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Noncommutative Mean Ergodic Theory
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Abstract. Sufficient conditions are given to obtain two levels of ergodic behavior for
a wide class of dynamical systems. The notion of substate is emphasized and shown to lead
to a natural generalization for noncommutative systems of the mean ergodic theorem on
L! . Applications to the time averaging of certain deviations from thermal equilibrium is
mentioned.

1. Introduction

In previous work [1, 2] we obtained regularity properties for functions
of time of the form (A\ for a wide class of dynamical models. These
properties were used to determine the connection between the spectrum
of the Hamiltonian of a model and the rate of approach to equilibrium
of that model. In the present work we use these results to obtain general
ergodic properties for these same models.

Specifically, the models we will be considering are called abstract
dynamical systems and consist of a triple (21, ©, α) where: 21 is a C*-
algebra with unit /, S is the set of all states on 21, and α is a time develop-
ment1 of 21, that is, a weakly continuous group representation of 1R in
the set Aut(2I) of automorphisms of 21. (A class of examples used exten-
sively below is the generalized Ising models, defined in Appendix!.)

In order to state the regularity properties referred to above, it is
convenient to define the following objects pertaining to an abstract
dynamical system (21, ©, α). We denote by α, the image of t e R in Aut(2ϊ)
and by α* its dual map of 2Ϊ* onto 21*. For A e 21, α (A) is the function

Sj (resp. 2Ij) is the set of all ρe<3 (resp. ^4e 21) such that αt*(ρ) = ρ
(resp. at(A) = A) for all t e R For ρ e S, &(ρ) is the set {τ e ® | τ ̂  aρ
for some α e R}. If W(R) is the set of all weakly almost periodic functions
on R (defined in Appendix II) then W(©) is the set of all ρ e © such that
the function

α (A)-] : t e R^ ρ [α, (
1 The conditions we impose are controversial: see [19, 20]. The continuity assumption

is not essential and is specifically overcome for the main result, Prop. 4.
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belongs to W0R) for all A £ 91. For ρ e ®, 77ρ is the GNS representation
of 91 on J ρ̂ and Φρ is the canonical cyclic vector, n, w and w* refer to the
norm, weak and weak-* topologies respectively.

The above mentioned regularity properties are now:

Proposition 1. //(9l, S, α) is a generalized Ising model, then W(<5) = S.

Proposition 2. // (9ϊ, S, α) is an abstract dynamical system, ρ e S/? and
{C/JίelR} is the canonical unitary group representation o/IR on 2?^ then
for each ρe^(ρ) there exists a positive linear operator Cρ e /7^(9I)r such
that

for all A e 91 and allteHL In particular, ί?(ρ) £ W(<£>).

It will become apparent below that these two results represent quite
different aspects of the ergodic nature of abstract dynamical systems;
therefore we will treat them in separate sections.

2. Weak Ergodicity

The ergodic property pertinent to Prop. 1 is:

Proposition 3. // (91, S, α) is an abstract dynamical system and if
ρeW(<£) then there exists a unique state ρ in co{αf(ρ)|ίeR}w*nSj.
Furthermore,

1 τ

T-+co T 0

for all A e 91.

The proof is in Appendix III.
We now present three examples which show that certain alternative

formulations of Prop. 3 would be improper.
Example 1. Let Jf =L2(1R) and W=B(3?\ For ,4e9ϊ, let ut(A)

= 17,417* where

(I7t/)(τ) = /(τ-ί) for all fetf.

Let θ e 91 be defined by

(0/)(τ) = θ(τ)/(τ) for all fetf
where

Ωf, f l if τ^
0(τ) = 0 if τ < 0 .

For any g e Jf it is straightforward to check that

lim <#,(*,
ί-> oo
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and
lim <flf,αί(%> = 0.

ί^-oo

It is then not difficult2 to show that if # Φ O there are many states in
co{αf(^)|ί6R}w*nS7, where g is the state on 91 defined by

d ( A ) = < g 9 A g y / \ \ g \ \ 2 .

This illustrates the necessity of some restriction such as "ρ e W(®)" in
Prop. 3.

Example 2. Let (21, S, α) be any generalized Ising model and let
ρ = (X) £ where σ^/f = f{ for all ί. Then

co{α*(ρ)|ίelR}MnS j r-co{α*(ρ)|ίeIR}wnSI-0.

The proof is in Appendix III.
This shows that it is inappropriate, for the general phenomenon

apparent from Prop. 1, to use the norm topology on 21* as is so tempting
in ergodic theory. In fact, since it is clearly advantageous to work on a
Banach space, it is natural to consider what can be done with α,: 2I->21.
The following example eliminates this possibility.

Examples. Let (21, S,α) be the generalized Ising model with v(\j\)
= l/l/|2.Then

co{αΛσ2)|ί6R

The proof is in Appendix III.

3. Strong Ergodicity

If (21, (5, α) is an abstract dynamical system and ρe SJ? combining
Props. 2 and 3 with the fact that W(®) is norm closed, it follows that
for each ρe^(ρ)" there is a unique state ρeco{α*ρ)|ίelR}w*nS/.
However this is not nearly strong enough since:

Proposition 4. // (2ϊ, ®, α) is an abstract dynamical system3 and
ρ e SJ? then for each ρ e £f(ρ)n there is a unique state ρ in

co{α*(ρ)|ίeIR}"nSI.

Furthermore, ρ

The proof is in Appendix III. Elements of Sf (ρ)n will be called "sub-
states of ρ".

2 Constructions can be obtained by the method of Prop. 3 using the existence of
certain means, as presented for example in [3; p. 36].

3 The assumption that α( be weakly continuous in t can be dropped. The only alteration
needed in the proof is to redefine the means as states over the C*-algebra of all complex
bounded functions on 1R.

21 Commun. math. Phys., Vol. 21
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The generality of this result will be manifest from the following two
examples.

Example 4 (Classical Dynamics). Let (21, S, α) be an abstract dynam-
ical system with 2ί abelian. Therefore 91 is isomorphic to C(S), the C*-
algebra of complex continuous functions on the compact Hausdorff
space S consisting of the pure states on 91 in the w*-topology. If ρ e @j £ ®,
it follows from the Riesz representation theorem [4; IV.6.3] that there is a
unique regular measure μ^ on S such that

Q ( f ) = l f ( s ) d μ , for all /eC(S).
S

It then follows from the Radon-Nikodym theorem [4; III. 10.2] that there
is a bijective isometry between the substates of ρ and the probability
densities subordinate to μ:

ρ e 3^"->/β eLf (5, μ,)^ {/eL^μ^/^ 0,| |/| |=1}

such that
Q ( 0 ) = ί 9 ( s ) f β ( s ) d μ s for all f feC(S).

s

From the denseness of C(S) in 1 (̂5, μ^) [4; IV.8.19] and the invariance of
ρ, it is easy to show that α*, as a transformation of S onto S, preserves the
measure μ$. Thus, as far as abstract dynamical systems are concerned,
Prop. 4 is a strict generalization to the noncommutative situation of the
mean ergodic theorem onl^. In fact it more transparently generalizes the
mean ergodic theorem on abstract L-spaces as contained for example
in [5]. _

Another case where ^(ρ)" reduces to a familiar set of states is given
in the next example4.

Example 5. Let (2ί, S, α) be an abstract dynamical system. Define, for
fixed φ e S and A9Be$l, the functions

GAB : t e IR-»(/> {_^(Aβ} e C .AB

Clearly FAB and GAB are bounded continuous functions of 1R, and can
therefore be considered as elements of '̂(1R), the tempered distributions
on R Defining the function

eβ:telR.-+eβte1C

we say that φ is a KMS state for inverse temperature β ή= 0 if

_ FAB = eβGAB (1)
4 The theory of KMS states does not require the strong assumptions in the time

development which we imposed: see e.g. [19].
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where " is the Fourier transformation on '̂(R). By setting B = I in (1)
and using standard techniques 5 it follows that a KMS state is a priori
time invariant6. If now it is further assumed7 that the KMS state φ
satisfies the condition

then8 it can be shown that Φφ is a cyclic vector for 770(21)' [22, 7]. There-
fore9 <7ψ)n = υ(φ), the set of all vector statesjrom JPΦ. And since Wψf
is convex [4; V.2.4 and V.1.2] we have ί?(φ)n = v$)) = co{v(φ)}n, the

set of all density matrix states on 710(91).
At this point we would like to mention how this example comple-

ments a certain result of Emch. It was pointed out in [8] that the time
average of a density matrix state need not be a density matrix state, i.e.
that if an initial state is ultraweakly continuous with respect to some
representation Π of 21, then its time average need not be ultraweakly
continuous with respect to 77. However, if ρ is a KMS state with8 trivial
left ideal then it follows from example 5 that the time average of a density
matrix state on 77ρ(3l) is uniquely defined and is a density matrix state
on 77ρ(2I).

4. Conclusion and Summary

We have shown above that the two classes of states, the weakly almost
periodic and the substates of any equilibrium state, are well behaved in
the sense that they exhibit ergodic behavior in the weak-* and norm
topologies respectively. The notion of substates is seen to be a natural
and useful noncommutative generalization of the probability density
states of Gibbs; in the case of thermal equilibrium4 it coincides with the
concept of density matrix states. While, therefore, our results apply to
those states of an abstract dynamical system often called "local per-
turbations" from thermal equilibrium, we will give some explicit results
in this direction in a future publication.
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indebtedness for helpful discussions with G. G. Emch, G. Gallavotti and H. J. F. Knops.

5 For example combine Prop. 4.6.4 with Example 4.11.1 and Thrm. 4.11.1 of [6].
6 See e.g. [21].
7 This assumption can be replaced by the stronger one that 2Ϊ is simple [22,7].
8 It was pointed out to the author that this assumption is unnecessary.
9 We note that such cyclicity is also necessary for this identification; see the corollary

of theorem G in [16].
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Appendix I

To each site i in the v-dimensional lattice Έ we associate a two-
dimensional complex Euclidean space Cf. Let F be the set of all finite
subsets of Έv partially ordered by inclusion. Then for each A eF, consider
the direct product space (X)(C? of Murray and von Neumann [9], and

ieΛ

let 9I(Λ) be defined as£f(X)(m. Then 91 is defined as the inductive limit
\ί 6 A /

of the C*-algebras 9l(/l) in the sense of Takeda [10]. To simplify notation
we identify 21 (Λ) with its image in 21 and also with GL(2N(Λ\ <C), where
N(Λ) is the number of sites in Λ. For example σl

x e 91 (i) £ 91 for the Pauli
matrix σx.

For ΛeF, Λ Φ 0 , define

HΛ = ~ Σ

where υ is a real function of the Euclidean distance \j\ such that v(0) = 0
and Σ ML/DI < °° Il: can be shown10 that the net {<xf(A)\ΛeF}9 where

has a norm limit, αf (4), in 91 for all A e 91 and ί e R The set {α, | ί e R}
forms a strongly continuous group of automorphisms of 91, so that
(9ί, ®, α) is an abstract dynamical system, called a generalized Ising model.

If a eZv, the natural mapping

where Λa = {b + a \ b e A}, extends to an automorphism of 91 denoted by
the same symbol τα. ρ 6 S is said to be translation invariant if ρ[τα(v4)]
= ρ(A) for all A e 91 and all a eZv.

Given a normalized vector ft in each Cf we denote by /) the vector
state on 9I(i) associated to fi9 and by (X)/) the product state on 91.

i

We should add that the above class of models is a very special case of
the Robinson spin models [23]. A recent generalization without some of
the special characteristics of Robinson's models is contained in [20].

Appendix II

Let C5(IR) be the C*-algebra of complex bounded continuous
functions on R We call the states on C£(R) "means". The means μt

defined for ί e R by

10 For this and other details concerning the time development of these models see [1].
See also [23].
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are needed below. For τ e R, let Rτ be the operator on C£(R) defined by

(Rτ/)(ί) = /(f + τ) for all /eCJ8(R).

A mean η is said to be invariant if

for all /eCB(R) and τ e R .

The set t̂ (R) of weakly almost periodic functions on R is defined as the
subset of C£(R) consisting of those / such that {#τ/|τeR} is con-
ditionally weakly compact. W(]R) is a norm closed subspace of C£(R)
[11], and from this it is easy to show that W(<S) is a norm closed subset
of S. It is an important theorem of Eberlein's [11] that all invariant
means η coincide on W(JK) and may be computed as

If η is a mean and (91, S, α) is an abstract dynamical system then for
ρ e S the functional ηρ on 91 defined by

ηρ(A) = η{ρ[$ (A)']} for all A e 91

is a state on 91 [12]. If η is an invariant mean then ί/ρ e S7.

Appendix III

Proof of Prop. 3. The proposition follows immediately from the
following two lemmas and the theorem of Eberlein referred to in Appen-
dix II.

Lemma 1. ηρ e co{αf*(ρ) 11eR}w for all ρ E ® and all means η.

Proof. From [3; pp. 1-2] we know that any mean η is the w*-limit of
some net of "finite means" mα, i.e. where the mα are elements of the con-
vex hull of the states μt9 t e R Therefore, for each A e 91

ηρ(A) = //{ρ[α (A)']} = limmα{ρ[α (A)]} = lΐmmΛρ(A).
α α

Since it is clear that mαρeco{α f*(ρ)|ίelR}, the proof is completed.

Lemma 2. If ρe<5 and ρ e co{α*(ρ) | ί £ R}w , then there exists a mean
η such that ρ = ηρ. Furthermore, if ρ e ©j then η can be chosen invariant.

Proof. We only prove the case ρ e Sj, the other case following from
obvious simplifications in the proof. From the form of ρ, there exists a
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net of states {ρy\yeG} such that ρy eco{α*(ρ)|ίeR}andρy-^»ρ. Since

[α*(ρy)] (A) = Qy\_*t(AK-τ*Q[*t(A}-\ = [α*(ρ)] (A) = ρ(A)

for all A e 91 and ί e 1R, we have that α^ρ^-y^ρ for all ί e R Now from
the form of ρr for each y e G there exist Py numbers ίM(y)eR and Py

numbers βn(γ) e [0, 1] such that

Py

Qy= Σ 0n(y)<(y)fe)
Λ = l

Consider the net of finite means (My, G) where

Note that Myρ = ρy. Since the set of means is w*-compact, there exists a
mean η and a subnet11 (Nδ, D) of (My, G) such that Nδ-^η. Furthermore,
defining the mean Rτη

f by:

'R for all

for all means η', we have that

RτNδ^Rτη for all τ e R .

Now we know that

My{ρla(A)-]}-^ρ(A) for all A e S ί .

This implies by the definition of subnet that

Nt{Qfo(A)-]}-j+Q(A) for all AeK.

Therefore also

R cNδ{ρ[θL(Ay]}-^ρ(A) for all AeW and τ e R .

Therefore (Rτη) (ρ) = ρ for all τ e R Defining ηm(f) = m\_R η(fj] where m
is any fixed invariant mean, all we need to show is that ηm is an invariant
mean since clearly ηmρ = ρ. But this is very easy and we omit the details.
q.e.d.

Constructions for Example 2. We need the following lemma.

Lemma 3. {α*(ρ) 1 1 E R} are all pure and translation invariant. Further-
more, for t Φ £', αf*(ρ) φ a*(ρ) implies that αf(ρ) is unitarily inequivalent
to α?(ρ).

Proof. The pureness and translation invariance are obvious. Now
assume that α*(ρ) is unitarily equivalent to oφ(ρ) for fixed ίΦί'. Then

11 For definitions and properties of nets and subnets, see e.g. [13].
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there exists a unitary u e 91 such that [αf (ρ)] (D) = [α,'(ρ)] (w*Dw) for all
D e 9ί [14]. Now given ε > 0 there exists a volume Λ e F and v4 e
such that

\\u-A\\<ε and

Then since for all B e 9Ϊ we have

|| u*Bu- A*BA\\ = \\u*B(u-A) + (u*-A*)BA\\ £

we have

Now given a volume A' e F, by a sufficient translation by a e Έ we can
get Λ'a disjoint from A. Using the fact that \\A*A — 1\\ < 3ε we have then

[τβ(B)] - [<x?(ρ)] [τβ(B)]| £ 6ε||B||

for all β e tyi(Λ'\ Therefore using the first part of the lemma,

for all B e SI(Λ'). Therefore α*(ρ) = off(ρ). q.e.d.
Now assume that there exists ρeco{α ί*(ρ)|ίeIR} ϊ ln®j. Then there

exists a sequence ρf e co{α(*(ρ)| t e R} such that QI-^Q. From the lemma
we can find a sequence (perhaps finite) of ίπe!R such that {αf*(ρ)|n
= 1,2,...} are pairwise unitarily inequivalent and ρt e co {α£ (ρ) | w
= 1,2, ...} for all i. Let {an} be a sequence (of the same cardinality) of
strictly positive numbers such that Σan = 1, and define

ρ0 - Σαwα*(ρ) .

Consider Θ-/I<(ρ) on ®J^Q)9 and Φ = {Φn\n = 1,2, ...} with
Φn = ]/a~nΦatn(ρ}. By the transitivity theorem [14] Φ is a cyclic vector for
φJIα?(ρ). From [15; p. 245], φUαf(ρ) is unitarily equivalent to J7ρo. Now
since ρ{ e coία^ρ)!^ = 1, 2, ...}, ρf is a vector state from φfία^ρ) for all i.
Therefore [16] ρ is also a vector state from φ#α^(ρ), and let Ψ be a cor-
responding vector. Clearly

for some sequence bπeB(j^α?(ρ)). Then ρ is a sum of inequivalent pure
states. Therefore ρ gives a type I representation since the commutant of
17̂ (91) is ®{λln} which is abelian. But ηρ has been computed [1] to be
®TRi9 and it is known [17] that this state gives a type II representation.

This contradiction shows that co{αf(ρ) 1 1 e IR}"n S/ = 0. From [4;
V.3.13], co{α*(ρ)| ί eR}" = co{α*(ρ)| t elR}w, so the demonstration is
complete.
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Constructions for Example 3. In [1] there is a construction of a state
ρ and a net {ρβ \ β e B} such that ρβ-^ρ and

= 0 for all βeB, (4)
^oo o

Qlut(σ0

x)~] = 1 for all ίeR. (5)

From [11] we can replace (4) by

£[limMe{e/,[o{((T2)]}]=0 for all jβef l (4')

where E [/] = /(O) for all / e C J5(R) and where {Ma \ α e A} is the net of
convex combinations of the operators {Rt ίelR} on C£(1R) with the
ordering: Mα ̂  Mβ if there exists y e ,4 such that Mβ = MαMr Now if
D e co {α, (σ°) | ί e 1R}" n ®7 it follows from [11] that

D^normlimM^σ^) (6)
α

where {M }̂ are the corresponding convex combinations of the {α, 1 1 E R}.
Note that

Therefore
1 - limρ[M'(σ°)] = li

a β

= limlimρ,MX) = limlim£[Me{e/,[o{ (σ?)]}]
p α p α

-0

where the third equality follows from (6). This contradiction demon-
strates the assertion.

Proof of Prop. 4. For ρ e <?(ρ) we know from Prop. 2 that there
exists Cρ e 1̂ (51)' such that

for all A e 9ί and t e R From [18] we know that there exists a vector Ψ in
J such that

¥ feco{t/*CβΦδ. |ίelR}' ln{ωe^|C7*ω = ω for all ίeR}. (7)

Therefore there exists a sequence Ψmeco{Ut*CρΦρ\t£lR} such that

liy-yjl-^0. (8)

It is clear from their form that the functionals on 2Ϊ:
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are states and in fact belong to co{α*(ρ)|ί elR}. From (8) it is easy to
show that ρm-£->ρ0 where

Since ® is norm closed, ρ0 e ©. From (7) we see that

for all ίeR This completes the case for ρe^(ρ). It follows from [11]
however that the set of all ρ e S such that there exists

ρeco{α*(ρ)|ίeIR} l'nSJ

is norm closed so that the first part of the proof is complete. To show that
ρ e ̂ (ρ)" we again consider two cases. The case where Q e £f(ρ) is obvious
since if ρ ̂  aρ then α* ρ 2g aρ so that φ ̂  αρ for any φ e co{αf(ρ)|ίelR}w*
and so ρ ̂  aρ. For the case ρ e ̂ (ρ)" we use lemma 2 to see that ρ = ηρ
for some invariant mean η. Then the result follows from the following
lemma. (Uniqueness follows trivially from § 11 of [18].)

Lemma 4. The mapping f/ .ρeS-^ρeSis continuous when ® is in
the norm topology, for any mean η.

Proof. Let ρm, ρ e ®, with ρm^ρ. Then

uniformly in t e 1R and in A e 2Cl5 the unit ball of 2Γ. Therefore

η{Qmfo(Aϊ]}-w*η{Q[χ(A) ] }

uniformly in A e 9^. Therefore ηρm-%r*ηQ- Q e.d.
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