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Abstract. Quantum mechanical JV-body systems with dilatation analytic interactions
are investigated. Absence of continuous singular part for the Hamiltonians is proved
together with the existence of an absolutely continuous part having spectrum \λe, oo),
where λe is the lowest many body threshold of the system. In the complement of the set of
thresholds the point spectrum is discrete; corresponding bound state wave-functions are
analytic with respect to the dilatation group.

Introduction

Some important progress has been made during the last years in the
mathematical analysis of multiparticle quantum scattering systems. The
main results concern non-relativistic three or four particle systems with
smooth short-range forces (see e.g. [1]). However no definite step has
been made toward a general proof of some fundamental problems such
as asymptotic completeness except for repulsive potentials [1,2] or
locally for general multichannel systems [3]. Another troublesome
situation concerns the inclusion of more general forces, Coulomb like
or electromagnetic, in multiparticle formalisms. First steps in this direc-
tion have been made by proving existence of generalized wave-operators
for multichannel systems with potentials g/rβ, <β^l ([4,5]); these
improvements on traditional time-dependent methods should support
the future extension to multiparticle systems of recent formulations of
scattering theory with such general forces (see e.g. [6]). It has to be
expected that further progress in these domains can be made from a
systematic study of the spectral properties of Schrδdinger Hamiltonians.
For example the experience of the N particle problem with short-range
potentials strongly suggests that fundamental ingredients of asymptotic
completeness are the absence of continuous singular spectrum and the
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discreteness of bound-states. The first requirement guarantees absence
of pathological states which are neither bound-states nor scattering
states in the sense that the probability that particles remain in a bounded
domain of configuration space does not tend to zero as the time increases.
The second requirement is needed for a correct space-time behavior of
wave-packets in multichannel scattering; furthermore it has obvious
consequences for the analytic structure of the S-matrix. Both problems
have been solved in the one body case [7] with the help of an analyticity
assumption on potentials with respect to the dilatation group. Such a
condition is rather weak and it requires neither short-range, locality nor
respulsivity of forces, allowing in particular some electromagnetic fields.
We investigate here multiparticle systems with such forces using Wein-
berg equations; our main tool is the analyticity of its solutions with
respect to the dilatation parameter. From this one can deduce the
existence of a meromorphy domain for expectation values of the resolvent
allowing their analytic continuation through the whole set of channel
cuts. This implies absence of continuous singular spectrum and the
correct spectrum \λe, oo) for the absolutely continuous part of the
Hamiltonians, where λe is the lowest many-body threshold of the system.
The intersection of the discrete spectrum with the complement of the set
of thresholds is a bounded set consisting of isolated eigenvalues with
finite multiplicities.

Let H = H0 + V, V= Σ V*> be the Schrodinger operator of the system
α = (ij)

i + j

M of n particles with two-body interactions VΛ. We have separated the
center-of-mass of M, so the space is Jtf = L2(R3n~1). The operator #0

representing the kinetic energy is obtained from the classical kinetic

" \P \ 2 henergy £ —-— by the substitution pt.-> — Vi and 3 of the variables are
i = l 2mi n *

eliminated through the equation £ pt = 0.
i = l

We refer to other papers on multiparticle systems (see e.g. [1, 3]) for
kinematical details. We just mention some basic facts which are needed
in this paper. To each cluster decomposition D = {C1? C2,... Ck}9

CinCj = Φ, ίφj, uC f = M, there corresponds a tensor decomposition

jf = jfCι®^C2(x)... ®jfCk(g)jrCι'C2' Ck (i)
where fflc is the state space for particles belonging to C (center of mass
separated) and j^(c^c^'"»c^ is the state space for the centers of mass of
clusters. The operator H0 splits into a sum over clusters of internal
energies Hfi1 plus the kinetic energy of centers of mass
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where e.g. Hξ1 has to be understood as an operator on Jjf, that is the tensor
product of the kinetic energy operator on J^Cί and the identity operator
on the Hubert space corresponding to other degrees of freedom. We
adopt the convention, unless explicitly needed, to denote in the same
way an operator on one component of (1) or the corresponding operator
on j f . :

We assume that the interactions Fα u = (ij), iφj are symmetric
operators in J^Cί^L2(R3) compact with respect to A, i.e. the operator

is compact. Then H is self-adjoint and 2)(H) = ^(HQ). In fact our hypo-
thesis implies that the interactions Fα are H0 — ε bounded (see e.g. [8],
App.I).

Let U(θ\ θeR,bQ the strongly continuous unitary representation on
Jtf of the dilatation group defined by

3(n-l)θ

(U(θ)f)(r) = e 2 f(eθr).

For each cluster decomposition U(θ) is a tensor product of the
unitary representations of the dilatation group on the Hubert spaces
occuring in the decompositions (1).

We now make the second basic assumption about the interactions

V* Let
VΛ(θ)=U(θ)VaU(ΘΓl, θeR.

The mapping JR-> Fα(θ) is a compact operator valued function on R.
We assume that the function VΛ(Θ) has an analytic extension to a domain
G, such that Gr\R^Φ, as a function on Θ whose values are bounded
operators from &(Δ) into L2(R3). It follows (see [12, 14]) that VΛ(Θ) is a
compact operator for every θ e G. We notice that for Imθ = β = constant,
the operators VΛ(Θ) are unitarily equivalent. Setting

VΛtt(θ)=U(t)VΛ(θ)U(tΓi

for every fixed ί e jR, we obtain analytic functions V a t ( θ ) on the domains
Gt = (9 + ί, such that 7Ml(θ) = Va>t2(θ) for θ e 0 f l n0f,. The function VΛ(Θ)
defined by VΛ(Θ) = V^t(θ) for any ί such that θ e (9t is analytic on the strip
G + R. Moreover, the function α*(θ) =α(θ) is an analytic continuation of
α(0) into the domain symmetric to & with respect to the real axis R.
Thus we can assume that VΛ(Θ) is a compact operator valued function
defined on a strip symmetric to the real axis, G = Ga = {z| |Imz| < a},
where we assume a ̂  π/4. Consider now the family of operators H(θ)
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defined for Θ E R by

H(θ) = U(Θ)HU(ΘΓ1 = e-2ΘH0 + 7(0) .

Since V(θ) is H0 — ε-bounded, this family has a self-adjoint analytic
extension to G defined by

H(θ) = e-2θHQ + V(θ\ θεθ.

We shall now investigate the spectra of the operators H(θ\ θe@a\R
= {z I 0< |Imz| <α}, and then make the transition to real Θ. Since the
operators H(a + iβ\ — oo < α < oo, are unitarily equivalent, the spectrum
σ(H(θ)) depends on β only, -a<β<a.

For Θ = α + i β e Φa we introduce the following
Definition σβ = σ(H(θ))9

Qβ = Q(H(θ)\
σiβ = the set of isolated points in σβ9

σeβ = <Tβ\σiβ>

σpβ = the set of eigenvalues of H(θ\
adβ = the set of isolated eigenvalues of H(θ) of finite

multiplicity.
We omit the subscript β for β = 0, i.e. σ = σ0 etc. We set R(θ, z)

For any set S contained in the complex plane we write Sr = Sr^R and
5" denotes the set of accumulation points of S.

For C C M we denote by Hc(θ) the operator defined as H(θ) for the
system C, i.e.

where Hξ is the free Hamiltonian of C relative to the center-of-mass of

^

C and Vc(θ) = £ V^θ). We denote by σc(θ) the spectrum of
iJeC

σ(Hc(θ)) etc.
We denote by Σβ the set of all sums of isolated finite-dimensional

eigenvalues of Hamiltonians of disjoint clusters of the system and the
point 0, i.e.

^ = {0} UU (*&+- +*fr)
C i u . . . uCpξM

(the trivial decomposition M = M is not allowed. For n = 2, Σβ = {0}).
Let

λoβ= inf A, λpR= inf λ.
P λeσ£ P λeΣ-

For λ e R, Sβ(λ) is the sector of C bounded by the half-lines {λ + R + } and
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Now the basic qualitative properties of σβ, /?ΦO, can be formulated
in the following

Lemma 1. The spectrum σβ has the properties

(0 σeβ = Σβ + e-2i'R+.

(ίί) σβ\<rr

βCSβ(λeβ).
(iii) σdβ = σiβ.

σr

eβ = Σr

β and σr

dβ are constant for 0 < \β\ < α, σr

β is bounded and σr

d'β C Σr

β.
(iv) For \φ\ > 2\β\ there exists C(φ) > 0 such that for 0 ̂  ρ < oo,

Briefly formulated the Lemma states that the spectrum of H(θ) con-
sists of a system of parallel half-lines in the direction e~2iβ starting from
the points of Σβ and a set of isolated, finite-dimensional eigenvalues, which
can be divided into a bounded set of real eigenvalues accumulating at most
at points of Σr

β and a set of non-real, finite dimensional eigenvalues con-
tained in the sector Sβ. The resolvent R(θ,z) satisfies the estimate (iv).

Proof. We prove the Lemma by induction on n
1) n = 2.
We have

H(θ) = e~2ΘH0 + 7(0) = e-2θ(H0 + e2θV(θ}\ H0 = -A.

The essential spectrum of H0 is [0, oo). Since the operator e2θV(θ)
is f/Q-compact, it follows that σe(H0 + e2θv(θ)) = [0, oo), and in the
complement of [0, oo) the spectrum of H0 + e2θV(θ) contains only finite-
dimensional isolated eigenvalues oϊH0 + e2θV(θ) and complex conjugates
of finite-dimensional isolated eigenvalues of H0 + e2θV(θ) (see [13]).
Hence

(i) σββ = e-2i'R +

and in C σeβ the spectrum σβ consists of finite-dimensional isolated eigen-
values^ H(θ) and complex conjugates of finite-dimensional eigenvalues
of H(θ). Since the conjugate of an eigenvalue of H(θ) is an eigenvalue
of H(θ) of the same multiplicity, we conclude that σiβ = σdβ. This argu-
ment presumes that the operator is local, but can be extended to the
more general case where there exists an antiunitary operator y such
that ?r2 = 1 and H(θ) = &Ή(Θ)^.

It is immediate from (i) that σr

eβ = {0} for 0 < \β\ < a. We shall now
prove that σdβ is independent of β as well as (ii) using the analyticity. Let
Θ0 = α0 + iβ0 eO, zeρβo. Then since the relative norm of H(θ) — H(Θ0)
: @(H(θ0))->j4f, goes to 0 as θ->00 it follows that zeρβ for \β-β0\ <ε.
Suppose on the other hand that λ0 is an isolated eigenvalue of H(Θ0).
Then λ0 is a multivalued analytic function of θ for \θ — Θ0\ < δ, and λQ is an
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isolated eigenvalue of H(a + //?0) for all α, hence λ0 is an isolated eigen-
value of H(θ) for \β-β0\<δ. Thus the sets [βe(-a,a) \ λeρβ} and
{β e ( — α, α) | λ e σd)3} are both open. Let β0>Q be fixed, — a < β0 < α,
and let z £ 5 (̂0) uR, i.e. zφR, argz £ [ - 2β0, 0]. Then there is an interval
(-Kι,β0 + K2)9 K,, K2>0, such that zφσeβ for βe(-Kl9β0 + K2\ so
either z e ρ^ or z e σdβ.

Since z e ρ0, and both the sets {βe( — K^ β0 + K2) \zeρβ} and
{βε(-K^βQ+K2}\zεQdβ} are open, it follows that zeρβ for all
βe( — Kl9β0 + K2)9 in particular zeρβo. This proves

(ii) σ^GS^O).

Similarly, {β e ( - α, a) \ λ e σ^} is open, and A £ σeβ for any /? φ 0 so
the set σr

dβ is constant for 0 < β < a) and similarly for —a<β<Q. Since a
real eigenvalue of H(θ) is also an eigenvalue of H(θ), it follows that σr

dβ is
constant for 0 < \β\ < a. It follows immediately from (i) that σr

eβ = {0} for

We finally prove that σr

β is bounded and establish the estimate (iv).
Since Fis /ί0-compact, it follows that Vis H0 — ε-bounded and hence

H = H0 + V is bounded below, so A0 = inf λ > — oo, and σ0d is at most a
A e σ

bounded sequence of negative eigenvalues. By the above argument, these
eigenvalues coincide with the negative eigenvalues of H(θ\ 0 < \β\ < a.
Together with (ii) this implies that λr

Όβ = λ0 > — oo, and σβ C Sβ(λ0 — 1).
Let φ Φ -2β be fixed, λ = ρeiφ, ρeR+. Setting K = λQ - 1, and θ = iβ,

we have H(iβ}__κ_ρei<P = e-2iβHo_κ_ρeiφ

1
\Ksin2b + ρsin(φ

Hence for/ e ̂ Ho

(1)

The operators Va(θ) are HQ-&- bounded and hence H0 - ε-bounded,
so V(θ) = Σ V«(°) is HO - ε-bounded, i.e.

. (2)

This implies

\\V(θ)f\\^s\\(e-2ί^H0-K-λ)f\\+(ε\K + λ\ + K(s))\\f\\. (3)

(1) and (3) imply for ε < 1

-K(ε)} " ""

20 Commun. math. Phys., Vol. 22
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Here K and b are fixed. Choose ε such that ε 5 (̂1 — ε) \sin(φ + 2/?)|.
Then choose ρ0 such that

Then (4) implies for ρ ̂  ρ0

(5)

(5) implies first of all, that there are no eigenvalues of H(iβ) on the ray
Rφ = {Qeiφ\Q ^ ρ < 00} for ρ ̂  ρ0 = ρ0(<?) In particular, the real eigen-
values of H(θ) and hence the eigenvalues of H are bounded by ρ0(θ).

Moreover, for \φ\ > 2β, the ray Rφ is in the resolvent set oϊH(iβ) — K,
and since (5) is equivalent to

iKHW-K-ρe^g^C^φϊρ-1 \\g\\ for ρ^ρ0, geJtf (6)

o
with C^φ) = — - . , . , - — — we obtain the estimatelvr; (l-ε)|sm(φ + 2jff)|

ll/f^-X-ρ^H^Q^ρ-1 for ρ ̂  Qo .

Since \\(H(iβ) — K — ρeiφ\\)~ί\\ is continuous, it is bounded for
0 ̂  ρ ̂  ρ0?

 so there is a constant C(φ), such that

\\(H(iβ)-K-ρeίφ)-1\\^C(φ)ρ-1 for 0 ̂  ρ < oo .

2) Assume that (i)-(iv) hold true for all systems of k ̂  n — 1 particles
with L/(θ)-analytic relatively compact two-body interactions. We prove
(i)-(iv) for any system of n particles. We shall first prove

According to our induction assumption it is sufficient to prove that
for every decomposition M = C± u C2 one has

σ(Hc^(ίβ)) + σ(Hc*(iβ)) + e'2ίβR+ C σβ .

Let λi E σ(HCl(ίβ)), k> 0 and ft E @(HCί(ίβ)), i = l,2 such that

11/^1= 1, \\(Hc*(θ}-λύfi\\<£,

and let gε@(H(

0

Cί>C2}) such that | | g f | | = l and ||#<Cl'C2)-%|| <ε.This last
property remains unchanged if g is replaced by g(a) obtained from g by a



Spectrum of Schrδdinger Operators 287

translation a of the centers of mass of C1 and C2. From

H(iβ) = Hc>(iβ) + Hc>(iβ) + e-2»H<>c* ™ + Σ. V*(ίβ)

ΊeCι,jic2

one obtains

\\(H(iβ) - (λ, + λ2 + e~2iβk)) (h, ® h2®g(a))\\

ieCί,jeC2

Now one has

g(a) = e ^1+mC2 g

where mc and pc are respectively the total mass and total momentum
operator for cluster C

™c = Σ mi
ieC

pc=Σpi
ieC

After some simple kinematical manipulations one gets

.

e

where ία(α) is a product of translation operators commuting with VΛ and
Tα is the representation of the translation group in Jfα given by

. mjPι~miPj -

Accordingly

Since hv®h2®ge &(H0) C &(Hξ) we can rewrite this term as \\AΛ Ta(a) ψ \\
where ψ = (H$ — z)~* h1®h2(8)g, ImzΦO, and^lα= Fα(iβ)(#o~ z)-1 i s a

compact operator on ffl α. Now using (1) we can expand ψ as an /2-con-
vergent sum ψ= ^ha>n®ιpn where

, ||A..J2 = 1 and (v.|ψJ = δ,m||V
Then

|| ̂ α T.(α) φ || 2 = Trace (B T~ i (a) A. Γα(α))

where B is the trace-class operator on 3tf Λ

20*
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Since Aa is compact, T~ 1(a)AΛT(X(a) tends strongly to zero as |α| -> oo which
implies that the above trace tends to zero. From this we deduce that:

limsup \\H(iβ) - (At + A2 + e~2iβk) (hί®h2®g(a))\\ < 3ε .
|α|-»oo

This implies that λ1 + λ2 + e~2 ί / ?/c e σ^.
Now we prove that σβ is discrete outside Σβ + e~2iβR + , using the

Weinberg equation.
We make use of the following theorem due to Ichinose [15]

Lemma 2. Let A± and A2 be closed, densely defined operators in the
separable Hilbert spaces ̂  and J f 2> satisfying the conditions

σ(Ai) ς {z I |argz| ̂  φt}9 φi,φί + φ2<π, ί = 1, 2 , (1)

for |φ| >φi9 i = l,2. (2)

z^ operator A = A± ®/2 +/! ®^2

 /5 closable, and the spectrum of
the closure A is given by

Let Dk be a decomposition of the system M into k disjoint clusters

Cίt...,Ck. Let

vDk(θ)= Σ ^y(β),
i ε C i . j e C j

t*J

HDk(θ) = H(θ)-VDk(θ)
and

RDfc(β) = (HD(I(θ)-z)-1 /or z^σ(HDfc(θ)).

We write Dk D D, if every cluster of Dk is contained in a cluster of Dt.
Let Sfc be a sequence of decompositions

Set ^,.,(0) = 7B(Θ)- F B _ ( Θ ) and

I(θ, z) =
S2

D(0,z)= Σ (̂β.
Sk,/c^2

The Weinberg equations is derived from the Neumann series for the
resolvent R(θ, z) in the same way as it was derived by Hunziker [9] for
0 = 0. The equation is

Λ(0,z)(l-/(θ,z)) = D(θ,z), (1)
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valid for all z e ρβ such that 7(0, z) and D(θ, z) are defined as bounded
operators on Jtf* . The Neumann series for R(θ, z) is

n=l

R0(θ,z)VXlR0(θ,Z)VX2(θ)...Vain(θ)R0(θ,z) (2)

where α£ = (fcf, /,.), 0 ̂  fc4, ί, ̂  n, fc, Φ /;. From the /f0(0) - ε-boundedness of
the operators VΛ(Θ) and the fact that \\R0(Θ, z)|| = \z\~1 for

it follows that the series (2) is norm-convergent for Re{ze2ί/J} < — K, for
some K > 0. Then (J,) is established as in [9] for Re {ze2ίβ} <-K.

It follows from the induction assumption, that

and
\\(Hc(θ)-λc

oβ + l-ρe^)-ί\\^C(φ)ρ-ί for \φ\>2\β\.

Applying Lemma 2 to the operators Hc(θ) — λ%β — 1 we obtain

σ(HDk(θ)) = σc

β> + : +σc

β« + e-2ί<ίR+. (3)

Here we make use of the fact that

HDk(θ) = (HCί(θ)®IC2® - ®ICk+ .- +/Cl(x) ... ®HCk(θ))®I(Cί'"Ck}

+ /Cl ® - •• ® /Ck ® H^Cl Ck}(0)
where

α C C

and H^ "c^(θ) = Q'2θH^" Ch\ where H^Cl-Ck) is the Schrδdinger
operator with spectrum [0, oo) of the free relative morement of the centers
of mass of C1...Ck.

From (3) and the previously proved inclusion it follows that

σ(HDk(θ)}gσ(HDl(θ)} for Dk^Dl.

Thus, all the resolvents occurring in the expressions of the operators
/(#, z) and D(θ, z) are analytic on the complement Gβ of the set

U K'+σ^ + e-2'"^}
Λί = CιuC 2

where we set σc

β = {0} if C contains only one particle.
Since the operators VΛ(Θ) are H0(θ) - ε-bounded, and all the operators

HDk(θ) have graph-norms equivalent to that ofH0(θ), it follows that I(θ, z),
and D(θ, z) are analytic in the same domain Gβ. From the induction
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assumption on the spectra σ£ it follows that

U {σc

β

1 + σc

β

2 + e-2ίPR + }=Σβ + e-2iβR+ .
M = CιuC 2

It was proved by Combes [8] that J(0, z) is compact for Rez < — K.
Choosing K such that {z | Rez < - K} C Gβ for all /?, a < β < a, we con-
clude (see [12, 14]) using the analyticity in θ of /(#, z), that /(#, z) is com-
pact for all ze Gβ. Since ||J(0, z)|| R e 2 __ 0 0 >Q, it follows from a result of
Steinberg [12] that (1 — 7(0, z))"1 is meromorphic for z e Gβ.

Hence
) = (l-I(θ9z))-*D(θ9z)

is meromorphic for zεGβ, and σβr\Gβ consists of isolated poles of
R(θ,z).

Let λ be an isolated pole of R(θ, z) and let Γ be a closed circle with
the usual orientation separating λ from σβ\{λ}. Then the operator

Pλ(θ) = ~-

is a projection on a closed subspace J^(θ) of 2tf such that J f^(θ) is in-
variant under H(θ) and σ(Hλ(θ)) = {λ}, where #A(0) - H(θ) | JfA(0) (see
[10], Ch. 10 III, § 6.5). Using (1) we have, by the analyticity of D(θ, z) in Gβ9

The operator R(Θ9 z) I(Θ9 z) is compact for z e Gβ9 hence Pλ(0), being the
uniform limit of compact operators, is a compact projection, i.e. Jtfλ(θ) is
finite-dimensional. Thus, λ is a finite-dimensional eigenvalue of H(θ).

We have proved that

(i) σeβ = Σβ + e~2i'R+.

It follows immediately that σr

eβ = Σr

β is independent of β, 0 < |/?| < α

As for n = 2 we prove, using the analyticity of the family H(θ\ that
σβ\σr

β C Sβ(λeβ) and that σr

dβ is independent of β, 0 < \β\ < a.

Then C\Sβ(λoβ — 1) C ρ^, and we prove as for n = 2, setting K = A0 j 8 — 1
that σr

β is bounded and that the condition (iv) is satisfied. This concludes
the proof of Lemma 1.
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We now make the connection with the spectrum σ of H. First we
prove

Lemma 3. The eigenvalues of //, which are not in Σnσp are precisely
the real isolated eigenvalues of H(θ) outside Γ, 0 < |/?| < a. i.e.

σp\Σ = σr

dβ\Σ, Q<\β\<a.

Proof. Let

H= ] λdEλ

— oo

be the spectral resolution of the operator H. We have the following
connection between Eλ and R(z):

Eλ — Eλ_0 = s-lim(z — λ) R(z) .
z-»λ

zeC +

Let 2(0) be the set of vectors Φ in 3?, such that the vector-valued
function Φ(θ) = U(Θ)Φ has an analytic continuation to 0. The set 2(0)
is dense in 2tf according to a theorem of Nelson [11] stating that 9(C)
is dense in 2tf.

For Φ e 2(0) and θ e R we have

(Φ, R(z)Φ) = (Φ, U(ΘΓl R(θ, z) U(Θ)Φ) = (Φ(θ), R(θ, z) Φ(θ)) . (5)

The function

is for a fixed ze C+ = {ze C \ Imz>0} analytic in θ for θe& + ε(z)

= {θe(9\lmθ> -s(z)}9 φ)>0, according to Lemma 1. Since Fφ(θ9z)
= (Φ, R(z)Φ) for θ e R, it follows that

(Φ,Λ(z)Φ) = Fφ(θ,z), θeίPίε ( z ). (6)

Thus, (6) holds for any fixed θe&+ and all z e C+.
Lemma 1 implies that the function Fφ(θ,z) is meromorphic in Gβ.

Let λ e GβΓ^R = R\Σr

β. By (4) and (6)

(Φ, (Eλ - Eλ_0)Φ) = lim (z - λ) (Φ, R(z)Φ) = lim (z - λ) Fφ(θ, z) . (7)
z-» A z-*λ

zeC + zeC +

It follows from (7), that

(Φ,(£λ-£λ_0)Φ)-0 for all

and
(Φ,(£y l-£λ_0)Φ)Φθ for some

since (Φ(θ) | Φ e 9(0)} is dense in ^f.



292 E. Balslev and J. M. Combes:

Notice that if follows from (7), that the real poles of R(θ, z) are simple
poles. This is not necessarily true for the poles in the interior of Sβ(λeβ).

We now have all the tools required for the proof of our main results
formulated in the following theorems.

Theorem 1. The point spectrum σp ofH is bounded and the set σ'p of its
accumulation points is contained in the set of thresholds Σ.

The eigenspace corresponding to an eigenvalue λφΣ is finite dimen-
sional, and bound-state wave functions are in @(θ).

Proof. The first assertions follow immediately from Lemmas 1 and 3.
In establishing the properties of the eigenspaces we follow the methods
of Aguilar and Combes [7].

Let λ e σp\Σ, then by Lemma 3, λ e σr

dβ for 0 < \β\ < a. Let P±(0, λ) be
the projection on the eigenspace of Jf (θ) corresponding to the eigenvalue

A, θ e 0±

9 defined by P±(Θ9 λ)=- -̂  J R(θ, z)dz where Γenσβ = {λ}.
2πι Γθ

By [10], Ch. 7, §3.1, the operators P±(θ,λ) form analytic families of
operators in θ± = {z e 0 \ Imz ̂  0}. We make use of the identity

z->λ

to obtain

(Φ, Eλ - E λ_ 0Φ) = lim (z - λ) (Φ(θ) R(θ, z) Φ(θ))
zsQ*

= (Φ(θ\ P ± (θ, λ) Φ(θ)) for θ e β ± .

We now proceed as in [7] to prove, that

P±(θ,λ)ΊΓ^>Eλ-Eλ_0 uniformly

and moreover that the family of operators defined by

fP^M) for θeθ±

^~\U(θ)Eλ-Eλ_0U(ΘΓ1 for θεR

is analytic in G. This implies, that λ is a finite-dimensional eigenvalue of
H, and that the corresponding eigenfunctions are in &(&).

Let us mention that if the interaction is local or electromagnetic,
bound-state wave functions also satisfy strong decrease properties in
configuration space. In fact using the analyticity property stated in
Theorem 1 and arguments similar to those used in [9] (Theorem 4) one
can show that if Φ is a bound-state wave-function corresponding to an
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eigenvalue λφΣ, then |(Φ, Q(r)Φ)\ < oo for any polynomial Q. This kind
of result will be investigated in more detail in a forthcoming paper.

Theorem 2. JP = Jίa(H)@Jίd(H). The spectrum of

Ha = H\Jίa is \λe, oo), where λe = minλ.
λ ε Σ

Proof. Let us show that σsc(H) = 0. Let Φ e 0(0), and let / = [λl9 λ2~]
be any closed interval on the real axis disjoint from σr

β, βφO. Then by
Lemma 2, /nσp = 0, and we have (see [10], VI, § 5.2)

(Φ, (Eλ2 - Eλl)Φ) = -— lim I J (Φ, (R(λ - ίs)Φ)dλ

(8)
o I

- ί (
Ai + iε

Since C+ Cρβϊor β>Q and C~ C ρ^ for β < 0 we obtain as in the proof
of Lemma 3 for a fixed θe(9~

(Φ, (Eλ2 - Eλί)Φ) = -ί-Γ lim f {(Φ(δ), R(θ, A - iβ) Φ(θ))
zπi ε-> o+ Aι

)-(^
λl

_ jSφO, and the functions (Φ(θ) JR(Θ, λ - ΐε) Φ(0)) and
(Φ(θ\ R(θ, λ + zε) Φ(θ)) have analytic continuations across / from below
and above respectively it follows that (Φ, EλΦ) is absolutely continuous
on / for every Φ e ^(0) and hence {Eλ} is absolutely continuous on /.

Let Ψe3Fsc, then since μ(supp(Ψ, EλΨ)) = 0 the function (Ψ,EλΨ)
is constant for λeR\Σ9 and it is clear from the continuity of (Ψ9EλΨ)
and construction of Σ that (Ψ, EλΨ) = constant = 0 for all A, i.e. Ψ = 0,
so J^sc = 0.

By Lemma 1, σe = \λe, oo), and α^CΓ, so σ(lfβc) 2 [λβ, oo)\Σ, and
hence plβ, oo) 2 σ(Hβc) 2 [Aβ, oo)\Σ - [Aβ, oo), so σ(Hac) = [_λeί oo).

This concludes the proof of Theorem 2.
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