have two localized
states ωi = ω0°ρi which are vector states in the representations π 0°ρ, .
The product state ω0 ° ρxρ2 is a vector state in the representation π0 ° ρίρ2

and has a simple interpretation when Φ± and (92 He spacelike to each
other. It is a state which looks like ωί with respect to observations in
&2 and like ω2 for observations in d?i.

The family of sectors studied in [2] is a subset of those admitted by
our present criterion. Let us call them here simple sectors. A simple sector
results from (1.9) if ρ is an automorphism, i.e. if the image ρ(9I) is the whole
of 9ϊ. Clearly such representations are all irreducible. Taking the direct
sum of several such representations one gets a reducible representation
which by Lemma 2.5 again satisfies the criterion. Describing the latter
in the form (1.9) one is led to a morphism ρ for which ρ(SΪ)φ2ί. If all
QEΔt were to arise in this manner then the consideration of non-auto-
morphic mappings would hardly be of interest. We know, however, from
the discussion of the field-theoretical background in Ref. [1] that some
nets of observable algebras possess irreducible morphisms which are not
automorphisms8. This situation arises for instance when the observables
are selected from a field algebra by a non-Abelian gauge group. We are
primarily interested here in irreducible morphisms and their products.

Consider now an irreducible representation π 0°ρ and the rc-fold
product composition of this representation with itself. To get a simple
physical picture, let us think of states ωt = ω0 ° ρf with Qί ̂  ρ as single

7 A state ω is called strictly localized in & if it coincides with the vacuum for obser-
vations in the causal complement &', i.e. if (ω — ω0)|r = 0.

8 So ρ(2l) Φ 2ϊ but
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particle states involving the same type of particle and localized in mutually
spacelike regions 0 f

9.
Then co0°ρ1ρ2 ... Qn is a state of n identical particles, each localized

in a region &t. It is a vector state in the representation π0 ° ρn. We shall
see (Lemma 2.7) that this representation is reducible for n > 1, unless ρ
is an automorphism. Thus unless the single particle states belong to a
simple sector there will be many vectors corresponding to the state
ωo ° Qί@2 •" Qn Because, if Fis an isometric operator from ρ"(5I)' and Ψ
describes this state, then so does VΨ. On the other hand the state vectors
Ψt corresponding to ωf are unique up to a phase factor and we shall see
that, relating each ρt to ρ, there is a natural definition of the product of
the state vectors so that one may write

Ψ=ψίχψ2x ... χψn (1.12)

with Ψ corresponding to ω0 ° ρί ... ρn. This product of state vectors is not
commutative in contrast to the corresponding commutative product of
states. In fact, canonically associated with the representation ρ" of 91
there is a unitary representation ε(

ρ

M) of the permutation group P(n) com-
muting with the observables. The operator ε(J°(p) permutes the order of
the state vectors in the product (1.12) by p e P(n\ It is the analogue of the
operator in wave mechanics which describes the change of an rc-particle
wave function under this permutation of its arguments. We shall therefore
call the collection of (equivalence classes of) the representations ε(

ρ

n) for
fixed ρ and all values of n the statistics of the sector ρ. Analyzing the
representations in terms of the associated Young tableaux we find that
the statistics for ρ is determined by a single number λ. There are only
three possibilities10:

1) λ = d"1, d integer. All Young tableaux occur whose columns have
length ^d. This is para-Bose statistics of order d.

2) λ= —d'1, d integer. All Young tableaux occur whose rows have
length ^d. This is para-Fermi statistics of order d.

3) λ = 0, "infinite statistics". All Young tableaux occur without
restriction.

9 This should be regarded only as a qualitative picture since strictly localized states
in the sense of footnote 7 do not have a sharp particle number.

10 A similar classification has been given by Hartle, Stolt, and Taylor [5,6]. Their
approach uses as the essential input the cluster property and the existence of "statistics" as
postulated in [7] (a pure w-particle state of one particle type is associated with some
irreducible representation of P(n)). There is also one difference between the classification
in [6] and ours. The "infinite order statistics" in [6] includes the mixture of para-Bose and
para-Fermi behaviour (compare our Theorem 6.9) which is excluded in our case when ρ is
irreducible.
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Ordinary Bose or Fermi statistics λ = ± 1 arises only in the case of
simple sectors, i.e. when ρ is an automorphism. Parastatistics arises in
examples constructed as in [1] where the interesting representations of 91
are associated with representations of a compact, non-Abelian gauge
group11. This structure is reflected in the general setting because we have
defined a product on the set of interesting representations of 21 and it
turns out that the product of two irreducible representations with finite
statistics can be decomposed into a finite direct sum of irreducible
representations with finite statistics. This parallels the decomposition
of the tensor product of irreducible representations of a compact group.
There are no known examples of infinite statistics and it appears hard, if
not impossible, to construct such a model even allowing fields with an
infinite number of components. But on the level of our present paper we
have no arguments against its occurrence.

We denote the set of superselection sectors by 2ίp (the "physical
spectrum" of 91) and use the term "charge quantum numbers" for para-
meters which label the elements of 9ίp. This terminology is not only
suggested by looking at the physical significance of 9Ip in traditional
field-theoretical models but can be justified to some extent directly in the
present context. We note that the property which distinguishes between
states from the sector ρ and those from the vacuum sector may be localized
in any finite region 0 e JίΓe. This "local charge" is an observable property.
Shifting such a charge from 0 to β1 is an operation which has a well-
defined meaning for every state of £f. We may apply it for example to the
vacuum and thereby obtain a state with the same charge quantum
numbers as ω0 but with a local charge of type ρ in φί and a compensating
"conjugate charge" in Θ. If we let the region Θ move to infinity we arrive
at a state in the sector ρ. Furthermore, we shall see in Section III that for
a sector with finite statistics there is a unique conjugate sector, obtained
by this charge transfer operation when we let the region Φ1 move to
infinity. As discussed in [2] the set of simple sectors forms an Abelian
group, the product composition corresponding to the ordinary addition
of charge quantum numbers and the inverse corresponding to charge
conjugation. In general, i.e. for non-simple sectors, the product com-
position leads to a mixture of charges and so the composition law of
charge quantum numbers will be more complicated. Conjugation is now
characterized by the fact that composing a sector with its conjugate leads
to a mixture of charges one of which has the quantum numbers of the
vacuum. An example of a charge quantum number for a non-simple
sector is provided by the magnitude of the isospin with the "vector
addition model" of isospin as the composition law.

The relation of these examples to parafield theory is illustrated in [8].
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II. Localized Morphisms

We note first a few simple facts relating to At (formulated as
Lemmas 2.1 to 2.5).

2.1. Lemma. The morphisms from Δt are isometries:

\\ρ(A)\\ = \\A\\, QeΔt,Ae<&. (2.1)

Hence ρ E Δt provides an isomorphism of the C*-algebras 91 and ρ(9I) 12.

Proof. It suffices to prove (2.1) for A localized in some finite region G.
By the definition of Δt one can then find a morphism ρ' which is both
equivalent to ρ and localized in a region spacelike to G so that ρ'(A) = A
ρ(A) = Uρ'(A) IΓ1 = UA C/"1, with U unitary. Taking the norm on both
sides one has (2.1).

2.2. Lemma13. Lei ρ e Δt. The following conditions are equivalent
a) ρ is an automorphism.
b) The representation ρ satisfies the duality relation

(2.2)

Proof. If ρ is localized in & then we have, for the same region G

(2.3)

Since ρ(5l(0)) commutes with ρ(5l(0')) we get, using duality in the
vacuum representation

If ρ is an automorphism this may be sharpened to

ρ(ffl(0)) = «(0) (2.4)

because ρ"1 exists and is localized in the same region so that the above
inclusion relation must also hold with ρ replaced by ρ"1. From equations
(2.4), (2.3) and duality in the vacuum representation, we trivially get (2.2)
if G is the localization region of ρ. Now we observe that if the duality
relation (2.2) holds for a region G and a morphism ρ then it also holds for
the same region when ρ is replaced by any other morphism in the same
equivalence class. Hence we have (2.2) whenever there is one morphism
in the class ρ which is localized in G, i.e. as long as G e Jfρ. Thus we have
proved that condition a) implies b).

Conversely, suppose (2.2) holds for an G containing the localization
region of ρ. Then we can omit ρ on the left hand side and get, using (1.5),

12 Actually, as a consequence of property B, the algebra 31 is simple and any representa-
tion is isometric [4].

13 Compare Ref. [1] Theorems 4.1, 5.6, and the note added in proof.
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ρ(2I(0)) = 21(0). This means that ρ becomes an automorphism of such a
subalgebra. But, if jΓρ contains Φ1 it also contains any 02 D 0! . Hence,
taking a sequence of increasing double cones Φn as in (1.2), we shall have
Q acting as an automorphism on 21 (0Π) for sufficiently large n and we get
the statement a).

2.3. Lemma. Morphίsms from Δt commute when their localization
regions are mutually spacelike.

The proof is identical with that of Lemma 2.2 in Ref. [2] just replacing
Γt by A,.

2.4. Lemma. Δt is a semigroup. ΛJJ> is an Abelian semigroup.

Proof. Given two morphisms ρ^Δ^Θ^ the product ρ = ρ±ρ2 is a
morphism localized in a double cone 0 containing Φ1 and Φ2. Also, if
ρ'i = Qi then ρ' = ρ( ρ'2 is equivalent to ρ:

Q' = Qί Q2 = σu, Qi <*υ2Q2 = σt/1 σρι(v2)Qι Q2 = ^u, eι(u2)Q - (2 5)

This shows on the one hand that ρ belongs to At because, choosing ρj in
(2.5) localized in the region Gi + x resulting from Qi by translation through
x (which is possible since ρf e Δt(G^) we obtain a morphism ρ' localized
in Φ + x and equivalent to ρ. On the other hand (2.5) also shows that the
product respects the class division modulo «/ and therefore defines a
product of the classes. This product QV ρ2 is commutative by Lemma 2.3
since we have sufficient freedom in choosing the localization regions of
morphisms within one class.

2.5. Lemma. Let πl9π2 be representations satisfying criterion 1.1. Then
the direct sum π = π1@π2 will also satisfy the criterion and so will any
subrepresentation of the π f.

Proof. This is one of the results for which property B is needed. Take
πi(A) = ρi(A\ ΐ = l, 2 with ρ^ezl^ ) and choose a sufficiently large Φ
that contains both φt in its interior. Then we can find two isometric
operators Wt e 21(0) so that Wί maps Jt?0 on a subspace Jtf( and W2 maps
e^o on the orthogonal complement Jj?2 = Jtf^. This follows from the fact
that every local algebra, being a von Neumann algebra, contains com-
plementary projectors and hence by property B, we have such isometries
in a suitable 21(0). The Wt give us a unitary mapping from Jf?0®jff0 onto
J^o thereby transforming

into
ρ(A) = Wί Ql(A) Wf + W2ρ2(A) Wξ . (2.6)
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Using the relations

I (2.7)
i = l,2

one checks that ρ is indeed a morphism and that it is localized in G.
Clearly the argument goes through when all three regions Gh G are
shifted by the same translation. Hence ρ defined by (2.6) belongs to
Δt(G). It gives us a representation satisfying (1.1) and equivalent to
π10π2.

Consider next the case of a subrepresentation of πx. It may be
described as

π3(A) = Eπι(A) = Eρ^A) on the space ̂  = E 0̂ (2 8)

where £ is a projection commuting with ρ^W). Since ρ1 acts trivially
on 2l(0ί) we have by duality E e Sl(0ι). Hence by property B, there is an
isometry We W(Θ) mapping Jf0 onto JHP3, i.e. satisfying WW* = E. The
representation ρ3 defined on the space ^0 by

ρ3(A)=W*Qι(A)W (2.9)

is then equivalent to π3 defined on Jf3 by (2.8) and one easily checks that
ρ3 e Δt(G). This concludes the proof of Lemma 2.5.

The next lemma provides the basis for the discussion of permutation
symmetry (statistics). It generalizes Lemma 2.3 of Ref. [2].

2.6. Lemma. Let Q^,Q2,Q be equivalent morphίsms from Δt so that

Qi = <ruiQ, i = l,2 (2.10)

and let the localization region of ρx be spacelike to that of ρ2. Then the
unitary operator

(2.11)

has the following properties
a) It depends only on ρ and not on the ρt nor the choice of Ut (as long as

the ρt vary within the class ρ and their supports remain spacelike to each
other).

b) If Q' = σwρ then

ερ, = σvερ with V=Wρ(W). (2.12)

c) ερ commutes with all observables in the representation ρ2 i.e.

εc6ρ2(2t)'. (2.13)

d) ε2

β=I. (2.14)



Local Observables and Particle Statistics I 209

Proof, d) follows from a) because ε"1 results from ερ by interchanging
[/! and 1/2 while according to a) this leaves ερ unchanged. The statements
a), b), c) are verified by straightforward computation. Let us compute
the change in ερ if we replace ρf by ρ with

Qi = σu>iQ = σwίQil Ul = WtUt. (2.15)

We consider only a small change in the support regions so that the
supports of ρ1? ρi, Wί are spacelike to those of ρ2, ρ'2? W2. Then we have

Qι(W2)=W2; ρ2(Wί)=W1; W1W2 = W2W1. (2.16)

Replacing Ut by I// in (2.11) we get

β'ρ = Q(V2

1} ρ(W2-i) l/f1 PFf1 W2 U2ρ(WJ ρ(UJ .

Now U2ρ(Wι) = ρ2(Wί) U2 = W, U2 and similarly ρ(W2

1) l/f1 = l/f1 W2

l.
This together with the commutativity of the Wt gives

3'Q = sρ. (2.17)

Since any pair of mutually spacelike double cones &39 04 can be reached
from Φί9 Θ2 by a sequence of small deformations and shifts we obtain the
result a) by repeated use of (2.17).

We shall not reproduce here the simple calculations checking (2.12)
and (2.13). The definitions and relations involved in Lemma 2.6 will be
generalized and become transparent in Section IV.

2.7. Proposition. If ρε At9 then the following three conditions are
equivalent:

a) ρ is an automorphism,
b) ρ2 is irreducible,
C) 8ΰ=±L

Proof. The step from a) to b) is trivial; c) follows from b) by (2.13) and
(2.14). We still have to show that c) implies a). Taking ρ2 = ρ, U2 = I in
Lemma 2.6 we get for ερ the expression

ε^t/f'ρOΛ). (2.18)

Let A G 31(0) and choose ρ^ so that its support is spacelike to the supports
of A and ρ. Then

A = ei(A)=UiQ(A)U?.

If ερ = ±J we have by (2.18) Ui = ±ρ(Ui). Hence A = ρ ( U l A U f ) =
with B e 91. Thus any A e 91 which is localized in some finite region is
in the set ρ(2ϊ), so ρ(9ί) is dense in 91 and, being closed in the norm topol-
ogy, ρ(2l) = 2l. Hence ρ is an automorphism.
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III. Charge Transfer and Charge Conjugation

Our next objective is to show that all morphisms ρeAt can be
obtained as limits of sequences of inner automorphisms. This will allow
us to construct a left inverse for every such morphism. It will also suggest
a simple physical interpretation in terms of charge transfer and charge
conjugation.

Let ρ e Δt(Θ) and take a sequence of equivalent morphisms ρk e At((9k)
whose respective localization regions move to infinity so as to become
eventually spacelike to any given double cone.

Then there is a corresponding sequence of unitaries

(3.1)
such that

Qk(A) = σϋ1fQ(A) = Ukρ(A) Hi1 . (3.2)

We know that for any A e 21

lim||ρ j kμ)-^||=0. (3.3)
fe->oo

Hence we have

3.1. Lemma. Let Uk be defined as in (3.2). Then

ρ(A) = lim σϋ%(A) = lim UfA Uk (3.4)
fc->oo fc->oo

where the convergence is understood in the uniform topology.

We may interpret this in the following way. ρk creates a certain type
of charge in the region 0k. By this we mean that the state ω0 ° ρk is localized
in Θk and has the charge quantum numbers of the class ρ. In the same
sense σUh transfers this type of charge from region 0 to @k and σ^ transfers
it from Θk to 0. As fc-»oo the effect within the region Θk may be ignored
and hence we get (3.4). The creation of charge in 0 has been simulated by
the transfer of charge from a far away region to Θ. This suggests that the
inverse sequence (Uk instead of Uf) might lead us in the limit to a charge
conjugate state localized in 0. Of course if ρ is an automorphism this
limiting procedure is covered by Lemma 3.1, but we shall see that even
in the general case this expectation can be justified to some extent.

For this purpose one first observes that the συ belong to a compact
subset of a certain topological space. Consider the space Jί of bounded
linear mappings from 91 into ^(JΊf0)9 equipped with the so-called point-
weak-open topology. In this topology the convergence of a sequence (or
net) φ^eJίloφ means that for every A e 91 the sequence (or net) of
operators φΛ(A) converges to φ(A) in the weak operator topology of
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?o). The unit ball of

r
i.e., the set Ji± = \φeJί\ \\φ\\ = sup-

is compact in this topology (compare [9]). This may be used to construct
a left inverse for a morphism ρ. It will be convenient to adopt

3.2. Definition. A positive linear mapping φ e Jt is called a left inverse
of the localized morphism ρ if

φ(Aρ(B)) = φ(A)B, A,Be<Ά, (3.5)

φ(ρ(A)B) = Aφ(B), ΛBeίί, (3.6)

I. (3.7)

One checks easily that φ has the same localization region (support)
as ρ: if ρ e A t ( ( 9 ) then

φ(A) = A for A e 91(0'); ΨW^i)) C 91(0!) when 0t D 0 . (3.8)

Consequently φ maps 21 into 21. One has

3.3. Lemma. Let Uk be defined as in (3.2). Then the sequence σUk

possesses at least one limit point in Jt . Every limit point of this sequence is
a left inverse of ρ.

Proof. The first claim follows from συ e M± and the compactness of
Jt±. According to Lemma 3.1 the sequence of operators σUkρ(A) con-
verges uniformly to A.

\\UkQ(A)Uf-A\\^Q9 AεK. (3.9)
Therefore

|| Ukρ(A)BUf -AUkBUf\\ ->0; A, B e 21 . (3.10)

Taking an ^-convergent subnet of the sequence σUk and denoting its
limit by φ we get (3.6). In an analogous way one obtains (3.5). Each σv

maps positive operators into positive ones and the weak limit of a
sequence of positive operators is positive. Hence φ is a positive mapping.

3.4. Lemma. The set of all left inverses of a given ρ e At is a nonvoid,
compact, convex subset of the locally convex space M.

Proof. One only has to check that the conditions defining a left inverse
for ρ, viz (3.5) to (3.7) and positivity, are stable under taking limits and
convex combinations.

3.5. Lemma. Let φbea left inverse for ρeAt. The cyclic representation
of 21 arising from the GNS construction with the state ω0°φ will be
denoted by πφ, the cyclic vector by ξ, and the representation space by 2tf.
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There is an isometric mapping V from $?§ onto a subspace Jtf^CJtf' such
that

VΩ = ξ, (3.11)

πφ(ρ(A))V=VA, (3.12)

V*πφ(A)V=φ(A)9 (3.13)

i.e., the representation πφ ° ρ contains a subrepresentation (on Jf J equiv-
alent to π0 and the matrix elements of πφ(A) in the subspace ̂  coincide
with the corresponding ones of φ(A) in J^0

14.

Proof. Restricting the GNS construction to the subalgebra ρ(2I) we
get a subspace ̂  C f̂ in which the vectors πφ(ρ(A))ξ are a dense set. The
mapping V is then explicitly given by

V:AΩ^πφ(ρ(A))ξ. (3.14)

It is isometric since

\\πφ(Q(A))ξ\\2 = (ξ, πφρ(A*A)ξ) = ω0(φρ(A*A)) = ω0(A*A) = \\AQ\\2

and it maps Jf0 onto j^. This is the content oϊ (3.11), (3.12). To check
(3.13) we compute the matrix element of the left hand side between
vectors of Jf0. By (3.14) we get

(CO, V*πφ(A) VBΩ) = (πφ(ρ(Q)ξ, πφ(A) πφ(ρ(B))ξ)

= ω0(0(ρ(C*) Aρ(B))) = ω0(C*φ(A)B)

= (CΩ,φ(A)BΩ)

for all A, B, C e 91 and this proves (3.13).

3.6. Corollary. // φ is a left inverse then

φ(A*A) ^ φ(A*) φ(A\ A E 21 . (3.15)

Proof. Let J^ = FF* denote the projection on Jtf[ in Lemma 3.5. We
get from (3.13)

φ(A*A)=V*πφ(A*)πφ(A)V^ V*πφ(A*)Eiπφ(A)V=φ(A*)φ(A).

Comments. The state ω0 ° φ satisfies (1.3) because φ is localized. Hence,
under the circumstances described in the appendix, the representation πφ

will satisfy criterion 1.1 and we may then put πφ(A) ^ ρ(A) where ρ is a
localized morphism. In any case, the representations πφ and ρ can be
considered as "charge conjugates", since the composition πφ ° ρ leads to a
representation containing the vacuum sector. We shall see, that if ρ is
irreducible and has finite statistics then φ is unique and πφ is irreducible,
i.e. ρ then has a unique charge conjugate sector.

14 Note that (3.13) means that the mapping φ is "completely positive" in the sense of
Stinespring [10].
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For the discussion of the uniqueness of the left inverse as well as the
analysis of the type of statistics of a sector the most important fact is the
association of a "statistics parameter" λ with each sector ρ:

3.7. Theorem. // ρ e Δt is irreducible, ερ as defined in Lemma 2.6 and
φ a left inverse of ρ then

a) φ(sΰ) = λl. (3.16)
b) The possible values of λ are 0, ±d~1 where d is an integer.
c) The value of λ associated with a sector by (3.16) is unique.

Proof. Statement a) follows from the fact that ερ commutes with
ρ2(2I)(Eq.(2.13)):

0 = φ(sΰρ
2(A) - ρ2(A)εΰ) = φ(εβ)ρ(A) -ρ(A) φ(eβ), Aε<Ά.

If ρ is irreducible we have (3.16). We shall postpone the proof of b) until
section V because the relevant computations are facilitated by the
algorithm developed in the next section. Statement c) follows from b) and
Lemma 3.4. Suppose there exist two left inverses φl9φ2 of ρ leading to
values λl9λ2 by (3.16). Then any convex combination of λl9λ2 should
occur also. But this is forbidden by b) because the values of λ are restricted
to a discrete set. Changing from ρ to an equivalent ρ' = σwρ will not affect
the value of λ either: the change in ερ is given by (2.12), a left inverse of ρ'
is given by φ' = φσw*. One checks that φ'(εQ,) = Wφ(ερ) W* = λl. Thus λ
depends only on the sector ρ.

3.8. Lemma. Let ρeAt be irreducible, φ0 a left inverse of ρ obtained
according to Lemma 3.3 as a limit point of the charge transfer chain
σUk and φ any left inverse of ρ. Then

\\φ(A*A)\\^λ2\\A*A\\ (3.17)

φ(A*A)^λ2φ<>(A*A) (3.18)

where λ is defined in Theorem 3.7.

Proof. As φ is norm continuous it suffices to prove this result for A
having support in some finite region Θ. Then for sufficiently large k we
have

so
φ(UfA) =

and by (3.15) we have

φ(A*A) ^ φ(UfA)* φ(UfA) = λ2UkA*AU? .

This gives (3.17) and taking the limit for a convergent subnet of the σϋk

we get (3.18).
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We now have all the machinery to demonstrate

3.9. Theorem, a) IfρeΔt is irreducible and has finite statistics (λ φ 0)
then ρ has a unique left inverse φ.

b) The sequence σUk converges to φ in Jί.
c) There is a representation π, unique to within equivalence such that

π ° ρ contains the vacuum representation and the corresponding subspace
contains a cyclic vector for π. This representation is irreducible and locally
normal.

Proof. According to Lemma 3.4 we can apply the Krein-Milman
Theorem to the set of all left inverses of ρ. Let φ be an extremal left inverse
and φ0 be one obtained from a convergent subnet of the sequence σUk.
If λ φ 0 we can write

φ = (1 — η2)φ1 + η2φ0; 0<η2<λ2 (3.19)
where

= φ-η2φ0

is still a left inverse since, according to (3.18), it is still a positive map. The
decomposition (3.19) contradicts the assumption that φ is extremal,
unless φ = φ0. Hence the set of left inverses has only one extremal point
and therefore only one element. This proves part a) of the theorem.
Part b) is, of course, an immediate consequence of the uniqueness of φ.
To prove c) let ffl be the representation space of π and ̂  a subspace
such that the restriction of π ° ρ to Jfi is equivalent to π0. Then we have

π°ρ(A)V=VA, AεM (3.20)

where V is an isometric mapping of 34f0 into 2tf with range ̂  . Let
E G π(2iy be a non-zero projection then F*EFe 2Γ = {λl}. By assumption
there is a unit vector ξ = Vχ, χ e J^θ9 cyclic for π(9I) and hence separating
for π(9ϊ)'. Thus V*EV= (ξ, Eξ)I Φ 0 and defining φ by

(ξ, Eξ) φ(A) = V*Eπ(A)EV, A e 91 (3.21)

φ is evidently a positive linear map with φ(I) = I and satisfies (3.5) and
(3.6). Hence φ is the unique left inverse of ρ and is in particular independ-
ent of E. Thus setting E = I and comparing with (3.21) we get

(ξ,Eξ)V*π(A)V=V*Eπ(A)EV=V*π(A)EV, AeW. (3.22)

So by taking expectation values in the vector χ,

(3.23)

Since ξ is cyclic for π(9I) by assumption, Eξ = (ξ, Eξ)ξ so E = I and π is
irreducible. Furthermore the pure state ω0 ° φ is a vector state of π (given
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by the vector VΩ) so π is unitarily equivalent to the representation πφ of
Lemma 3.5. ω0 e φ is locally normal because it is the limit of a sequence
ω0 ° σUk of locally normal states. Hence π itself is locally normal com-
pleting the proof.

IV. Intertwiners and Permutation Symmetry

The purpose of this section is to develop a convenient notation and
algorithm so that the generalization of Lemma 2.6 to an arbitrary number
of factors becomes easily understandable.

Consider two localized morphisms ρ, ρ'. If the corresponding repre-
sentations of $1 are not disjoint there exists an intertwining operator
Re&(Jt?0)i.e.

ρ'(A)R = Rρ(A), Aε<Ά. (4.1)

As a shorthand expression for the statement that the triple ρ, ρ' and R
satisfy the relation (4.1) we write the symbol

R = (Q'\R\Q) (4.2)
and call R an intertwiner. The adjoint of (4.2) is obviously

K* = (ρ|JR*|<?') (4.3)

The composition of two intertwiners is defined if the adjoining
morphisms coincide:

(4.4)

Consider the localization properties of intertwiners. In (4.2) let Θ± be
a support region of ρ and Θ2 one for ρ'. We call Θ2

 a kft support and Θί a
right support of R. The operator R is bilocal in the sense that
R e {3l(0i)n3l(0'2)}'. In particular, if (9 is a double cone containing both
0! and Φ2 then R e 31(0) by duality.

There is one more important operation on the set of intertwiners
considered here. It arises from the multiplicative structure of the repre-
sentations of interest. If we know intertwining operators from ρt to ρj,
i = 1, 2, then we can immediately write down an intertwining operator
from ρ2ρi to ρ'2ρi. Explicitly if Rt = (ρfi\Ri\ρ^9 ί = 1, 2, we write

R2xR, =(ρ'2ρ'ί\R2Q2(Rι)\Q2Qι). (4.5)

Elementary calculation shows that this cross product is associative
and one finds the formulae

(5 x D* - S* x Γ* , (4.6)

(R2 o R2) x (R[ o R,) = (R2 x R',) o (R2 x ΛI) , (4.7)
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the latter relation being valid when the left hand side is defined, i.e. when

Jζ = (β?Wi); Rt = (Q't\Rι\Qύ.

We call two intertwiners causally disjoint if their right supports lie space-
like to each other and the same holds for their left supports.

4.1. Lemma. // R± and R2 are causally disjoint then

K.-^ X i\2 ^ -iv 2 X * ι̂

Proof. We have to show that under the stated conditions for the
supports

This relation is trivial if the four relevant supports are so situated that
one can find two double cones Θί and G2 spacelike to each other and
with GI containing both the right and the left support of Rt. Let us then
assume that (4.8) holds for a particular pair Rι,R2 and let us shift for
instance the right support of R2 (region Θ2) to 03 in such a way that the
smallest double cone containing Θ2 and 03 is still spacelike to Φί9 the
right support of R1 . Thus we replace R2 by

R3 = R2°U; U = (ρ2\U\Q3)

where U is a unitary localized spacelike to &1 . Setting

we get from (4.7)

*1x«3 = (Jl 1 xJl 2 )o(/ β ι x£7)

R3xRί==(R2xR1)o(UχIρι).

But the supports of 17 and ρί are mutually spacelike so

/ β l x £ 7 = ! 7 x / β l .

Thus the commutativity is preserved when we shift the right support of
R2 as specified above. By a succession of small shifts of this nature we can
bring this support from any one region spacelike to @ί to any other
region spacelike to G± . The same procedure can then be applied to the
right support of R1 . This establishes the lemma.

We can now describe the dependence of the cross product on the
order of the factors in the general case. Given n intertwiners Rk and a

' ' ...... ' J we use the shorthand notation

xRp-1(2)x .-. x«p-ι ( n ). (4.10)
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First we observe that for any n morphisms ρί9..., ρn the equivalence class
of the product does not depend on the order of factors. In fact there is a
natural unitary intertwining operator between the representations
ρί ... Qn and ρp(1)... Qp(nγ Its construction and properties are described in
the following two theorems.

4.2. Theorem. Given Qk^Δt\ k = l,2,...,n and peP(M). Choose n
morphisms ρ(°\ ..., ρ^0) with mutually spacelike supports and equivalent to
ρ1? ...,ρn respectively so that there exist unitary intertwiners (Q^\Uk\ρ^).
Then set

U*{p)oU(e) = 8p(ρl9...9ρJ (4.11)

= fep-i(l) ••• βp-i(π)Mβl» '"9Qn)\Ql ••' Qn)

where the notation (4.10) has been used and e denotes the identity element of
P(n\ Then

a) Bp is independent of the choice of the ρ£0) and Uk within the specified
limitations.

b) εp(ρl9..., ρn) = I if the ρk have mutually spacelike supports.
c) Bjiρp-ί(1)9...9ρp-ί(n^Bp(ρl9...9ρ^ = sq^ρl9...9ρ^9 p,qeP(n\ (4.12)
d) If τmeP(n) denotes the transposition of m and m + 1, m<n

«τmtol9β2 ϊ -^n) = /βιX •" X 'em-i X «τtom»βm + l) X'βn+1

 X '" X lQn'

The operators εp can be used to change the order in the cross product
of any set of intertwiners:

4.3. Theorem. Given intertwiners Rk = (ρk\Rk\ρk), k = l,...9n and a
permutation p e P(n}. Then

R(p)°sp(ρί,...,ρn)==εp(ρ'ί,...ίρ
f

n)«R(e)ί5. (4.13)

Proof of Theorem4.2. In (4.11) U(e) intertwines from ρx ...ρn to
ei 0>...ρ<P> and U*(p) from ρjpλ <„...<?<,<%, to ρp-1(1)... ρp.I(11). The
ρ£0) having mutually spacelike supports all commute and thus the right
argument of t/*(p) coincides with the left argument of U(e). Therefore the
composition (4.11) is well defined and leads to an intertwiner as specified
in (4.11). To see that εp is independent of the choice of ρ[0), Uk let us take
Uk = (Q(k}\Uk\Qk) instead ofJUk, where the ρ£0) again have mutually space-
like supports. Then Vk = Uk° U$ intertwines from ρ£0) to ρj[0). Hence the
Vk are causally disjoint intertwiners and we have V(p) = V(e) by
Lemma 4.1. Using formula (4.7) this may be written

U(p)°U*(p)=U(e)oU*(e)

15 For those familiar with category theory we remark that localized morphisms and
intertwiners form a symmetric monoidal category in the language of Eilenberg and Kelly
[11]. β is the natural transformation making the monoidal structure symmetric.

16 Commun. math. Phys., Vol. 23
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or
U*(p)°U(e)=U*(p)°U(e)

which is the desired statement of independence. Part b) follows imme-
diately from the independence because, if the ρk have mutually spacelike
supports we may choose Uk = (ρfc|/|ρfc). Part c) follows immediately from
(4.11) and so does part d) when relation (4.7) is used.

Proof of Theorem 4. 3. Let us choose unitary intertwiners (ρfc0)|ί4|ρfe)
and (ρ[0) '\Uk\ρk) where the supports of the morphisms ρ£0) as well as those
of the ρ[0)/ are mutually spacelike. Define

Sk = Uί°Rk°U?. (4.14)

By construction the Sk are all causally disjoint. Hence

(4.15)

Insert (4.14) into (4.15), use (4.7) and rearrange to obtain Eq. (4.13).
Comments. Theorem 4.2 reduces to Lemma 2.6 in the special case

n = 2, p = τ (transposition) and ρί = ρ2- The notation in section II is
translated into the one of this section by the identification

βτfoί?) = βρ. (4.16)

For n > 2 the case where all morphisms ρt are equal is also of special
interest. We shall then write, in analogy with (4.16)

βp(ρ,ρ,...,ρ) = βj>(p). (4.17)

An immediate corollary of Theorems 4.2 and 4.3 and Lemma 2.7 is

4.4. Proposition, a) p-*ε^(p) is a unitary representation of the per-
mutation group P(n}.

b) ε(J°(p) commutes with ρ"(9I).
c) The operators β(

ρ

w)(p) are scalar multiples of the identity if and only
if ρ is an automorphism.

d) If W= (ρf \W\ ρ) is unitary and WXn denotes the n-fold x -product
of W with itself

β<»>(p) =WXn° 8<;>(p) o (W x T . (4.18)

Proposition 4.4 d generalizes Lemma 2.6 b and implies that the equiv-
alence class of the unitary representation ερ

π) of P(n) depends only on ρ.
The significance of the operators ε(

ρ

n)(/?) has been described in the
introduction. We can now verify in detail the remarks made there. Let
ρ kezl r, fc = l, ...,n, belong to the same equivalence class and have
mutually spacelike supports. Pick a reference morphism ρ in this class
and intertwiners (ρk\Uk\ρ). In the representation ρ the vector



Local Observables and Particle Statistics I 219

represents the state ω0 ° ρk:

(UfΩ, ρ(A)UfΩ) = (fl, ρk(A)Ω) = ωQ(ρk(A)).

Consider now the vector

|p> = t7*(p)0=£7*-1(1)x - xί7*-1(B)Q, (4.19)

where p e P(n\ This corresponds to a product of n state vectors (with
identical charge quantum numbers) as mentioned in the introduction.
The order of factors is determined by p. This vector must be considered
in the representation ρn where it represents the state ω0 ° ρx ρ2 ... ρn

irrespective of which permutation p was chosen, because the ρk commute.
Proposition 4.4 tells us that the vectors |p> defined in (4.19) are trans-
formed into each other by the permutation operators ε(£}(q):

β?)fe)|p> = kP>. (4.20)

The permutation operators commute with all observables (Proposi-
tion 4.4) so the vectors |p> represent the same state for all p e P(n\ These
properties of the permutation operators make them completely analo-
gous to the place permutations of the wave functions of n identical
particles in wave mechanics.

V. The Statistics of a Sector

As described in the introduction, we call the statistics of the sector ρ
the collection of equivalence classes of the representations ε(

ρ

} of the
permutation groups P(n) as n varies. The main concern of this section is to
classify the possible statistics. We note first that each irreducible com-
ponent of e(J° occurs with multiplicity dimJ f0. In fact if EφO is the cor-
responding central projection then E e ρn(9ϊ)' C 91(0), where Θ is the
support of ρ, and Property B shows that E projects onto a subspace with
the same dimension as ̂ Q. Hence it suffices to determine which irreducible
components occur, i.e. to determine the quasiequivalence class of ε(J°.
Irreducible representations of P(n} correspond to Young tableaux with n
squares and we consider our goal achieved when we describe the Young
tableaux associated with ερ

n) as n varies.
The simplest and most important case is where ρ is irreducible and

we recall from Theorem 3.7a that, if φ is a left inverse of an irreducible
ρ, φ(ερ) is a multiple of the identity.

5.1. Lemma.Let φ be α left inverse for ρeAt with φ(ερ) = λl then if
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where p' e P(M-1) is the permutation obtained from p by deleting 1 from its
cycle in the decomposition of p into disjoint cycles and then writing t for
ί + 1, ί = l,2,...,π-l.

Proof. If p(l) - 1, ε(

ρ

π)(p) = ρ ;̂-1 V)) as follows, for example, from
Theorem 4.2d. If p(ΐ) φ 1, write p = p^2p3 where p2 = (12), pί = (2p(l))
and the symbol (si) denotes the transposition of s and f. This defines p3

and one checks that p3(l) = 1. By Theorem 4.2d and Eqs. (3.5) and (3.6)
we get

</>(£<">) = ε<Γ ̂ (pi) φ(εβ) β?-

The proof is completed by checking that p[p'3 = p'.

5.2. Proposition. Let φ be a left inverse for ρ e zJt with φ(εβ) = λl, then

where ω" is the trace state on P(w) multiplicative on disjoint cycles and
taking the value λk~1 on a k-cycle. The cyclic representation of P(w)

generated by ωn

λ is quasiequivalent to ε(

ρ

w).

Proof. Eq. (5.1) follows by using Lemma 5.1 repeatedly. Since φ is a
positive map with φ(I) = /, ωn

λ is a state. Let E be a central projection in
the group algebra of P(M) then s(^(E) = 0 implies ωn

λ(E) = 0 trivially.
However if λ φ 0 the converse follows because φ is then faithful by (3.17).
On the other hand if λ = 0, ω" is the state that generates the left regular
representation of P(n) so ωn

λ(E) = 0 implies E = 0. Hence in either case the
cyclic representation of P(n) generated by ωn

λ is quasiequivalent to ε(

ρ

n).
This result shows that the statistics of a sector is determined by the

value of λ. The problems that remain are of a group theoretical nature:
we must determine the possible values of λ and the Young tableaux
associated with the state ω".

5.3. Lemma. Let En

s and En

a denote the symmetric and antisymmetric
projections in the group algebra of P(n) then

afλ(Έ% = -L (1 + λ) (1 + 2λ) . . . (1 + (n - l)λ) , (5.2)

= - (1 - λ) (1 - 2λ) . . . (1 - (n - l)λ) . (5.3)

The possible values of λ are 0, +d~l where d is an integer.

Proof. Using the same way of passing from an element of P(w) to one of
P(n~υ as was used in Lemma 5.1 we deduce that

EΓ1}. (5.4)
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Furthermore noting that if an element is removed from a cycle of length
> 1 we change the sign of the permutation, we see that

ώi(E% = -ωΓ^EΓ1)- ^-AωΓ1^-1). (5.5)

Induction on (5.4) and (5.5) leads to (5.2) and (5.3). As ω" is a state on
P(n\ ω"(E") ̂  0 and a)"(E$ ^ 0 for all n and the restriction on the values
of λ follows from (5.2) and (5.3).

This lemma completes the proof of Theorem 3.7b and fills the gap in
section III in the proof that an irreducible morphism ρ e Δt with λ φ 0 has
a unique left inverse. The next lemma shows that positivity implies no
further restrictions on the values of λ.

5.4. Lemma. Let ̂  be a Hubert space of finite dimension d. Consider
the natural representation π of P(n} on 2tf (x)2tf (x) ••• (x)2tf which acts by
permuting factors and the representation n' defined by π'(p) = sign(p) π(p)
then

d~" Tr (π(p)) = ωj- ι(p), p e P<">, (5.6)

d~* Tr(π'(p)) = ωV'ίPλ p e P<»>. (5.7)

Proof. Tr(π(p)) is a class function. Consider the decomposition of p
into disjoint cycles, p = c1 c2 ... cm say, then

m

d-"Tr(π(p))= ΓM~"Tr(π(Ci)).
i = l

However if c is a fc-cycle, which without loss of generality we may suppose
to be (12... fc), then

Tr(π(c))= Σ (Φiί® -®Φik,Φik®Φiί®' ®Φik_1)
f ι , . . , ik

ίk + 1 > ., in

where Φί? f = l,2, ,..d runs over an orthonormal basis for Jf7. Thus
Tr(π(c)) = dn~kd as required. This proves (5.6) and (5.7) follows similarly
replacing π by π'.

5.5. Theorem. // φ is a left inverse for ρ e Δt with φ(sβ) = λl the Young
tableaux associated with the representations ε(

ρ

w) of P(n\ n^l are all Young
tableaux

a) whose columns have length ^d, if λ = d'1 (para-Bose statistics of
order d),

b) whose rows have length ^d,ifλ=—d~1 (para-Fermi statistics of
order d),

c) without restriction, if λ = 0 (infinite statistics).
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Proof. If λ = 0, ω" is the natural state generating the left regular
representation of P(n} so all Young tableaux occur. If λ = d~l, β(

ρ

π) is quasi-
equivalent to the representation π of Lemma 5.4. For π we may proceed
by projecting out parts of the natural basis vectors transforming
irreducibly under P(M) using projections associated in the usual way
(see e.g. [12]) with the corresponding Young tableaux. The symmetriza-
tions involved pose no problem however antisymmetrizing Φh (x) (x) Φin

with respect to a subset of its indices leads to a nonzero result only if the
corresponding components are distinct. This yields a) and b) follows by
interchanging rows and columns.

We see that under our assumptions a sector has either para-Bose,
para-Fermi or infinite statistics. As indicated in the introduction there
are no known examples of infinite statistics and arguments why they
should not occur will be given in the sequel.

VI. Reducible Representations

Further insight into the structure of localized morphisms can be
gained by trying to analyze the statistics of reducible representations.
It is important to realize that if a reducible ρ has a left inverse φ with
φ(se) = λl then the analysis of section V still applies and the statistics
of ρ is characterized by Theorem 5.5. It will turn out that reducible ρ
do not have this property in general and their statistics is then neither
para-Bose, para-Fermi nor infinite but rather a mixture of para-Bose and
para-Fermi statistics.

On physical grounds one would expect that any reducible representa-
tion satisfying criterion 1.1 is the direct sum of irreducible representations.
We show first that this is the case at least if we exclude infinite statistics.

6.1. Lemma. Let φ be a left inverse of ρ e Δt and F a spectral projection
of the self-adjoint operator A = φ(ερ) corresponding to {teR: \t\ ̂  δ},
δ > 0. Then there are at most a finite number m of mutually orthogonal
projections Ei e ρ(2l)' with Et ^ F.

Proof. Let E e ρ(9I)' be a projection with 0 < E ̂  F and let U = (ρ'\ U\ ρ)
be a unitary intertwiner where ρ and ρ' have spacelike separated supports.
Then ρ'(E) = E and from (2.11) we get

Using (3.5), (3.6) and (3.15) we deduce

φ(E) ^ φ(lJ-lE)* φ(U~lE) = UAEAU'1. (6.1)

Now \\UAEAU~i\\ = \\AEA\\ = \\AE\\2 ^δ2 since E^F.
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But Eeρ(SI)' implies φ(E)eW so φ(E) is a multiple of the identity
and hence from (6.1)

φ(E)^δ2!. (6.2)
m

Now / ̂  φ(F) ^ £ </>(£;) so using (6.2) for each Et we deduce m^δ~2

i = l
completing the proof.

6.2. Corollary, a) A has a discrete spectrum.
b) ρ(9% is a finite discrete von Neumann algebra.
c) If ρ(3l)' is a continuous von Neumann algebra, φ(εβ) = 0 and ρ has

infinite statistics.

From this corollary we see that insofar as we restrict ourselves to
finite statistics, all representations are the direct sum of irreducible
representations.

To classify the statistics of reducible representations we need the
concept of a standard left inverse. A left inverse φ of a ρ e At will be called
standard if φ(ερ)

2 is a multiple of the identity. It will be noted that the left
inverses used in Theorem 5.5 and in the results leading up to that theorem
are standard.

6.3. Proposition. Every ρe Δt has a standard left inverse. If ρ has a
subrepresentation with infinite statistics then ρ has infinite statistics.

Proof. Let Wt = (Q\Wt\Q^ be isometric intertwiners with

ΣWi Wf-l, and Wi*oWJ = δlJIβi.
i = l

Let φι be a left inverse for ρf, ί = 1, 2, ..., m and set

m

φ(A) = £ atφt(Wt*AWj, AeK (6.3)
i = l

m
where a{ ̂  0 and £ αf = 1. Then φ is clearly a left inverse for ρ. Further

i = l

by Theorem 4.3,

ερ°WixWj=WjxWί°ετ(ρi,ρj). (6.4)

Hence WfεQWίQi(W) = δίjQi(W^Qί and thus φ^Wf
So φ^W^W^ΣΦAWfs^WjWf^W.φ^Wf. Then by (6.3)

1=1

Suppose that ρ1 corresponds to a subrepresentation of ρ with infinite
statistics then, by definition, we may take φί with 01(βρι) = 0. Setting
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αx = 1, α = 0, i ή= 1 we deduce that φ(ερ) = 0 so ρ itself has infinite statistics.
Suppose now that ρf, ί = 1, 2, ..., m are irreducible with finite statistics,
then, putting Et = Wi Wf,

m

φt(εβ) = λίl and φ(ej= % atλtEt. (6.6)
i = l

m

Setting a{ = dtd~l where dt = l/y"1 and d = £ dt we get
i = l

.̂(ερ) = ci-1 (£„-£/) (6.7)
where

£6= Σ £( and Ef= £ Ef (6.8)
Λ i > 0 λ f < 0

φ(ερ)
2 = d-2(Eb + Ef) = d-2I. (6.9)

Thus ψ is standard. It only remains to consider the case where ρ is an
infinite direct sum of irreducibles ρt with finite statistics. Eq. (6.3) can still
be used to define a left inverse, φ(m} say, for ρ and (6.6) is still valid so we
may arrange that φ(m}(ερ) converges weakly to zero. By Lemma 3.4 there
is a limit point φeJt of the sequence {φ(m)} and φ will be a left inverse for
ρ with φ(sρ) = 0. Thus φ is a standard left inverse for ρ and ρ has infinite
statistics.

The form of Eq. (6.7) already indicates that the only reason why the
statistics of a reducible representation need not fall into one of the
categories in Theorem 5.5 is that it may be a mixture of para-Bose and
para-Fermi statistics. Before stating the general form for the statistics we
collect together a few results on standard left inverses.

6.4. Lemma. // φ is a standard left inverse for ρeAt and φ(εΰ) φ 0 then
φ is faithful. In fact

\\φ(B*B)\\ ^ \\φ(ερ)
2\\ \\B*B\\ . (6.10)

Proof. It suffices to prove (6.10) for £e2I(0). Pick a unitary inter-
twiner U = (ρ'\U\ρ) where ρ' has support spacelike to 0 and to that of ρ.
Then ρ(B) = U^BU and ερ - U~^(U). Thus by (3.15), (3.5) and (3.6)

φ(B*B) ^ φ(U^Br φ(U-{B) = Uφ(εQ) B*Bφ(sQ)U~l .

Since ||φ(eρ)|| -1 φ(εe) is unitary the result now follows.

6.5. Proposition. // φ is a standard left inverse for ρ e Δt and φ(εβ) φ 0
then

φ(sρ) = d-ί(Eb-Ef) (6.11)

where Eb and Ef are the central projections in ρ(9l)' containing the pro-
jections onto the para-Bose and para-Fermi components of ρ respectively.
Further dφ(Eb) = bl and dφ(Ef) = fl where b and f are integers indepen-
dent of the choice of φ and satisfying d = b + f.
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Proof. Since φ is standard we may use (6.11) to define Eb and Ef. Let
E e ρ(9l)' be a projection with 0 < E ̂  Eb, then by Lemma 2.5 there is an
isometric intertwiner W=(ρ\W\ρf) with WW* = E. Now φ(E) is a
multiple of the identity and by Lemma 6.4, φ(E) φ 0 so setting

(6.12)

φ is a left inverse for ρ'. Further by Theorem 4.3

βρ, = (W* x W*} o βρ o (W x W) and ερE = ρ(E)sρ,

hence
(6.13)

Since £ ̂  Eft, (6.13) gives 0'(ερ/) = d~1φ(E)~1. Thus φ' is standard and ρ'
has para-Bose statistics of order dφ(E\ Similarly if 0 < E rg Ef, ρ' would
have para-Fermi statistics of order dφ(E). Since the statistics is a unitary
invariant and by Theorem 5.5 the para-Bose or para-Fermi orders are
integers the remaining assertions follow.

The integers b and / defined above are thus unitary invariants; we
shall denote them by b(ρ) and /(ρ) and call them the para-Bose order and
para-Fermi order of ρ respectively. Their sum d(ρ) = b(ρ) + /(ρ) will be
called the statistical dimension of ρ. The condition φ(ερ) φ 0 appearing in
Lemma 6.4 and Proposition 6.5 is just the condition that ρ shall have
finite statistics. If ρ has infinite statistics we write d(ρ) = oo conventionally,
leaving b(ρ) and /(ρ) undefined.

6.6. Proposition. // φ is a standard left inverse for a ρ e Δt with finite
statistics, then

(6.14)

where Trρ is a faithful trace state. Further if Eeρ(2I)' is a non-zero
projection, then

(6 15)

where d(E) is the statistical dimension of the subrepresentatίon π0

Proof. With the notation of Proposition 6.5, define a left inverse by
(6.12) and then by (6.13)

φ'(sρ,)
2 φ(E)2 = W*φ(3ρ) WW*φ(sρ)W= W*φ(εβ)

2W = φ(8ρ)
2 .

Here the second equality follows because (6.11) implies that φ(se) is in the
centre of ρ(9I)'. Thus φ' is a standard left inverse for ρ' and φ'(ερ,)

2 = d(E)~2

giving (6.15). The statistical dimension is a unitary invariant so that
φ(E) = φ(UEU~1) for every [7eρ(2I)'. This suffices to establish that
Trρ is a trace state on ρ(9I)' and faithfulness follows from (6.15) or
Lemma 6.4.
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From the explicit construction of a standard left inverse in Propo-
sition 6.3, it follows that b and / are additive on direct sums,

and /(e)=Σ/(ft) if e = Θft (6 16)

We investigate next the behaviour of b and / on taking products of
localized morphisms. If we let φ(se) = (ρ\φ(εQ)\ρ) we have

6.7. Lemma. Let φί9 φ2 be left inverses for ρl9 ρ2 6 Δt respectively then
φ2Φι is a left inverse for ρίρ2 and

Φ2Φι(εριe2) = Φι(BQί) x Φ2(ερ2) . (6.17)

Proof. Pick unitary intertwiners U^ = (ρi|E/ι|ρι) and U2 = (ρ'2 1 U2 \ ρ2)
where the support of ρi is spacelike to that of ρί9 ρ2 and ρ'2, the support
of ρ'2 is spacelike to that of ρ1? ρ2 and ρ'x and the support of ρiρ'2 is space-
like to that of ρί ρ2. Then by definition, ερι = ί/Γ1ρι(ί/ι), &Q2 = U2

1ρ2(U2)
and εβlβ2 = ρ1(l72)~1l71~

1ρ1ρ2(t71ρ1(t72)). By the special choice of
support regions we have

ρ'ι(U2) = U2 ρ'2(Uί) - U, A,U2 = U2ρ2(ΛJ , (6.18)

where we write Λt = φi(εe), i = 1, 2. Then

Φ2Φι(εeίβ2) = Φ2(Vϊ1Φι(VΓ1)) UίQί(U2) = φ2(U2^Λ, l/f1) UlQl(U2)

and using (6.18) repeatedly we find

Φ2Φι(εQlQ2) = ΛιU^1Λ2Ul = Λlρ1(Λ2) giving (6.17).

6.8. Corollary, a) If φ± and φ2 are standard then φ2φι is standard.
b) The product of sectors with finite statistics has finite statistics.
c) If ρί9 ρ2 e Δt have finite statistics and ρ = ρ^ρ2 then

*»
The unitary invariants b, d and /provide just the information needed

to characterize the statistics.

6.9. Theorem. Let ρe Δt then the Young tableaux associated with the
representations ε(

ρ

π) of P(n\ n ̂  1 are all Young tableaux if d(ρ) = oo and
otherwise all Young tableaux with at most b(ρ) rows of length > f(ρ) and
at most f(ρ) columns of length >b(ρ).

To prove this theorem we must generalize Lemma 5.1, Proposition 5.2
and Lemma 5.4. We content ourselves here with stating the analogue of
Proposition 5.2 which should provide enough guidance for the interested
reader.
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6.10. Proposition. Let φ be a standard left inverse for a ρ e Δt with
finite statistics, then

peP( l l )

where ω is the trace state on P(n} multiplicative on disjoint cycles and taking
the value d(ρ)~2k (b(ρ) — /(ρ)) on a Ik-cycle and d(ρ)~2k on a 2k + 1-cycle.
The cyclic representation of P(n} generated by ω is quasiequivalent to ε(

ρ

κ).

Of course by Corollary 6.8a, φn is a standard left inverse for ρn so that
comparing with (6.14) we get

ω(p) = Ύrρn(s^{p)) (6.20)

which at least proves that ω is a trace state. However, we refrain from
giving further details.

Appendix

Suppose π is a representation of 91 and Fa unitary operator from J f0

onto Jfπ such that, for a given double cone β,

π(A)=VAV~1 for AzW(®'). (A.I)

Let ω be a normal state in the representation π; we want to prove that
ω fulfills the relation (1.3) of the introduction:

lim || (ω — ω0) \&>\\ — 0 (A.2)
n—* oo

where the sequence of double cones Θn exhausts space-time in the limit
n^oo (cf. (1.2)).

The argument is the same as in [13] and we give it here for the con-
venience of the reader. Suppose that (A.2) is incorrect: there exists a sub-
sequence Θn. and operators B{ from the unit ball of 21(0 )̂ such that for
al i i = 1,2,'.!.

\(ω-ω0)(Bi)\>ε (A.3)

where β is a positive number.
Since the unit ball of0S(3#Ό) is weakly compact, the sequence Bt has a

weak limit point B. The operator B must in fact be equal to a complex
number c times the identity operator on ̂ Q since

Be

In particular B e 2l(βQ F°r sufficiently large i, (9 is included in &n. and
by Eq. (A.I), ω is normal on 21(0^ i e > weakly continuous on its unit
ball; hence by (A.3) we find

\(ω-ω0)(B)\>ε.
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However, B = cl and ω(B) = ω0(B) = c; the contradiction proves that
(A.2) is a consequence of (A.I).

The statement above admits a partial converse under some restrictive
hypothesis on the representation π. For each double cone 0 let ©π(0)
denote the von Neumann algebra π(2ϊ($'))'.

As we shall see below, the following property (the generalization of
property B to the representation π) can be derived in the relevant cases:

Let 0 be a double cone included in the interior of the double
cone Φ1. If .EeSπ(0) is a non-zero projection, there is an (A.4)
isometry We S )̂ such that WW* = E, W* W = L

This means the following: take any subrepresentation of π | 21(0') acting
on a subspace ̂  C 3?π and restrict it to 2I($i) then the resulting repre-
sentation is unitarily equivalent to π | 2ϊ($i). In fact the orthogonal
projection E onto ̂  belongs to π(2l(0'))' = ©π(0) hence there is an
isometry W as in (A.4) commuting with π(2I(ύ?i)); W realizes the above
equivalence.

Note also that if % and π2 satisfy (A.4) and the representations
πι 1 21(0') and π2 1 21(0') are not disjoint (in other words a non-zero sub-
representation of the first is unitarily equivalent to a subrepresentation of
the second) it follows that % 1 2Ϊ(0Ί) and π2 1 2l(0Ί) are unitarily equivalent
for any double cone Θί containing φ in its interior.

A.I. Proposition. Let ω be a state of 21 such that

/or an increasing sequence of double cones &n. If the GNS representation
πω fulfills (A.4), there is a double cone (9 such that

Proof. For sufficiently large n0 we have

and, by a theorem of Glimm and Kadison [14], the states ω 1 9I( 0̂) and
ω0|2l(<%0) induce non-disjoint representations of 9Ϊ(^0)

16. These
representations are subrepresentations of πω 121(0^) and π0|2ϊ(ίP^0)
respectively, hence a fortiori the latter are not disjoint. If the double cone

16 If the representations πωι and πω2 induced by the states ωt und ω2 over a C*-algebra
93 are disjoint, the von Neumann algebra πωι©πω2(23)" coincides with πωι(93)"©πω2(23)"
hence contains the operator B = I®-L The form ωί - ω2 over πωι0πω2(93) has a unique
ultra weakly continuous extension ψ to πωι Θ πω2(93)" with the same norm, and 2:>\\ω1-ω2 \\

| = 2 so \\ωl-ω2\\=2.



Local Observables and Particle Statistics I 229

Φ contains Θno in its interior, it follows by the remarks above that

We now discuss how property (A.4) is related to more standard
assumptions which may be expected to hold for observables derived from
an underlying field theory. The observable algebra is required to be
invariant under space-time translations and to satisfy a so-called addi-
tivity property:

(i) There is a continuous unitary representation x^U0(x) of the
space-time translation group, acting on Jf0 such that for each & e Jf,
A e 91(0) and x e R4

t/0(x) A t/oίxΓ1 = QLχ(A) E 91(0 H- X)

(ii) If 0 l9 ...,0Π are double cones covering the double cone 0, the
von Neumann algebra generated by the 9ϊ(0f), z' = l, 2, ...,n, includes
91(0).

If π is a locally normal representation of 91, the algebras π(9ϊ(0)) are
von Neumann algebras and satisfy the additivity property analogous to
(ii). Hence for any double cone 0 the collection of algebras π(9l(0 + x)),
x varying over space-time, generates π(9l)" as a von Neumann algebra.
Therefore a Theorem of Borchers [4, Theorem III.3] implies that an
irreducible locally normal representation π fulfills (A.4) whenever it
satisfies the following spectrum condition:

There exists a continuous unitary representation x->l/(x) of the
space-time translation group, acting on J"fπ, such that

(a) π(ax(A)) = U(x) π(A) l/(x)~S x e tf4, A e 9ί
(b) the spectrum of (7 is contained in the forward light cone.
It will be shown elsewhere that if ρ e Δt leads to a sector with finite

statistics and covariant under the Poincare group, the conjugate repre-
sentation π described in section III is also covariant, and both π and ρ
fulfill the spectrum condition as a consequence of the positivity of the
energy in the vacuum sector. Under the additivity assumption (ii) for the
observable algebra, the conjugate representation will then be in the
family described in the introduction.
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