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Abstract. This contribution continues the series of papers [2, 4, 5, 12] treated by
Ludwig and collaborators. It is based on the generalized frame given in [6] there Ludwig
has set up an "infinite" axiomatic scheme as extension of the "finite" system [4, 5]. The
results of [12] are then proved for a "locally finite" case; they lead to an extended repre-
sentation theorem.

I. Introduction

In his paper "Notes on Axioms for Quantum Mechanics" [10]
MacLaren has set up the final axiom:

(C) The set of all atoms of every finite sublattice of the orthomodular
lattice G of decision effects is compact in the norm topology.

This axiom guarantees that the division ring which is constructed
over G is the real, complex or quaternionic numbers [14].

We base here on Ludwig's general axiomatic scheme ([6], III.) re-
stricted by [6], III. § 18 condition V3 ("locally-finite" case!) which is
a generalization of the "finite" system given in [4, 5]. Within this frame
the purpose of this paper is

1. to prove a slightly weaker form (C) (Lemma 8 in part III), of
statement (C),

2. to show that (C) is sufficient to exclude discontinuous and dis-
connected division rings,

3. to give further topological properties of the lattice G.

II. Preliminaries

In the following largely is used the punctuation and terminology of
[12]. We give a somewhat modified summary of Ludwig's conclusions
[6] which are different from those used in [12].
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The starting position is a set K of all physical ensembles v and a set L
of all physical effects /. Then (K, L) is a dual pair according to

Axiom la ([6], III. Satz 2.5). There exists α mapping μ of Kx L into
R+ satisfying:

(α) 0^μ(ι?,/)£l for all (vJ)eKxL.
(β) μ(vl9f) = μ(v2j) for all fe L and vl9 v2eK implies vt = v2.

(y) μ(v>fi) = μ(v,f2) for all veK and fl9f2eL implies fί=f2.
(δ) There exists oeL such that μ(v,0) = 0 for all veK.
(ε) For each veK there exists feL such that μ(v,f)=l.

Axiom lb ([6], III., Axiome 3a, b). K and L are countable sets.
n

Let B (resp. D) be the set of all functions x(f)= £ ^i^vf) on L
i = l

I n \

with vteK resp. y(v)= £ a^(v,ft) on K with feLl at real, n finite
\

integer. Hence B and D are real linear spaces and we may identify K
(resp. L) as subsets of B (resp. D). By natural extension we can define
μ(x, y) over all BxD. Let R be the set of all linear functions y on B such
that μ(v,y)< oo for all veK. Then Ludwig has shown:

Proposition 1 ([6], III. Satz 3.5). There is a subspace B' with DQB'
Q R, so that

a) B' is a Banach-space by the norm \\y\\ : = s u p ( | μ ( f , y ) \ : v e K ) .
b ) B' is the dual of the closure B of B with respect to the norm

\\x\\ = sup(\μ(x9y)\:\\y\\^l9yeB').
c) x e B with μ{x,f) = 0 for all feL implies x = 0.
d) \\v\\ = ljor all υe K, \\f\\ = 1 for all fe L

Now let L be the σ(B\ 5)-closed convex hull of L and let K be the
norm-closed convex hull of K.

Proposition 2 (see [6], III. §§ 3, 4).
a) Properties (α) to (δ) of Axiom la hold for Kx L.
b) As a consequence of Axiom lb,B and D are separable sets.
c) In every norm-bounded set of B (resp. B') the topologies σ(B,L)

(resp. σ(B\ K)) may be characterized by norms and there holds σ(B, D)
= σ(B91) (resp. σ{B\ B) = σ(B'9 K)).

d) L is a σ(B\ B)-compact set and D is σ(B\ B)-dense in B'.

Axiom 2 + ([6], III. §§ 5, 7; Axiome 4a, b and 4bz).
a) To each couple fί9f2 e L: = σ(B\ £)-clos(L) there exists f3eL due

to the following conditions: μ{v,fi) —η^ μ(v,f3), i = 1,2, for any η>0 and
μ(vJ3) = 0for veKoifJnKofa).

b) For feL:=σ(B\B)-clos(yeB':y = λf,λ^OJeL) and a maxi-
mal effect e e L9 K0(f) 2 K0(e) implies Kt(J) Q KM

c) For every maximal effect eeL, eή=0 follows Kx (e) =f= 0.
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Axiom 3 ([6], III. §8 Axiom 5) stays unchanged [12].

The following proposition is a consequence of the last two axioms.

Proposition 3 (see [6], III. § 6).
a) For every effect feL exists a maximal effect e^f with K0(e)

= K0(f), called decision-effect.

b) The set G of all decision-effects eeL is a complete and ortho-
complemented lattice.

c) W'\= (K^'.IQL) is the lattice of all extremal subsets CQK
ordered by inclusion.

d) For every extremal subset CQK (definition see [5, 6, 12]J exists
eeG with C = K^e). The mapping e^K^e) is a lattice orthoisomorphism
of G onto W.

Postulate (A). (Vj in [6], III. §3). The convex hull of KKJ(-K) is
norm-closed.

Remark. (A) implies Theorems 1 and 2 of [12].

Axiom 2 + c is equivalent to

Theorem 3 + . G is the set of all exposed points of L.
00 00 00

Theorem 4 + . ^ e X l (σ(B\ £)-limit), eteG implies £ et = \/ et and
i = l ΐ = l i=ί

et _L ek for i Φ k.

Theorem 5. The lattice operations join (v), meet ( Λ ) and ortho-
complementation (') are σ(B\ B)-continuous).

Definition. If D,E are subsets of K then d(D,E):inf(d(v, w):veD,
weE) a n d φ , w ) : = \\v-w\\ = sup(\μ(v,y)-μ(w,y)\:yeB\ \\y\\ <; 1). The
next axiom we will give in two equivalent forms I, II.

Axiom 4 + ([6], III. § 11, Axiom 6).
(I) If x^aeG and d{Kx(a A (X V b% K^yj) + o for y ^(b - a A b)

eG, beG, then a A (X V b) = x v (α Λ b).
(II) Let Q, i = 1,2, be elements of W. Then Cγr\C2 = 0, C3QCίv C2

(i.e., extremal hull of Cl9 C2), C± 1C3 (i.e., d(CuC3) = 2) and d(C± v C3, C2)
φO imply C3=Q.

Remark. Obviously (II) is a slightly generalization of the former
Axiom 4 [5, 12] because d{Cγ v C3, C 2 ) φ 0 implies (C1 v C3)nC2 = 0.

Definition. An element CeW' (i.e., an extremal subset of K Q B) is
finite if the closed linear span En C = : M(C) of C in B has finite dimension.
For such finite extremal sets Theorems 6, 7, and 11 of [12] hold (Theo-
rems 8, 9, 10 [12] hold for all CeW). An element eeG is finite if
K^e)e W' is finite. Now let G be atomic (i.e., every extremal subset CQK

9 Commun. math. Phys., Vol. 23
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contains an extreme point); we then say that an element e of G (resp.,
G itself) has finite lattice dimension if e (resp., each element of G) is a finite
sum of atoms or, equivalently, is a finite join of mutually orthogonal
atoms. By an ascending chain between 0 and e e G we mean a set (e{ e G)
with 0 < eγ < e2 < <e.

Postulate (B). V3 in [6], III. § 18): "locally-finite" condition! Every
element CeW' is the join of an ascending chain of finite elements of W'.

III. Some Consequences of Axiom 4+ and Postulate (B)

Definition. We write (b,a)M if a A (X V ft) = x v (a A b) for all x ^ a.

Lemma 1. d(X1(α), K^b — a A b))Φo for a,beG implies (ft, a)M.

Proof. K^^K^aAixvb)) for all xeG; hence O φ ^ f α ) ,
K^b — a A b))^d(K1 (α Λ (X V ft)), Kjffe-αΛ ft)) and Axiom 4+ gives
(M)M. D

Lemma 2. 7/ /or a,beG, K^a) or K^b) is finite then holds (ft, a) M.

Proof. Finite extremal subsets of K are compact. Therefore one of
the sets D : = Kλ (a) or E: = Xx (ft — a A ft) £ Kx (ft) is compact. We assume
E to be compact. Since the metric d.BxB^R is continuous also
d{D,.): E-+R is a continuous mapping of the compact set £ into R; hence
there is z e £ with d(D,z) = d(D,E). Supposing d(D,z) = 0 would mean
that z is a touching point of the extremal set D. As a closed set however D
must contain z contrary to DnE = 0. So d(D, £)φθ. Lemma 1 then
then finishes the proof. •

Definition, ae G is a modular element if a) G f l :=(jceG:x^α) is a
modular lattice and b) for all ft e G holds (ft, α) M.

With the help of Lemma 2 we find

Lemma 3. Every finite aeG is a modular element.

E s p e c i a l l y f o l l o w s ( / ? , a ) M f o r e v e r y a t o m peG a n d f o r a l l aeG
which is equivalent to the "covering condition" [7]: COV: // p is an
atom and p^aeG then a<avp (i.e., if a^c^avp then c = α or
c = av p).

Lemma 4. The set Λ(G) of all atoms of G is join-dense in G.

Proof [12], Theorem 11 implies the existence of an extreme point
vγ = Kj^x) = :Cl9p1e A(G) in every finite extremal set C Q K. By Krein-
Milman [3] C is the closed convex hull of its extreme points; so, if C φ Cί

there is v2 e K with v2 = ̂ 1(^2) + ̂ i(Pi), Pi e ^(^) With the condition
COV then follows C2C2:= K^pJ v Kί{p2) = Kί{pί v p2)> C± = KIOΊ).
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Since dimM(C)<oo and d i m M ( C ί + 1 ) ^ dimM(Q) + 1 for CtCCi+1

C £ C, successive applying of COV ends after finitely many steps and
v = i nc nc

gives by induction Cf = \f Kλ (pv) and C = \/ Cf = \J Kx (pv) for every
v = l i = l v = l

finite C e Wf. Postulate (B) then finishes the proof. •
As a consequence of this proof we find

Corollary 1. G is atomic and the modular elements are join-dense in G,
i.e., 1 e G is the join of modular elements.

The next lemma secures that we need not distinguish between the
terms "finite" and "finite lattice dimension".

Lemma 5. The finite elements of G are just the elements with finite
lattice dimension.

Proof Let e e G b e finite. Then C = Kγ(e) has finite chain length (see
proof of Lemma 4) and there are only finitely many mutually orthogonal
elements in Ge, i.e., e has finite lattice dimension.

To prove the other direction let e e G be a finite sum of atoms, i.e.,
a finite join of mutually orthogonal atoms of G. Postulate (B) then
guarantees the existence of an ascending chain 0 < e1 < e2 < < e of
finite elements e{ < e. Using COV we find a covering chain 0 <• pί <• pγ

-\-p2< '" <Σpt = e which has finite and also maximal length; hence all
chains between 0 and e have finite length. Therefore the finite join

n

e= \f ex is finite because all et are finite. •
i = l

Lemma 6. G is a semimodular (also called M-symmetrίc) lattice.

For the proof see [10], Lemma 10 and Corollary 16 or [9].

Definition. A lattice is nearly modular if it is orthomodular, semi-
modular and each element is the join of modular elements.

Corollary 1 and Lemma 6 result

Proposition 4. G is a nearly modular lattice.

MacLaren [8] has shown

Proposition 5. G is orthoisomorphic to the direct sum of irreducible,
atomic, orthocomplemented sublattices Gt Q G.

IV. Topological Properties of the Lattice G

In this part we consider in W' only the norm topology induced from
B and in G the σ(B', B)-topology induced from B'.

Lemma 7. va=>υ (norm convergence) in K, v(X = Kί(pa), paeΛ(G) and
Pa^f (σ(β'> B)-conυergence) in L imply v e Kx{f).
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Proof. Given ε>0, va=> v means: an integer n exists such that for all
indices α ̂  n and for all y e B\ || y\\ ̂  1:

pv-+f means: for every veK there is an integer m = m(v) such that
for all v ^ m :

Therefore for all α, v ̂  max(n, m(v)) holds

\μK Pv - f)\ ύ \μ(υa - v, pv)\ + \μ{va - vj)\ + \μ(v, pv - f)\ < 3ε

especially for α = v:

\ΦΛ> P« ~ f) = I1 ~ μKJ)\ < 3ε, i.e., φα,/)-» 1.

But ϋα=>ϋ implies μ{vaj)^>μ(vj)\ hence μ(^,/) = 1, i.e., X^/) + 0. D

(C): Lemma 8. The set A(e) of atoms p^e with finite eeGis σ(B\ B)-
closed, and as subset of L also σ{B\B)-compact.

Proof (is a slightly modified version of the proof of Theorem 10.3 in
[5]). L is compact (Prop. 2). Let (pa)aeA-*f be a convergent series in
A(e). Le\= (feL'.f ^β) = L0K0(e) is an extremal set and therefore
closed, hence feLe. By va = K1(pa) we have a series of extreme points
in the finite and hence compact K^ (e). In this set we may select a norm-
convergent subsequence vβ => v e Kt (e). Taking into account the finite
dimension of the modular lattice Ge: = (eeGie^e) we can complete

n

every pβ:= p\ by mutually orthogonal atoms p^eA(e) to e— £ pι

β.
i = ί

Because of the compactness of Le and Kx (e\ respectively, there is a sub-
sequence (v)Q(β)Q(ot) such that p ί->/ j and v[=>υ\ i=l...n, with
f1 = : / and ϋ1 : = ϋ. Applying Lemma 7 we find ^ ( / O + O. K^Γ) is a
finite extremal set and contains an extreme point K^q1) with qι eA(e),

n

qι ^ f\ hence ri: = fί-qieLe or /* = rf + #*. Since J] pι

v = e -+ e, we find

n

Σ qi==e and rι — 0 for alii = 1... n. Especially pa -» f̂, i.e., A(e) is closed. Π
i=ί

Proposition 6. Every finite sublattice GeQG is σ(B\ B)-closed and ev-+e
in Ge implies dimGβv^dimGg.

Proof see [5], Theorem 19.
In analogy to [12] Theorem 16 we find:

Proposition7. For every finite eeG the bijective mapping (peA(e),
σ(B\ jβ))<->(X1(p)gX1(β), || | |B) is an homeomorphίsm of A(e) onto the set

e)) of extreme points of K^e).
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Proof. The closed set A(e) Q L is compact. Let pα-»p be a convergent
sequence in A(e). Since also K^e) is compact the corresponding sequence
va = Kx (pa) has a cluster point tλ Let vβ9 (β) Q (α), be a subsequence con-
verging to v; then Lemma 7 implies vp: = Kλ (p) 3 v Φ 0. So ί;p is the unique
cluster point of (va)9 i.e., va = Kx (pα) => Kx (/?). Hence Kx :^4(e)->^(^1(e))
is continuous and (by Prop. 3) also bijective. So, having in mind that
A(e) is compact and the the norm topology separates in B, we find the
inverse mapping also to be continuous. •

Corollary 2. The set $(C) of all extreme points of every finite extremal
subset ofK is compact (follows immediately with Prop. 3).

The set of all finite decision-effects is an ideal J of G [10]. Next we
shall show that in J the σ(B\ B)-topology may be represented by a set
of linked "e-norms" || . \\e : = sup(|μ(i;, . ) | : ve K^e)) which are seminorms
induced from B'.

Lemma 9. The σ(B\ B)-topology in L is equivalent to the topology of
unίforme convergency on all compact subsets of K.

Proof. L is a subset of the unit sphere S': = (yeB': |μ(x, y)\ ̂  1 for
all XEB with ||x|| ^ 1). Since ||x|| = sup{\μ(x,y)\: \\y\\ ^ 1) for all xeB,
||xα|| ^ 0 implies y(x^ = μ(xa, y)^0 for all y e S\ especially for all yet.
This means: S' and L are equicontinuous in 0 ([3], § 15, Nr. 3) and hence
uniformly equicontinuous, because B' is a topological vector space. [3],
§ 21, Nr. 6 (2) now gives the assertion. •

Corollary 3. yα->)> in B' implies \\ya — y\\e far all finite K^e).

Obviously || . \\e is a seminorm on B'

Lemma 10. The seminorms || . ||e, e finite, are total on Le.

Proof. We have to show: | | / | | β = 0 implies / = 0 for f^e. | | / | | β = 0
means μ(v,f) = 0 for all veK^e), i.e., K0{f)2 Ki{e) Since / g e , also
K0(f) 2 K0(e); hence K0(f) 2 Kx(e) v K0(e) = K andjtherefore/ = 0. •

We would like to know if || . \\e separates on Le. The question is:
does | |/ x — / 2 | | e = 0 for / 1 ? / 2 e Z e already imply / i = / 2 ? One sees im-
mediately that this is the case if f2ίkA In generality however we can
only show

Lemma 11. // for fl9f2 e L& \\ f,-f2\\e = 0 then K0(f1) = K0(f2) and

Proof | | / 1 - / 2 I L = 0 means μ(vJ1) = μ(vJ2) for all veK^e). Since
fufi ^ e w e find KolfJnK^e) = K0(/2)nK1(e) and by orthomodularity

/i) = K0(e) v (KoifJnKde)) = K0(e) v (K0(f2)nKγ(e)) = K0(f2).

The expression K1(f1) = K1(f2) follows by K^βQK^e), i = l , 2 . Π
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Lemma 12. For every finite eeG the semi-metric de(y,z): = \\y — z\\e

on B' separates in Ge.

Proof. We have to show: de(el9 e2) = 0 for ex,e2G Ge implies eί = e2.
But de(el9 e2) = 0 means μ(v, e±) = μ(v, e2) for all veKλ(e). Since el9e2^ e,
Lemma 11 gives K0(e1) = K0(e2) which is equivalent to e1 =e2. Π

Now we can prove the main theorem:

Proposition 8. Let GeQG be a finite sublattice of G. Then the topo-
logical space (Ge, de) is homeomorphic to the topological space (Ge, σ(B', B)).
Especially, Ge is a de-compact set.

Proof. The identical mapping i: (Ge, σ{Bf, B))-^(Ge, de) is continuous
(Corollary 3), Ge is a σ(B', 2?)-compact set and the de-topology separates
in Ge; hence ί"1 is also continuous. •

Since the convex hull of a compact subset of a finite subspace of B
is closed we find, using a theorem of Klee ([3], § 25, Nr. 3 (3)):

Lemma 13. Every finite K±(e)QK is the convex hull of its extreme
points.

With this lemma we find in analogy to Proposition 8:

Corollary 4. The topological space (Ge, d(e)) with the semi-metric
d(e)(y, z): = sup(|μ(ι?, y-z)\:ve ^(K^e))) is homeomorphic to (Ge,σ(B',B)).

V. Final Results

Definition. If Ge Q G is an irreducible sublattice with lattice dimension
two (i.e., e is sum of two atoms) then we say: I : = Λ(e) is a line in G.

Proposition 9. Let I: = Λ(e) be a line in an irreducible sublattice Gt Q G,
with dimG t^4, and let sel be a fixed atom. Then there are two lattice
operations © and Q such that the algebraic set (ί\s; 0 , Θ) is a locally
compact, connected, topological division ring (also called "ternary field")
D which is ίsomorphίc either to the real, complex or quaternionic numbers.
Furtheron Gt is orthoisomorphic to the lattice of closed subspaces of an
inner-product space Ht.

For the proof see [8-10, 13-15].
The next proposition is a result of Amemiya and Araki [1].

Proposition 10. As a consequence of the orthomodularity of G the
inner-product space Ht is complete in the usual norm topology, i.e., Ht is
an Hilbert-space.

With these results Ludwig ([6], III, § 18) has proved the final repre-
sentation-theorem. Let 2tr(H) be the Banach-space of all hermitean
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operators of the trace-class on an Hilbert-space H and let £r(H) be the
Banach-space of all hermitean operators on H then:

Theorem 6. If G £ B' is an irreducible lattice with dimG ^ 4 then the
dual pair (B, Bf) of Banach-spaces is represented by the couple (2tr(H\ 2r(H))
and

(a): the injective mappings ψ:B^2tr(H) and φ:B'^>2r(H) are sur-
jective and preserve norm, order and linearity.

(b): μ(vj) = Ύτ(ψ(v). φ(f) for (υ,f) e (K, L) and
(c): (ψ(K),φ(L)) is a categorical solution of the axiomatic scheme

((K, L): Axioms 1-4, postulates (A), (B)).

I am indebted to Prof. G. Ludwig for his stimulating guidance.

Erratum. Corrections to the proof of Theorem 20 on page 310 in Commun. math. Phys.
11 (1969):

Part 1, line 6 to 9: This statement must be pushed in part 5 of the proof. There the
linear extension of χ : G->φ is useful because χ preserves linear dependence.

Part 2, line 3: μ(v9 e) = mv(E) = Tr VE for all E = χ(e) e φ.
Part 2, line 11 has to be completed by: This can be done because of the linearity of the

mapping ψ : K^ Jf (Proof: v = EX^ Σλt = 1, λt ^ 0 implies Ύr(VP) = μ(v, p) = I^(vi9 p)
= Tr((Σλt Vt) P) for all P e Λ(Sβ) with p = χ ~'(P) and Vt = \p(vt\ V- ψ(υ). Hence V = Σλt Vt.)

Part 3, line 5 is to complete by: Every fe L has the form / = Σλ^, et e G. Hence to
prove that ψ is an injection we need only all / = e = χ~ί(E)e G.
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