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Causality in Non-Hausdorff Space-Times
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Abstract. Some general properties of completely separable, non-Hausdorff manifolds
are studied and the notion of a non-Hausdorff space-time is introduced. It is shown that
such a space-time must, under very general conditions, display a kind of causal anomaly.

1. Introduction

This paper is devoted to the study of a class of singularities exhibited
by solutions of Einstein's equations. In the recent literature, several
attempts of this sort appeared especially after the singularity theorems
had been proved (e.g., in [1,2]) stating that some pathological features
must be present without much more information as to the extent of this
pathology [3]. In some papers, such as [4, 5], various causal anomalies,
geodesic incompleteness, anomalous sources, etc., in a concrete family
of solutions are described. In other papers, one of these properties is
investigated quite generally, for example the causal geodesic incomplete-
ness [6] or incompleteness [7]. The problem to be solved here is to find
general behaviour of those solutions whose maximal analytic extension
is non-Hausdorff. At the first glance, these spaces seemed to be very
strange containing bifurcate geodesies, curves with more than one
endpoint, etc., [6]. Then, it has been shown that no such strangeness is
present in a non-Hausdorff extension of the Taub-NUT space [8,9].
Nevertheless, we shall see that all such space-times must be weakly
acausal (Theorem 4).

2. Structure of Non-Hausdorff Manifolds

Non-Hausdorff manifolds are defined for instance in [10], p. 2. We
consider here only a special case of them: the completely separable ones.
First some symbolics. A non-Hausdorff, completely separable, π-dimen-
sional, differentiable (Ck) manifold will be shortly said Y-manifold. In a
7-manifold W, there are at least two points p and q for which we find no
two open disjoint sets A and B such that p e A and qeB. This relation
of points p and q will be written p γq. If M and N are some subsets of
W, then YM denotes the set of all points x e M for which there is y e N
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such that x Y y. W as an index at Y will be usually omitted. The closure
(boundary) of a set M in a topological subspace N of W will be denoted
by MN(MN); similarly, W as an index here will not appear. The next
convention to make is the following: {p} denotes the set whose element
is p; {pi} is a sequence of points p{\ {C} is the set of all points lying on the
curve C, etc. In what follows, the notion of open submanifold will only
be used for connected open submanifolds. We introduce a sum of open
submanifolds 17, F of a manifold W: if NnV + 0, then the set UuV is
open and connected equipped by the differentiate structure induced by
that of W it is an open submanifold of W and will be denoted by U + V.

Every point of a 7-manifold W lies in an open submanifold which is
Hausdorff, because W is locally homeomorph to Rn. We define

Definition 1. An open submanifold V of a 7-manifold W is called
ίf-submanifold, if

1) V is Hausdorff,
2) Fis not a proper subset of any other open Hausdorff submanifold

of W.
Any H-submanifold of W is paracompact and metrizable ([11], pp.

79, 81).

Theorem 1. Let W be a Y-manifold and J f the system of all its H-sub-
manifolds. Then Jf is an open covering of W.

Proof. Let Ω denote the system of all open Hausdorff submanifolds
of W. If U G Ω, Ve Ω and U is a proper subset of V, we write U < V. For
arbitrary U, F, X from Ω it holds

1) if U < F, then F < U is false,
2) iίU<V, F<X, then U <X.
Therefore, Ω is partially-ordered by <. Let peW and UeΩ such

that p G U. {U} is a non-empty subset of Ω which is simply-ordered by <.
According to Maximal Principle ([11], p. 25), there is at least one simply-
ordered subset Π G Ω which contains U and is not a proper subset of any
other subset of Ω with these properties. Denote P = ]Γ U. The sum

UeΠ

makes sense, because every two elements of Π have a non-empty inter-
section. P is an open submanifold of W and must be Hausdorff: let
xeP, yeP be two arbitrary points then, there are MeΠ and NeΠ
such that XEM, yeN. But we have either M < N or N < M, so that
both points x and y lie in an open Hausdorff submanifold of PFand xγy
must be false. By construction, P is maximal and peP, q.e.d.1

Theorem 2. Let Vbe an open submanifold of a Y-manifold W. Necessary
and sufficient condition for V to be an H-submanifold of W is the relation
V=Ψ.

1 The relation" Y", the Definition 1 as well as the proof of Theorem 1 can be found
in [12].
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Proof. 1. Let V be an //-submanifold. If x e Yv, then there is yeV
such that xΎy; therefore, x is a limit point of V not lying in V and we
have Yv C F Let x e F have a neighbourhood 0 such that O n Y F = 0.
Then, there is an open Hausdorff submanifold U satisfying xsU CO.
ί / n F + 0, so the sum Vf=V+U makes sense and V<Vf, because
x φ V. Next, V is Hausdorff: suppose that there are two points p and q
in V with p Y q. p and q cannot then both lie in V or both lie in U; but it
is impossible, that, e.g., p e Fand qeU, too, because U does not contain
any point of Yv. Thus, F would not be maximal, ̂ contrary to the hypo-
thesis, hence x must__be a limit point of_FF, or VC Yv. But V is closed, so
that from YvcVcYv it follows V = Yv.

2. Let F be an open submanifold of W such that V = 7 F . Then
YvCV and F must be Hausdorff or else there would be a point x e F ,
x G 7 F , and this implies Vc\ V φ 0. Let F' be an open submanifold of W
such that F < V. Then the boundary of F i n J ^ is not empty; it is the set
Vn V. Choose peVnV; according to V = Yv, in every neighbourhood
of p there are points of Yv. But we can find a neighborhood of p lying
entirely in V. Hence, V cannot be Hausdorff and F is maximal, q.e.d.

It can easily be seen that every point of Y lies on the boundary of
some //-submanifold. Another trivial result is the equivalence of the
following two claims

1) pΎq.
2) There is a sequence of points converging to both p and q.
A more difficult question is the following: let p rq and {pj be a

sequence of points converging to p. What conditions must be imposed
on {pj, in order that it converges also to ql Trying to answer this, we
learn about importance of the //-manifolds boundary shape. Therefore,
we are led to the abbreviation:

Definition 2. Let W be a 7-manifold and F one of its //-submanifolds.
Then V is called a 7-boundary in W.

We need the following

Definition 3. Let FFbe a manifold and 0 an open subset in W. We say
that 0 is simple at a point p e 0, if for every open set U containing p
there is an open set U' containing p and contained in U such that Ufn0
is connected.

Theorem 3. Let W be a Y-manifold, and U and V its H-submanifolds
such that Z = Un V ή= 0, and p e Y^. Suppose Zu is simple at p. Then the
following claims are equivalent:

1) Every sequence of points p{ e Z converging to p has a limit point
in F.

2) Y$ is compact.



78 P. Hajicek:

Proof. 1) 7/ is non-empty, because p e Y%. We assume that Y$ is
not compact. Then there is a sequence of points q{ e Yβ which has no
limit point in Y$: Fis metrizable, therefore the compactness is equivalent
to the countable compactness. Let us denote by ρ a possible metrics on F,
let {Kt} be a sequence of open spheres Kt with the radius 1/ί as measured
by ρ and centre qi9 and {£/.} be a sequence of neighbourhoods of p con-
verging to p. Because of p Y qi9 Kt-n t/f is non-empty, and we can choose
a point p^eK^nC^. The sequence {pj converges to p by construction.
Suppose that it has a limit point q e V. Let Op be a neighbourhood of p
and Og a neighbourhood of q. There is a spherical neighbourhood K\
of centre q and radius r such that KqCθq. Choose K2 with centre q and
radius r/2. As q is a limit point of {pj, there is a subsequence {p/k} such
that for every k> Nλ we have p ί k e X^. Next, there is N2 such that ik > 2/r
for every k>N2. But then the point piN +N lies in X^ and ρ(qiN +N ,
ftWl + W 2 ) < r A hence «,Wl + Wa e θ β and Ô  is a neighbourhood of qiN[ + ir\
But then O g n O p Φ 0 and because they were arbitrary, we have pΎq.
On the other hand, q is a limit point of {gj, contrary to the hypothesis
that {qt} has no limit point in Y$.

2) Now, let Yβ be compact. Suppose that every point xeYβ has a
neighbourhood Ox C F whose closure Oj is compact and contains no
point of {pf}. We can choose some finite number of Ox covering Y$,

denote these by Oi9 i = ί, ...,N. lϊ 0 = \J Oi9 then Ov is compact, so
i = l

that Ov is compact, too, because Fis Hausdorff. Next, choose a sequence
{t/J of neighbourhoods of p in U converging to p such that pf e t/f and
ZnUi is connected for every ί. UtnZ is also locally connected and
locally compact, because it is a manifold. As a Hausdorff submanifold
it is metrizable. All these properties imply that l/f n Z is arcwise connected
([11], p. 115). Let q be a point of 7/ and {FJ a sequence of neighbour-
hoods of q converging to q. Choose ^ 6 C/f n Ff then q^V^Z and there
is an arc Λ,f with endpoints pt and gt lying in U^Z. We find ΛΓ such that
qte0 for every i > N'. Therefore, λt must cut Ov for every i > N' in a
point, say, η . Let r be a limit point of the sequence {rj on Ov. This
sequence converges to p because of {AJ C L/f. But then r Yp, since r e F,
contrary to O F n Y£ = 0.

If Zu is not simple at p, 1) still implies 2), but the converse is not
necessarily true.

Example. Let M' be the two-dimensional Minkowski space-time
without the origin and M' be the universal covering space of M'. The
coordinates on M' they are x,y; ds2 = dx2 — dy2; on M' are ξ,η,n,
where n is an integer (because the first homotopy group of M' is iso-
morphic to Z); ds2 = dξ2-dη2. In M r, let N' be defined by N' = M'
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- {P I yip) = 0, x(p) > 0}, and in M', let iV' be defined by

N' = {psM'\ n(p) = 0} - {p e M ' | >/(p) = 0, £(p)>0}.

Then the map φ\N'-+N' defined by

n = 0, ξ = x, η = y (1)

is one-to-one and isometry. Identifying the spaces M' and M' along the
open sets N' and N' according to (1), we get a two-dimensional Y-mani-
fold M. M' and M' are the only if-submanifolds of M. Boundary of M'
in M consists of two segments n = 0, ξ > 0, η = 0, and w = 1, ξ > 0, ^ = 0,
boundary of M' in M is the segment x > 0, y = 0; the latter is not simple
in any of its points. Now, delete the point p'2 defined by ξ(p'2) = 1,
η(p2) = 0, n(p'2) = 1 from Mf. The sequence of points with coordinates
xf = 1, yf = — 1/z converges in M' to px defined by x(px) = 1, 3;^) = 0,
but does not converge in M' — {/?'2}? though the set Yst'-{p'2}

ιs compact:
it contains just one point p[ defined by <!;(pΊ) = l, η(p[) = 0, n(pΊ) = O.

3. Causality in F-space-times

In this section, we specialize our analysis to four-dimensional
Y-manifolds of differentiability class (C2, C 4 piecewise) bearing a
Lorentzian metric of signature —2 and differentiability class (C1, C 3

piecewise), which will be shortly called Y-space-times.
A dominant role will be played by curves. For the sake of con-

venience, we shall understand here under a curve C a smooth map C of
one of the following four types of interval into a Y-manifold W: [α, b],
(a, b), [a, b), (a, fr]9 where a, b are reals. The curve is time-like (causal), if
its tangent vector at every point as well as its limits as t-+a or t-+b is
time-like (time-like or light-like).

Definition 4. Bifurcate curve (C1? C 2 , g) in a Y-manifold Wis a pair of
curves Cγ : [α, b] -• FT, C 2 : [β, b~\ -• FT, and a number # such that
a<g^b, d ( ί ) = C2(ί) for α ̂  ί < ^ and C1([_g,b-])nC2(lg, 5]) - 0.

It is easily seen that such curves can only exist in a non-Hausdorff
space. Then, if we have some system of ordinary differential equations
which has locally a unique solution for a given set of initial data (e.g.,
the geodesic equations with initial point and velocity, as well as other
classical dynamical equations), it is immediate that this system cannot
have two different solutions for this data, unless these solutions form a
bifurcate curve. Therefore, in view of the classical causality conception
coinciding with determinism it is sensible to rule out the bifurcate curves.
Our main result is
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Theorem 4. Let M be a Yspace-tίme whose Y-boundaries are all
three-dimensional hypersurfaces (not necessarily smooth). Then the
following two requirements are not compatible:

ί) There are no time-like bifurcate curves with bounded acceleration
in M.

2) M is strongly causal.

To prove the Theorem 4, we need the following Lemmas.

Lemma 1. There is a bifurcate curve in a Y-space-time M, if and only
if there is a pair Lζ V of H-submanifolds of M with a non-empty inter-
section Z = UnV, and a curve C: [0,1)->Z that has no endpoint in Z,
but has an endpoint in U as well as in V.

Proof. If (C1,C2,g) is a bifurcate curve in M, then C1(g)rC2(g).
Choose H-submanifolds U and Vsuch that Cx(g) e U, C2(g) e F Cx and
C2 are continuous, so there is δ > 0 such that Cx ({g — δ,g + δ))c U,
C2((g-δ,g + δj)CV. Denote C(t) = C1(g-δ + δt) = C2(g-δ + δt) for
t e [0,1). C lies in Z and has endpoints C1 (g) in U,C2(g) in V. If C has an
endpoint peZ, then pΎ C1(g), pΎ C2(g), so that pφU, pφV, contrary
to peZ= UnV.

2) The other way round is trivial.

Lemma 2. Let V be a Hausdorff space-time and C : [0, l)-> V a one-to-
one curve. Then C has an endpoint p in V such that pφ {C},if and only if
the set {C}V—{C} consists of just one point.

Proof. Suppose that C has an endpoint in F, so that we have a curve
C : [0,1] -• V, C(t) = C(t) for t e [0,1). C is continuous, hence for every
neighbourhood O of p = C'(l) there is δ > 0 such that C'((l - δ, 1]) C O.
Only one point of this property can exist in V, because V is Hausdorff.
Furthermore, the set {C} is closed in V. p cannot lie in {C}. Therefore,
{C"Γ-{C}_={p}.

2) Let {C}v - {C} = {p}. Choose a sequence {OJ of neighbourhoods
of p converging to p, and in each Ot a point pt e Otn{C}. As C is one-to-
one, the sequence {pj defines uniquely the sequence {ίj such that
C(ti) = pt. {ίf} has no limit point on [0,1), because {C(tt)} converges to
p and Fis Hausdorff; hence, there is a subsequence {ί'J converging to 1.
Now, suppose that there is a neighbourhood O of p, for which we never
find δ > 0 such that C((l - δ, 1)) C O. This means that for every t\ there is
some 5ί51[ < st < 1, such that C(st) φ O lim st = ί. Choose a neighbourhood

i-*oo

B of p that has compact closure in Fand W CO. There is Â  such that for
any i > N the curve Ct: [ί|, sf] -> F defined by Cf(ί) = C(ί) for t e [ί|, sf]
has its endpoint Q(ί ) in B; its endpoint C ^ ) cannot lie in O, so we can
choose qie{Ci}nBv. But 5 F is compact and the sequence {qt} has at
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least one limit point on Bv, say, q. On the other hand, qt e {C}, hence we
have unique ut such that C(ui) = qi. By construction, t[<Ui<si9 thus,
lim ut = 1 and q e {C]v. But q φ {C} and qφp, contrary to the hypothesis.

Lemma 3. Let V be a Hausdorff space-time and C :[O,1)^>V be a
time-like curve such that the set {C}v — {C} contains more that one point.
Then V is not strongly causal.

Proof. Choose pe{C}v-{C}, qe{C}v-{C}, p + q, two disjoint
neighbourhoods Op, Oq of p and q, and an arbitrary neighbourhood Up

of p such that UpCθp. There is a point pιe{C}nUp and a unique number
tγ such that C(tγ) = p x. If C((ί1? l ) ) n θ β = 0, then g would not be a limit
point of {C} not lying on C, and we find, therefore, t2 > tx such that
C(ί2) 6 O r If C((ί2, l))n Up = 0, then p φ {C}v - {C}, hence there is t3 > t2

such that C(ί 3)e C/p. But then the time-like curve C goes through Up

more that once, exactly what is forbidden by the condition of strong
causality.

Proof of the Theorem 4: Suppose that 7-space-time M satisfies the
condition of Theorem 4 and the requirements 1) and 2). M has at least
two /7-submanifolds U and V with non-empty intersection Z. Choose
a smooth time-like curve C : [0, 2] -> U 2 with bounded acceleration such
that C| ( 0 1 } lies in Z and C(l) = peZ. Let (7p be a coordinate neighbour-
hood of p with coordinates x°, x1, x2, x3. Next, choose a three-parameter
congruence of time-like curves Γ(ί; u1, u2, u3) in U satisfying:

1) There is ε > 0 such that

d(t,u\u2,u3)

for 0 < t < 2 and (u1)2 + (u2)2 + (ι/3)2 < ε2.
2) Γ(ί;0,0,0) = C(ί).
3) There is δ > 0 and a real X such that

δ < |Det(yα/?)|, |yβ/ϊ| < K, |αj < K, \ωaβ\ < K, \KJ < K3

for every α, β = 1,2, 3 and 0 < ί < 2, (w1)2 + (w2)2 + {u3)2 < ε2 all functions
yaβ, aa9 ωaβ, Kaβ are continuous for α, β = 1,2, 3.

Denote by X the component of Z containing C([0,1)). Without any
loss of generality, we may assume:

i) C((l, 2]) C U - Xu. If not, then there certainly is a curve, C, say, of
Γ having a non-empty intersection with X and U — Xu, thus we can
choose C instead of C, introduce a proper parameter on it and find ε.

2 C must be one-to-one, because it is time-like and causality holds throughout U.
3 Here yaβ is the standard spatial metric, αα is the curvature vector, ωaβ is the space

vortex tensor and Kaβ is the Born tensor of the congruence Γ, see, e.g. [13,14]. These
magnitudes behave like scalars under the transformation of xf and like tensors under
those of wα.

6 Commun. math. Phys , Vol. 21
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ii) The closure in U of the set of all points Γ(0; u1, u2, u3), when
(u1)2 + (u2)2 + (u3)2 < ε2, lies in X and every curve of Γ cuts Xu just once
(it is sufficient to choose ε properly and introduce a new parameter, if this
is not the case).

iii) There is a point p' e V such that p' Y p. If not, then there are points
of U in every neighbourhood of p, for which such points of V must exist
(see Theorem 2), and we had only to choose another curve of Γ instead
ofC.

iv) There is a sequence of points pi e X converging to both p and p':
We know that there certainly is a sequence of points in Z with this
property. If only a finite number of points of every such sequence lies in
X, then Z must have one more component, Xί, say, such that p lies on
Xf. There cannot be more than two such components, or else their
common boundary in p could not be a hypersurface. Then, every sequence
{Pi} has an infinite number of points in Xί and we can perform our proof
with X1 instead of X.

Now, let us introduce the parameter s in place of t such that s ^ 0,
5 = 0 only if t = 0, and s measures the proper time along each curve of Γ.
As each curve of Γ cuts Xu just once and Xu is a hypersurface, we have
on Xu s = /(w\ w2, u3), where / is a continuous function.

We choose a normal coordinate neighbourhood Vp, of p' in Fthat is
simultaneously a local causality neighbourhood (see, e.g. [1]); denote the
coordinates yo,y\y2,y3 {yo(p') = y1{pf) = y2(p') = y3(pf) = fy' There is a
coordinate ball B defined by (y0)2 + (y1)2 + (y2)2 + (y3)2 < r2 such that
Bv is compact, lies in Vp,, and has no point in common with Γ(0; u1, u2, u3)
for all (u1)2 + (u2)2 + (u3)2 < ε2 and with {C | X}, where C | X denotes that
part of the curve C lying in X. Such a choice of B is always possible,
because C \ X has no limit point in V — Z, or else V would not be strongly
causal according to the Lemmas 1, 2, and 3.

There is N such that pi e B and simultaneously lies on some curve
of Γ, Q, say, for every ί > N. There must be a point, denote it by qi9 where
the curve Q cuts Bv for the first time, if i > N. Next, every Q | X must
leave W \ if all points of Ct | X for 5 > s(^f) lie in 5^, then there would
have to be at least one limit point of Q | X in W — X, because Bv is
compact and the set Ci{\^s(q^f(u1(q^u(q^u3(qi)))) is closed in X but
not compact; applying the Lemmas 1, 2, and 3, we should not find, then,
Fto be strongly causal. Thus, every Ci \ X has a second intersection with
Bv, say, rt. rt is the last intersection of Cf | X with IP', because Vq is a local
causality neighbourhood. Choose a subsequence {CJ | X} such that the
corresponding subsequences {g } and {rj } converge to some points q and
r on I?F (in fact, we have {Ct | X} = {Ct | X}, see below). It holds

/(K 1 (pj), t/2(p;), t/3(p;)) > S(rί) > s(pί) > sfe),
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therefore
^ Q) ^ U

ί —• o o i —*• o o i —• o o

But lim s(g ) < /(0,0,0) is impossible, or else the point r lies on C | X,
ί->oo

contrary to the choice of B. Hence

lim s(rί) = lim φj) = lim sfej) = /(0,0,0). (2)
i -> oo i -+ oo ΐ > ooi -> oo

We denote the set of all points lying on the curves of Γ by {Γ}. The
set {Γ}nB is open and the four functions y°, M1, W2, W3 are well defined
and differentiable on it. They can be chosen as coordinates there: the
sets y° = Const, are three-dimensional smooth space-like hypersurfaces,
the curves u1 = Const., u2 = Const., u3 = Const, form a regular three-
parameter time-like congruence and each of them intersects each hyper-
surface y° = Const, only once, because it goes only once through Vp>.
The boundary of the set {Γ}r\B in V consists of two disjoint sets
{Γ} r\Bv and ({71v - {Γ^nB1". The coordinate system (j/°, ua) can easily
be extended to the points of {Γ}nBv. Let qe({Γ}v- {Γ^nϊF and
{gj a sequence of points of {Γ}nB converging to q. Let the curve of Γ
going through qt be denoted by Ct. From the conditions 3)x 2 5 it follows
that the curves Ct \ Bv converge to a curve λ going through q. Thus, if
{qj} is another point sequence in {Γ}nB converging to q, then the cor-
responding limit curve is identical to λ: the sequence {q"} defined by
Ά>2k = ^'?2k-i=Ά'k must give a curve. The curve λ is smooth in view
of 3)3 4 and as a limit curve of a sequence of time-like curves is causal.
It intersects, therefore, each hypersurface y° = Const, at most once, and
we can extend the coordinate system (y°, wα) also in the points of
7 ^

Let gtj be the components of the metric tensor in the coordinates
(y°, ua). According to (2) #00(0,0,0,0) - 0 must hold. Further, #0α(0,0,0,0)
is bounded for all α, non-null for at least one α, and #^(0,0,0,0) is bounded
for all α, /?, or else the system (j/°, ua) would not be regular in p'. The
functions gij(y0, ua) are continuous in {Γ}nBv. As (y°, ua) are co-moving
coordinates (see, e.g., [14]), we have

ϊaβ -θocβ
#00

and this implies
limγaβ(0,u\u2,u3)

contrary to 3)2. "3Ho
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