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Abstract. Quantum mechanical N-body systems with dilatation analytic interactions
are investigated. Absence of continuous singular part for the Hamiltonians is proved
together with the existence of an absolutely continuous part having spectrum [2,, c0),
where 4, is the lowest many body threshold of the system. In the complement of the set of
thresholds the point spectrum is discrete; corresponding bound state wave-functions are
analytic with respect to the dilatation group.

Introduction

Some important progress has been made during the last years in the
mathematical analysis of multiparticle quantum scattering systems. The
main results concern non-relativistic three or four particle systems with
smooth short-range forces (see e.g. [1]). However no definite step has
been made toward a general proof of some fundamental problems such
as asymptotic completeness except for repulsive potentials [1,2] or
locally for general multichannel systems [3]. Another troublesome
situation concerns the inclusion of more general forces, Coulomb like
or electromagnetic, in multiparticle formalisms. First steps in this direc-
tion have been made by proving existence of generalized wave-operators
for multichannel systems with potentials g/r’, <f <1 ([4,5]); these
improvements on traditional time-dependent methods should support
the future extension to multiparticle systems of recent formulations of
scattering theory with such general forces (see e.g. [6]). It has to be
expected that further progress in these domains can be made from a
systematic study of the spectral properties of Schrodinger Hamiltonians.
For example the experience of the N particle problem with short-range
potentials strongly suggests that fundamental ingredients of asymptotic
completeness are the absence of continuous singular spectrum and the
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discreteness of bound-states. The first requirement guarantees absence
of pathological states which are neither bound-states nor scattering
states in the sense that the probability that particles remain in a bounded
domain of configuration space does not tend to zero as the time increases.
The second requirement is needed for a correct space-time behavior of
wave-packets in multichannel scattering; furthermore it has obvious
consequences for the analytic structure of the S-matrix. Both problems
have been solved in the one body case [ 7] with the help of an analyticity
assumption on potentials with respect to the dilatation group. Such a
condition is rather weak and it requires neither short-range, locality nor
respulsivity of forces, allowing in particular some electromagnetic fields.
We investigate here multiparticle systems with such forces using Wein-
berg equations; our main tool is the analyticity of its solutions with
respect to the dilatation parameter. From this one can deduce the
existence of a meromorphy domain for expectation values of the resolvent
allowing their analytic continuation through the whole set of channel
cuts. This implies absence of continuous singular spectrum and the
correct spectrum [A4,, c0) for the absolutely continuous part of the
Hamiltonians, where 4, is the lowest many-body threshold of the system.
The intersection of the discrete spectrum with the complement of the set
of thresholds is a bounded set consisting of isolated eigenvalues with
finite multiplicities.

Let H=H,+V,V= ) V,, betheSchrédinger operator of the system

e
M of n particles with two-body interactions V,. We have separated the
center-of-mass of M, so the space is # = [?(R3""!). The operator H,
representing the kinetic energy is obtained from the classical kinetic
n =12
energy » —’—2%— by the substitution p;— % V; and 3 of the variables are
i=1

eliminated through the equation ) p;=0.
i=1
We refer to other papers on multiparticle systems (see e.g. [1, 3]) for
kinematical details. We just mention some basic facts which are needed
in this paper. To each cluster decomposition D ={C;,C,,... G},
CinC;j=9, i+j, uC;= M, there corresponds a tensor decomposition

H = %cx®%02® ®%C;¢®%C1,Cz,m€k (1)

where #°C is the state space for particles belonging to C (center of mass
separated) and #€1€2 - % is the state space for the centers of mass of
clusters. The operator H, splits into a sum over clusters of internal
energies HS' plus the kinetic energy of centers of mass H{ ¢ ©¥:

H0=Hg‘+HgZ= +H(()01;Cz ,,,,, Ci)

i n
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where e.g. HS* has to be understood as an operator on #, that is the tensor
product of the kinetic energy operator on #°°* and the identity operator
on the Hilbert space corresponding to other degrees of freedom. We
adopt the convention, unless explicitly needed, to denote in the same
way an operator on one component of (1) or the corresponding operator
on .

We assume that the interactions V,” o =(i,j), i#j are symmetric
operators in #*~ L*(R?) compact with respect to 4, i.e. the operator

V,: D(4)— [*(R®)

is compact. Then H is self-adjoint and 2(H) = 9(H,). In fact our hypo-
thesis implies that the interactions V, are H, — ¢ bounded (see e.g. [8],
App. ]).

Let U(0), 0 € R, be the strongly continuous unitary representation on
A of the dilatation group defined by

3(n—1)0

O SfHP=e 2 f(e'D).

For each cluster decomposition U(f) is a tensor product of the
unitary representations of the dilatation group on the Hilbert spaces
occuring in the decompositions (1).

We now make the second basic assumption about the interactions
V,. Let

V,(0)=U®©)V,U®), 0OeR.

The mapping R— V,(6) is a compact operator valued function on R.
We assume that the function V,(6) has an analytic extension to a domain
0, such that ONR £ @, as a function on @ whose values are bounded
operators from 2(4) into L*(R3). It follows (see [12, 14]) that V,(6) is a
compact operator for every 0 € (0. We notice that for Im0 = = constant,
the operators V,(0) are unitarily equivalent. Setting

Ve (0)=U@® V,(0) U®O™

for every fixed t € R, we obtain analytic functions V, ,(6) on the domains
O,=0+t,suchthat V, , (0)=V, ,,(0) for 6 € O, nO,,. The function V,(6)
defined by V,(0) =V, ,(0) for any ¢ such that 0 € ¢, is analytic on the strip
0 + R. Moreover, the function o*(8) =«(6) is an analytic continuation of
a(6) into the domain symmetric to ¢ with respect to the real axis R.
Thus we can assume that V,(0) is a compact operator valued function
defined on a strip symmetric to the real axis, O = 0, = {z| |Imz| <a},
where we assume a < n/4. Consider now the family of operators H(0)
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defined for 6 € R by
H@)=U@O)HU@®) ' =e 2°Hy+V(0).

Since V(0) is H, — e-bounded, this family has a self-adjoint analytic
extension to @ defined by

H@)=e 2°H,+ V(0), 0€0.

We shall now investigate the spectra of the operators H(), 6 € 0,\R
= {z|0<|Imz| <a}, and then make the transition to real 6. Since the
operators H(o +iff), — 00 < a < 00, are unitarily equivalent, the spectrum
o(H(0)) depends on f§ only, —a< f<a.

For 0 =a+if € 0, we introduce the following

Definition oz = o(H(0)),

op = o(H(0)),
;3 = the set of isolated points in oy,
O3 =04\0 ip>
0,5 = the set of eigenvalues of H(0),
045 = the set of isolated eigenvalues of H() of finite
multiplicity.

We omit the subscript f for f =0, ie. 0 =0, etc. We set R(0, z)
=(H(0)—z)"" for z € g;.

For any set S contained in the complex plane we write S" = SN R and
S’ denotes the set of accumulation points of S.

For CC M we denote by HS(0) the operator defined as H(0) for the
system C, i.e.

HEO)=e 2°HS +VE(0)

where HS is the free Hamiltonian of C relative to the center-of-mass of
Cand V€)= ), V;;(6). We denote by ¢°(6) the spectrum of

i,jeC
a(HE(0)) etc.

We denote by X, the set of all sums of isolated finite-dimensional
eigenvalues of Hamiltonians of disjoint clusters of the system and the
point 0, i.e.

Z,={0y UU 65+ +05p
Civ...uCp M
(the trivial decomposition M = M is not allowed. For n =2, ;= {0}).
Let
Fop = zlenaf,;l’ Fep = zlenzgl'

For A€ R, S4(4) is the sector of C bounded by the half-lines {4 + R*} and
{A+e 2PR*}.
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Now the basic qualitative properties of o, f+0, can be formulated
in the following

Lemma 1. The spectrum o, has the properties
(l) O‘eﬂ = Zﬂ -+ e~2iﬂR+ B
(ii) 05\0) CSg(A.p)-
a’et,'= 2% and oy, are constant for 0 <|B| <a, o} is bounded and o)y, C Z}.
(iv) For || >2|B]| there exists C(p)>0 such that for 0 < g < o0,

I(H(O) = Aoy +1— ') = Clp)o™" .

Briefly formulated the Lemma states that the spectrum of H(6) con-
sists of a system of parallel half-lines in the direction e~ 2%/ starting from
the points of X; and a set of isolated, finite-dimensional eigenvalues, which
can be divided into a bounded set of real eigenvalues accumulating at most
at points of 2% and a set of non-real, finite dimensional eigenvalues con-
tained in the sector S;. The resolvent R(0, z) satisfies the estimate (iv).

Proof. We prove the Lemma by induction on n
)n=2.
We have

H@O)=e 2°Hy+ V() =e 2°(Hy,+e*°V(0), Hy=—4.

The essential spectrum of H, is [0, o). Since the operator e*°V(0)
is H,-compact, it follows that o, (H,+ e*°v(f))=[0, ), and in the
complement of [0, oo) the spectrum of H,, 4+ ¢2?V(0) contains only finite-
dimensional isolated eigenvalues of H, + ¢*°V(0) and complex conjugates
of finite-dimensional isolated eigenvalues of H,+ e*°V(0) (see [13]).
Hence

(i) 00y =€ 2R
and in C ¢, the spectrum o, consists of finite-dimensional isolated eigen-
values of H(f) and complex conjugates of finite-dimensional eigenvalues
of H(0). Since the conjugate of an eigenvalue of H(0) is an eigenvalue
of H(6) of the same multiplicity, we conclude that o;; = g,4. This argu-
ment presumes that the operator is local, but can be extended to the
more general case where there exists an antiunitary operator 4 such
that 72=1and HO) =7 H®)T.

It is immediate from (i) that o3, = {0} for 0 <|f| <a. We shall now
prove that o7, is independent of § as well as (ii) using the analyticity. Let
0o =00+ ifo €0, z€ g4, Then since the relative norm of H(6)— H(6,)
1D (H(0,))— #, goes to 0 as 00, it follows that z € g, for [f— By <e.
Suppose on the other hand that A, is an isolated eigenvalue of H(6,).
Then 4, is a multivalued analytic function of 0 for |0 — 0] < J, and 4, is an
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isolated eigenvalue of H(x + if,) for all a, hence 4, is an isolated eigen-
value of H(0) for | —fol<d. Thus the sets {fe(—a,a)| e gy} and
{Be(—a,a)| Aeo,} are both open. Let f,>0 be fixed, —a<pfy<a,
andletz ¢ S, (0)UR,ie.z ¢ R,argz ¢ [ —2p,,0]. Then there is an interval
(— Ky, Bo+K,), Ky, K, >0, such that z ¢ g,, for fe(—K;, fo+ K3), so
either ze gy or z€ 0y

Since zeg,, and both the sets {fe(—K,,Bo+K,)|z€04} and
{fe(—K,,po+K,)|ze 0,4} are open, it follows that zeg, for all
Be(—Kj, o+ K,), in particular z € g;,. This proves

(i) a5\op CS4(0).

Similarly, {f € (—a,a)| A€ 0dy,} is open, and A ¢ g4 for any S0 so
the set a7, is constant for 0 < < a) and similarly for —a <f <0. Since a
real eigenvalue of H(0) is also an eigenvalue of H(0), it follows that o7, is
constant for 0 < || < a. It follows immediately from (i) that ¢7,; = {0} for
0<|pl<a, and o}, C 2 = {0}.

We finally prove that o} is bounded and establish the estimate (iv).

Since V'is Hy,-compact, it follows that V'is H, —¢-bounded and hence
H = H, + V is bounded below, so 4, = irelfl > —o0, and g, is at most a

bounded sequence of negative eigenvalues. By the above argument, these
eigenvalues coincide with the negative eigenvalues of H(f), 0 <|f| <a.
Together with (ii) this implies that A5, = A, > — o0, and o, CSs(4e —1).
Let ¢ + —2p be fixed, A = ge'?, ge R™. Setting K = 4, —1, and 0 =i,

we have H(if)— K —0¢'® = e 2P Hy— K — e+ V(0);
. i i i 1
2 _ K —0ei®) " = |[(H.— i9)o2if) =1 T
(e 27 Ho ~ K =€) ™! | = I(Ho — (K -+ 0e)e* )™ | Jre o
_ 1
IK sin2b + gsin(¢p + 2p)|

Hence for fe @y,
Ie™?#Hy~ K~ A) f1l Z |K sin2f +gsin(p +2B)| - | f1 . (1)
The operators V,(0) are H — ¢ —bounded and hence H, — e-bounded,
so V(0) =Y V,(0) is H, — e-bounded, i..
VO fl <ele”*"Ho S| + K@ fll, feDy,- @
This implies
VOl sele™®"Hy— K= f| + K+ A+KE@)Ifl.  3)
(1) and (3) imply for e <1
(e~ 2# Hy + V() ~ K= A)f | 2 {(1—2) [K sin2f +gsin(p +2)

)
—elK+ A -K@} IS

20 Commun. math. Phys., Vol. 22
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Here K and b are fixed. Choose ¢ such that ¢ < (1 — &) sin(p + 2)|.
Then choose g, such that

K sin2f| < 3olsin(¢ +2p),
K <105, K(e) S (1 —8)golsin(e +2p).
Then (4) implies for ¢ = g,
I(HB)— K =) f1| = {3(1 —¢) elsin(p +2p)| — 3ee — K (@)} | f1I-
2 {z(1 —¢) olsin(p +2p)| =K@} [ 1 ®)
2 (1 —¢)olsin(p +2p) - | f1-

(5) implies first of all, that there are no eigenvalues of H(if) on the ray
R, ={0e"?|0 < g <0} for g = g = go(¢). In particular, the real eigen-
values of H(A) and hence the eigenvalues of H are bounded by g, (6).

Moreover, for |¢| >2p, the ray R, is in the resolvent set of H(if}) — K,
and since (5) is equivalent to

I(H(ib) — K — 0€'?) gl £ Cy(@)o ' llgll for @=go, geH (6)

8
(1 —¢)Isin(p +2)|

IH(iB) — K — €'l < Cy(@)e™! for o=go-

we obtain the estimate

with C;(¢p) =

Since |(H(if) — K —ge*®||)"!|| is continuous, it is bounded for
0 < ¢ = 9y, 50 there is a constant C(¢), such that

I(H(iB) —K —@€e'?) "' £ C(p)e™" for 0=<g<oo.

2) Assume that (i)—(iv) hold true for all systems of k <n—1 particles
with U(6)-analytic relatively compact two-body interactions. We prove
(i)—(iv) for any system of n particles. We shall first prove

Zﬂ+e_2ﬁR+ g O'eﬂ .

According to our induction assumption it is sufficient to prove that
for every decomposition M = C; UC, one has

o(H (i) + o(H*(if)) + e *"»R* Coy.
Let 4;€ a(H(ip)), k>0 and f,e Z(H(iB)), i = 1,2 such that
Ifill =1, [I(H®0)—4) fill <e,

and let ge 2(H{ “?) such that ||g|| =1 and | H{: @ —k)g| < e. This last
property remains unchanged if g is replaced by g(a@) obtained from g by a
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translation a of the centers of mass of C; and C,. From

Hp) = HOG)+ HEGR) +e P HS S+ T V,0f)
a=(ij)
ieCy1,jeC2

one obtains
I(HGB) — (g + A, + e 27k)) (h, ® h, ® g (@)
<3e+ z 1V,GB) (h, ®h, @9 (@)l -

o a=(ij)
ieC1,jeCa

Now one has i i
;Inc, pc, ~mc, pc, 7
g@=e meTme g
where m, and p, are respectively the total mass and total momentum
operator for cluster C
m,= Yy m

ieC

l_)cz zp-l

ieC
After some simple kinematical manipulations one gets

_mc, bc, ~mc, bc,

e matme  —p @)@T,@), A=(,j), ieC,, jeC,,

where t,(a) is a product of translation operators commuting with V, and
T, is the representation of the translation group in J#* given by

; m;p,—mipj _
T@=e ™
Accordingly

IVa(@B) hi @ h, ® (@) = |V, (iB) T,(@) hy ®h, @] -

Since hy @ h, ®g € D(H,) C D(H§) we can rewrite this term as |4, T,(@) v
where y=(Hi—2) ' h;®h,®g,Imz=+0,and A,=V,(if) (Hi—z) 'isa
compact operator on #* Now using (1) we can expand y as an [*-con-
vergent sum y = Y h, ,®, where

hywe A%, |hy =1 and  (W,|w,)=0umlwal>.
Then
[4,T,@) y|* = Trace(BT, '(a) A,T,(@))

where B is the trace-class operator on #*

B= 3 llwall? 1> <hopls 2 Iwall®>=1lwl? .

20*
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Since A4, is compact, T, *(@) A4, T,(a) tends strongly to zero as |a]—» oo which
implies that the above trace tends to zero. From this we deduce that:

limsup | H(iB) — (2, + 2, + e k) (h, ®h, ®@g(@)ll <3e.

This implies that A; + 1, + e >k e g,
Now we prove that o, is discrete outside X;+e~?*’R*, using the

Weinberg equation.
We make use of the following theorem due to Ichinose [15]

Lemma 2. Let A; and A, be closed, densely defined operators in the
separable Hilbert spaces #, and H#,, satisfying the conditions
G(Ai) < {Zl iargz{ = ¢i}9 @i 01 T+, <, i=1,2 s (1)

I(4;—e) M| £ Clp)e™" for |p|>¢, i=1,2. )]

Then the operator A=A, ®1, + 1, ® A, is closable, and the spectrum of
the closure A is given by
o(A) = o(A1) +(4,).
Let D, be a decomposition of the system M into k disjoint clusters
Cq, ..., Cy. Let
Vo 0)= > V00,
iGCii:,’:ij Cj

Hy, (6) = H(0) — Vp,(0)
and
Ry, (0) = (Hp (0)—2z)™'  for z¢a(Hp ().

We write D, D D, if every cluster of D, is contained in a cluster of D,.
Let S, be a sequence of decompositions

Sk = {DnDDn—-l Do :)Dk}
Set Vpyp,_..(0) = Vi, (0)— Vp,_,(0) and
1(6,2) = Y. Rp,(0,2)Vp,p,_,(0) ... Rp,(0,2) V,p,(0),
Sz
D(®, Z)=S ; . Rp,(0,2)Vp,p,_,0) --. Vp,. ,p(0) Rp,(6,2) .

The Weinberg equations is derived from the Neumann series for the
resolvent R(6, z) in the same way as it was derived by Hunziker [9] for
0 =0. The equation is

R(6,2)(1—1(0,2)=D(®,2), 1)
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valid for all ze g, such that 1(6, z) and D(b, z) are defined as bounded
operators on 5#. The Neumann series for R(, z) is

ROH=Ro0.9+ Y Y Ro(0.9V,Ro(0,9V,,0)... 7, OR0.2) ()
n=1 aj...an

where o; = (k;, 1,), 0= k;, |, <n, k; & I;. From the H,(6) — e-boundedness of

the operators V,(0) and the fact that |R,(6, z)|| =|z|~ ! for

L 3n
—2——2[3<argz< —2——2/3

it follows that the series (2) is norm-convergent for Re {ze?*#} < — K, for
some K > 0. Then (1) is established as in [9] for Re {ze?f} < — K.
It follows from the induction assumption, that

Ug < Sg(lgﬂ —1)
and .
I(HEO) — 455 +1—0e'?) "' | = C(p)o™" for |o|>2Ip|.
Applying Lemma 2 to the operators H(0) — A5, — 1 we obtain
o(Hp, (0) =05+ -+ o5+ e 2R ?3)
Here we make use of the fact that
Hp, (0)=H"O)QI*Q@ - ®I%+ --- + I ® --- @ H*(A)) @ [C1 ¥

+IC‘®"‘®ICk®H(()C""C"}(0)
where
H@)=eH;+ ¥ V.(0)

a=(i,J)

and H{C 9 (0)=e 2°HF 9, where H{*¢ is the Schrodinger
operator with spectrum [0, o) of the free relative morement of the centers
of mass of C;...C,.

From (3) and the previously proved inclusion it follows that

o(Hp, (0) S o(Hp,(0)) for DyDD,.

Thus, all the resolvents occurring in the expressions of the operators
I1(0, z) and D(0, z) are analytic on the complement G, of the set

U {5 +o5>+e *#R*}
M=CyuC;
where we set 0§ = {0} if C contains only one particle.
Since the operators V,(0) are H,(6) — ¢-bounded, and all the operators
H,, (0) have graph-norms equivalent to that of Hy(0), it follows that I(0), z),
and D(0, z) are analytic in the same domain G,;. From the induction
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assumption on the spectra of it follows that

U {05 +05+e 2R} =5, +e 2 R* .
M=C;uCy

It was proved by Combes [8] that I(0, z) is compact for Rez < —K.
Choosing K such that {z|Rez < — K} C G, for all §, a<f <a, we con-
clude (see [12, 14]) using the analyticity in 8 of I1(6, z), that I(0, z) is com-
pact for all z e G,. Since | 1(0, z)||m>0 it follows from a result of
Steinberg [12] that (1 — (6, z))~! is meromorphic for z € G,.

Hence

R(6,z)=(1—-1(0,2))"' D(6, 2)

is meromorphic for ze G4, and g;N G, consists of isolated poles of
R(0, 2).

Let A be an isolated pole of R(0, z) and let I" be a closed circle with
the usual orientation separating A from o,\{4}. Then the operator

P,6) = —2‘% [R(,2)dz

is a projection on a closed subspace J#,(6) of # such that s#,(0) is in-
variant under H(0) and o(H,(0)) = {1}, where H,(0) = H(0)| #,(0) (see
[10], Ch. 10 I1L § 6.5). Using (1) we have, by the analyticity of D(0, z) in G,

P,(0) = 2‘—7:1 [(RO,2)+D(,2)dz
i
= 5 [RO.9160.2)

The operator R(0, z) I(0, z) is compact for z € G, hence P,(0), being the

uniform limit of compact operators, is a compact projection, i.e. 5#;(0) is

finite-dimensional. Thus, /A is a finite-dimensional eigenvalue of H(6).
We have proved that

(i) o,p=25+e 2PR*.

It follows immediately that o,, = 2 is independent of g, 0 <|f|<a
and oy, C27}.

As for n =2 we prove, using the analyticity of the family H(6), that
05\05 CSp(4.p) and that o7, is independent of §, 0 < (B[ < a.

Then C\S4(405 — 1) C @4, and we prove as for n = 2, setting K = 4o — 1
that o} is bounded and that the condition (iv) is satisfied. This concludes
the proof of Lemma 1.






