
Commun. math. Phys. 23, 189-198 (1971)
© by Springer-Verlag 1971
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Abstract. By introducing a specific type of perturbation, A, in the Hamiltonian, we
define a class of gently perturbed states, ρβ>A, of a canonical ensemble, ρ^. The perturbations
are chosen so as to preserve a relationship of the form ρβtA ^ constant x ρβ. Applications
in ergodic theory and phase transitions are described.

1. Introduction

It is not difficult to give examples wherein the state of a dynamical
system is radically altered by the introduction of a perturbation. It is
our purpose however, to investigate the effects on a canonical ensemble
of a specific class of very weak perturbations, the choice being made so
as to preserve a certain relationship with the unperturbed state. The
relationship is known to be of use in studying problems of ergodic theory
and of phase transitions, and we explicitly mention important, "non-
sovable" models to which our results apply.

We are primarily concerned with infinite volume, quantum mechanical
systems, and the C*-algebra formalism is used. The system is thus
assumed to be describable by the C*-inductive limit [1] 21 of an in-
creasing sequence of finite volume subsystems 2ΪM, i.e. sub-C*-algebras,
which are C*~isomorphic to1 B(3tfn) for some sequence J^n of Hubert
spaces. To simplify the notation, we will identify 9IM with B(3>ίfn) at will.

If H is a self-adjoint operator on a Hubert space 2tf, with generalized
resolution of the identity {Eλ\ — oo < /ί <oo}, we shall mean by eβH the
self-adjoint operator with domain:

e34?\ J e2βλd\\Eλψ\\2< oo
-oo

and definition:

eβH:ψeD(eβH)-+ j eβλd(Eλψ).
— oo

The meaning of the integral is that of [§ 29.2; 2].
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2. Proposition I and Applications to Ergodic Problems

Our results will follow from the following proposition.

Proposition I. Let 91, 9ΪM and 3?n be as described in § 1, and let Hn (resp.

AJ be positive (resp. bounded) self-adjoint operators on 3?nfor n = 1, 2, .

Let TRn be a faithful trace1 on 91 +.

Assuming

I. the product eP
HnAne~βHn is defined and bounded on ffln and there

exist positive constants βc and C such that

for all β e [0, βc) and all n = 1, 2, , and

II. TRn(e~βoHn) < oo and the states ρβo>n defined on 9In by

Qβo,n\')-

have a w*-limίt2, ρβo, on 5Ϊ for some β0 e (0, βc), and

III. the states QβQ,A,n defined3 on 2IM by

have a w*-lίmit2, Qβo>A, on 9Ϊ for the same β0 e (0, βc\ then the following
condition is satisfied:

The proof is given in Appendix I. To make the meaning of I clearer,
consider the situation where TRn is the usual (normal) trace on separable
ffln. Then since e~βHn is positive, it follows from II that Hn only has
isolated discrete spectrum. Therefore let {φm\m = 1, 2, •••} be a basis in
ffln with Hnφn = hnifnφm. Condition I then reduces [Thrm., pg. 53; 3] to:

Γ Σ ™Pίβ(hn,m-hn,rK<φn,Anφryxmyr

m=l r=l

P

Σ I*J2 Σ
1

for all positive integers p and q, all xm, yr e C, and all β e [0, βc).

1 This condition could easily be weakened.
2 Strictly speaking we should extend the states to 2Ϊ to use this terminology.
3 The existence of these states will be shown in the proof.
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Thus I becomes in this situation a restriction on the matrix elements
of the perturbation, namely that the matrix elements between unperturbed
energy levels vanish in a certain (strong) sense as the difference in the
energies becomes infinite. In particular,

In order to describe our results we need some background material
which we present at this point.

The usefulness of the (mean) ergodic theorem on L± is that it proves
that those states4 of the system represented by functions in L± , maintain
this characteristic not only for finite times, which is obvious, but also
in the infinite time average. In [4] we have proven the following result
which covers5 quantum systems, and which reduces precisely to the
mean ergodic theorem in the classical "limit" of commuting observables.

Proposition II6. Let 91 be a C*-algebra with unit, and let {at \ t e R}
be a group representation of 1R as automorphisms of 91. // ρ is a state
on 9ί invariant under the dual maps αf for all t e IR, then for each

realα

there exists an invariant state ρ in £f(ρ)norm, given by the norm limit,
under refinement1, of the net of "ergodic" averages:

It is clear that Proposition I is useful in elucidating the nature of
the domain £f(ρ)noτm of this ergodic theorem. To emphasize that the
information is not vacuous, we mention the following examples. For the
v-dimensional spin-lattice models of Streater [6] and Robinson [7]
(which includes all finite range, lattice invariant interactions), we take

4 These states are to be distinguished from the continuous phase-space functions,
which are observables. See for example [4].

5 This is not meant to imply that important infinite systems with nontrivial time
development will not be constructed in the future which do not satisfy all the hypotheses
of this result.

6 This is actually a restatement of [Prop. Ill; 4] which makes use of [Thrm. 2; 5].
7 We define this partial ordering as follows.

i j

means that there exists an ergodic average Σ cko^k(ρ) sucrι that
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ρ = (x) Trace; and An = A = any local hermitian element, for instance
i

A= Σ b^ where V is a finite volume and the field strengths bi are
ieV

real. Then condition I is satisfied with a known, model-dependent lower
bound for βc [6,7]. Assuming condition II, ρ = ρβo is time invariant
and the hypotheses of Proposition II are satisfied with8 ρ = ρβθiA.
Moreover, for the finite range, one-dimensional systems [8] and the
v-dimensional generalized Ising models [9], βc may be taken arbi-
trarily large, and condition II can be derived. It is evident therefore that
Propositions I and II together should be useful in proving the relaxation
back to canonical equilibrium of a system initially in equilibrium with
a local perturbation, which is turned off at t = 0.

In particular, in Appendix II we prove the following result9. Let ρβo

be the infinite volume canonical ensemble, and αf the Schrodinger time
development, for the 1-dimensional X — Y model (α-cyclic or free-ends
and with arbitrary anisotropy parameter)10. Let ρβθfA be the corre-
sponding state8 with a perturbation

ieV

Then for any B e 9Ϊ we have

3. Proposition III and Application to Phase Transitions

We begin this section by strengthening Proposition I for those
systems which, like the spin-lattice systems mentioned above, have the
added feature that the J π̂ are finite dimensional.

Proposition III. In the notation and hypotheses of Proposition I we
replace III with the conditions that the J^n be finite dimensional and that
V exp(ιΉwί)^πexp(- iHnt) has a norm limit in 9Ϊ for all t e [0, βc). Then
condition III can be derived (and therefore also IV).

The proof is given in Appendix I.
In the work of Yang [12], Ginibre [13] and others, it is proven that

one can excite a phase transition from the canonical ensemble by means

8 The existence of these states is proven by Proposition III below.
9 We mention this result only as an example of a general technique. Stronger results

for the X - Y model have been published [10].
10 For this notation see [11].
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of the following procedure. Using

as a volume cutoff approximation to the canonical ensemble of an in-
finite spin system, one introduces a cutoff perturbation of the form

Ginibre takes bn = b and Yang essentially takes bn = b/\Vn\*9 where \Vn\
is the number of sites in the volume Vn. After removing the volume
cutoff, the limit b->0 is taken and quantities are computed which show
the existence of a phase transition.

If it can be assumed that the above procedure can be carried out in
the sense of obtaining (infinite volume) states over the system, i.e. that
the expectation values of all relevant observables have well defined
limits, not just those computed in the work cited, then it is of interest
to investigate any relation which may exist between these states. It
seems reasonable to assume that the excited state obtained after taking
the limit b -> 0 is what is usually called a pure phase, that is, an equilibrium
state at a given temperature which cannot be decomposed into other
equlibrium states of that temperature.

There has been much work concerned with the decomposition of
impure phases [14-17]; they all fall into the following pattern. The set
&β of equilibrium states at inverse temperature β is defined to consist
of those states which are solutions of certain linear equations (variational
principle, time or space invariance, Gallavotti-Miracle equations, KMS
equation, etc.). <5β is then convex, and the pure phases are the extreme
points of <£β. It is easy to see that they can equivalently be characterized
as those elements ρ of &β for which the inequality ρ' ̂  αρ, with a ̂  1
and ρ' e <5β9 has the unique solution ρ' = ρ.

Noticing the different strengths in the perturbation used by Yang
and Ginibre, we now ask the natural question: are the same results
obtainable with the perturbation

An= \
\yn\ ieVn

with (or without) a subsequent limit &->0? As these An satisfy \\An\\ ^\b\9

we first generalize the question to the following: is it possible to excite
a pure phase (as defined above) from the canonical ensemble with a
finite amount of energy in the (total) perturbation?
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We cannot answer this in general, even for the Robinson spin systems.
If however, \_An, //„] = 0 as is the case for v-dimensional Heisenberg,
Ising and X — Y models, then condition I precisely reduces to the
restriction of finite energy. Moreover, in the proof of Proposition I the
roles of ρβo and ρβθ)A are now interchangeable (since Tβίn = e~βAn is
now invertible) and we have that ρβo^e2β°cρβθίA, which gives us a
definite negative answer.

4. Summary and Remarks

We have introduced a certain class of very weak perturbations of a
canonical ensemble, with the following results.

1. The perturbations are naturally suited for proving relaxation
back to equilibrium, and the first step in this program is proven to go
through for an important class of "non-solvable" spin models.

2. The question whether it is possible to excite a phase transition
from the canonical ensemble by a finite energy perturbation is answered
negatively when the perturbation cannot exchange energy with the
unperturbed interaction. To these results we add the following corre-
sponding remarks.

1. Unfortunately, the only case where we can complete the program
is in the X — Y model, and results stronger than ours have been obtained,
making full use of the sovability of the model [10]. The pragmatist is
therefore justified in remaining unconvinced of the usefulness of this
result until time asymptotic abelianess or some similar ergodic property
can be proven for some interesting "non-solvable" model.

2. The restriction \_An, #„] = 0 severely limits the applicability of
the result, although it still contains important models. It would be of
interest to answer the unrestricted question.

Appendix I

Proof of Proposition I. It is easy to show that the bounded operators
Tβ>n defined for β e (0, βc) by:

oo -β βι βk-ι

Tβ,n = I+ Σ ί dβ^dβt- ί dβk

k=l 0 0 0

x Πexp[-^.HJ^exp[^HJ (1)
j=ι

satisfy

. (2)
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Now we note that with our definitions, if H is a positive self-adjoint
operator on a Hubert space, e~βH is bounded and (strongly) differentiable
for β > 0, with

It is clear that the Tβtn are (strongly) differentiable for β e (0, βc). In fact

- Tn = -lβ,n
"H

Therefore, for β e (0, βc\ exp(-βHn) TβtΛ is (strongly) differentiable with

_d_

~dβ
[exp(- βHn) 7>§ J = -(Hn + An) exp(- £#„) Tβ,n,

where Hn + An is self-adjoint and bounded below [Thrm. V-4.3; 18].
Since exp( — βHn)Tβ „ and exp [ — β(Hn + AnJ] are both solutions of:

-^ K(β) = -(Hn + An)K(β) β e (0, βc)

with boundary condition K(0) = /, we know [pgs. 481, 2; 18] that

It follows that 0< TjRw{exp[-jβ(Hw + ̂ π)]} < oo, and that the states
Qβ0>A,n of III are well defined. It also follows that:

- -

' l J

Using (2) and applying [Prop. I; 19] to the second factor, Fn, on the
RHS of (3) we find

Absorbing Fn into the Tβo>n of the first factor, and applying [Prop. I; 19]
again, we get

f\ <" &2βθC rt
QβQ,A,n = e Qβo,n>

from which IV is immediate, q.e.d.
Proof of Proposition III. By a simple generalization of its proof in

the complex variable setting11, Vitali's convergence theorem implies,
given I (which by taking adjoints automatically holds for all β e ( — βc, βc))
and V, that

exp (β Hn) An exp ( — βHn) converges in norm for all β e [0, βc) . (4)
11 See for example the proof of [5.21 20].
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Now by a norm estimate on the tail of the summation in (1) it is easy
to see that given β > 0, there exists K such that

K β βι βn-ί

\\Tf.m-Tβtm\\<ε+ J ίdβ^dβ^ J dβm
k=l 0 0 0

x
l
\\Hexp(-βjHJAnexp(βjHJ (5)
l l j = ι

uniformly in β e [0, βc) and all rc, m = 1,2, .
From (4) and the joint continuity in norm of the product operation,

it is clear that Tβθtn is Cauchy. From II therefore, the first factor on the
RHS of (3) converges in the w*-topology2 as w->oo. In particular,
inserting I, the identity, in (3) and noting that the LHS is identically 1
and that the second factor on the RHS is bounded from (2), we see that
this second factor in fact has a limit, F. And now III follows, q.e.d.

Appendix II. The X— Y Model

In order to account for the different conventions in our references,
we make the following bijection of the one-sided chain N (the natural
numbers) used in [11] with the usual two-sided chain Z:

UN j£0.

Since the spin algebra and the full CAR algeara are naturally isomorphic
[21] it is clear from [11] that the class of quadratic Fermi interactions
considered in [22] contains the one-dimensional X - Y model with
arbitrary anisotropy parameter and free-end boundary conditions. It is
also clear that as far as the infinite volume time development on local
quantities is concerned, the α-cyclic and free-end conditions are equivalent.
From [8] the free-end canonical ensemble ρβtFtEt exists for all /?>0 in
the infinite volume limit, and is extremal lattice invariant. Since any
w*-convergent subsequence of the cutoff α-cyclic canonical ensembles
is lattice invariant, a simple application of Proposition I shows that it
must coincide with {ty,F.£.. Since the set of all states is sequentially
compact12 we see that the cutoff, α-cyclic canonical ensembles also
converge to ρβfF.E.> and so we drop the extra subscript from ρβ.

In [8] it is shown that ρβ is extremal KMS and primary. From [24]
ρβ has short range correlations and so is uniformly clustering. Define

12 Since our algebra is separable, this follows from [V.4.2,V.5.1 and 1.6.13; 23].
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Qβ I as the restriction of ρβ to $le, the so called "even subalgebra" generated
by the even products of Fermi operators. Since the proofs of
[Props. 2.2, 2.3 24] also go through for 9Ie, and since ρβ\ is obviously
uniformly clustering on Slβ, ρ^l is primary. Now it is shown in [22]
that the time development is norm asymptotic abelian on 2le, and
therefore ρβ\ is extremal time invariant [25]. From [4], and denoting
by α* the Schrodinger time development, we have that

has a w*-limit ρj^\ as T->oo which is time invariant, and which from
Proposition I satisfies13 ρ^\ ^e2βc for some C. Since ρ^l is extremal
time invariant, it follows as in §3 that Qj^\ = ρβ\. To extend this to
the desired result it is only necessary to note the following fact. If y* is
the dual of the automorphism y associated14 with 9le, then it is easy to
show that ρβ9 ρβ>A and ρ 7̂ are all fixed points of y*, i.e. they all satisfy
y*ρ = ρ. But the restriction to 9Ie of such a fixed point determines the
full state:

Therefore, since ρβtA \ = ρβiA \, we have

Qβ^A = Qβ q e.d.
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