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Abstract. The parity non conserving interaction of a neutral vector meson with fermions
is considered as a mathematical model suitable for investigating divergence problems of
the weak interactions. Through the Stiickelberg formalism and a canonical transformation
the interaction is converted into an exponential form. The exponential interaction is
studied, in the second order of perturbation theory, through the method of analytic re-
normalisation. Generalised amplitudes are introduced as localizable distributions de-
pending on auxiliary complex parameters λ. It is shown that the distributions possess a
nonisolated singularity at the physical point λ0. A method is developed for discarding the
singularity thereby obtaining the physical amplitudes as localizable distributions which
display a non-analytic dependence on the coupling constant.

I. Introduction

In this paper we study the problem of regularising the exponential
interaction of scalar fields in perturbation theory by taking up the analytic
renormalisation approach of Speer [1] in a wider distribution theoretic
framework. In doing so one meets new technical problems characteristic
of a local unrenormalisable theory. We shall study these problems in the
second order of perturbation theory (in the exponential interaction).
We will show that the earlier results of Volkov [2] and Okubo [3] arise
naturally* in this framework.

The problem of regularising the exponential interaction is not devoid
of physical interest. Our specific interest stems from the earlier work of
Lee [6], who showed, by exploiting the Stuckelberg formalism and per-
forming a canonical transformation, that the study of the short distance
singularities of the (unrenormalisable) intermediate boson model of
weak interaction could be reduced to a study of the iterations of the
exponential interaction in perturbation theory. Lee attempted to sum the
leading and next to leading singularities of the individual Feynman

1 Alternative derivations for the propagator (see text) as a distribution have been
obtained, recently and independently, by the authors of Ref. [4, 5].
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graphs which were then successively removed by counter terms. We shall
adopt a different and rigorous approach. This is possible because of two
facts. Firstly, it is known [7] that there is an intrinsic ambiguity in the
definition of formal perturbation theory T-products which is not resolved
by unitarity and locality. However, this ambiguity may be exploited
to obtain regularised T-products as distributions (generalised functions)
and the finite renormalisation arbitrariness incorporated in the form of
distributions of point support which have an interpretation as counter
terms in the Lagrangian [7]. Secondly, from the work of Jaffe [8], it is
known that the exponential interaction is strictly localizable and thus
the regularisation problem is well posed in an appropriate generalised
function framework.

In order to keep the physical motivation in mind we review in Section II
Lee's formulation of the theory of neutral vector mesons with a parity
non-conserving interaction with massive fermions. By employing a
generalised Stϋckelberg formalism in which the masses of the vector
and scalar mesons are not constrained to be equal and performing a
canonical transformation one is led to the study of exponential inter-
actions of massless scalar particles. The regularisation problem is techni-
cally simpler for the massless case. In Section III we give a definition of the
formal two point T-products (super propagator) 2±(x) as a generalised
function. For this purpose we utilise as our fundamental test function
space the Gelfand-Shilov space [9] Sβ (denoted as <% in the following)
with an appropriate restriction of β for strict localizability. Equivalently
one may use Jaffe's space ^. The spectral function is shown to be a
generalised function in ^', where <€ is the space obtained on Fourier
transformation. We then introduce a generalised function @±(λ;x)
with an appropriate restriction on the complex parameter λ. The Fourier
transform 9)±{λ, p) is shown to possess a non-isolated singularity in λ
in the neighbourhood of the physical point λ = 0. A method is given to
discard the singularity and a definition is obtained of 2 ± (p) at the physical
point λ = 0 as a generalised function in Φ. The configuration space super
propagator 2±(x) is defined in <€' through Fourier transformation.

The final result, which displays a logarithmic dependence on the
coupling constant, agrees with the earlier result of Okubo [3] and
Volkov [2] which is seen to have a precise mathematical significance
in local field theory. In Section IV we present the extension of this procedure
to renormalisation of loop diagrams. We treat a simple case in detail,
leaving the discussion of the general case to a future paper. In Section V
we comment on the finite renormalisation ambiguity, its possible elimina-
tion by the Lehmann-Pohlmeyer minimum singularity hypothesis [4]
and on further problems concerning analytic renormalisation in higher
orders.
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Section II. The Model Lagrangian

We consider the parity nonconserving interaction of neutral vector
mesons of mass Mw with fermions of mass m.

&int = 9 hK (1)
where

Jμ = Niyμ(ί+y5)N (2)

and JV, and Wμ represent the fermion and spin 1 neutral vector boson
fields. The degrees of infinity in perturbation theory, as revealed by
powercounting, are the same as those of a more realistic model of the
weak interactions with charged currents [6]. In order to facilitate the
analysis of the ultraviolet divergences in this model Lee [6] introduced
the Stϋckelberg formalism for the vector field. Lee also developed (see
Appendix of Ref. [6]) a generalised Stϋckelberg formalism in which the
mass Mw of the vector particle is not constrained to be equal to the mass
μ of the auxiliary scalar particle. As we will see this general formalism
offers a number of technical advantages if we evaluate graphs in the
limit μ-*0. This limit is to be taken on the Feynman graphs.

As usual we make the decomposition:

The total Lagrangian is:

^ = ̂ 0 + i? i n t (4)

where i? i n t is given by Eq. (1), and

^o = -N(yμdμ + m)N - \{dμφγ - dvφ,f-%ξ(dvφΎf - WwΦl

-ί(dγθf-l2μ2θ2 { )

where

μ and θ are spin one and zero fields with masses Mw and μ respectively.
From the equations of motion for the φμ and θ fields it follows that

O. (7)

Eq. (7) is always true. Thus, as noted by Lee [6], all radiation processes
involving the spin 0 part of φμ are compensated by processes involving
the θ fields. The rule for a unitary S-matrix is to restrict ourselves to a
sector in which there are no θ external lines and no spin 0 part in the
ώn external lines.
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In perturbation theory we will need the covariant free propagators
for the φμ and θ fields.

The free field commutator functions (Pauli-Jordan functions) are:

[β{x),θ{x')] = iΔ(x-x''9μ) (8)
and

where Δ(x — x'\μ) is the Pauli-Jordan function for the scalar field with
mass μ. In the limit μ = Mw we recover the conventional expressions of
the usual Stuckelberg formalism. It is easy to check that (8) and (9)
are consistent with the equations of motion. Furthermore,

which implies consistency with the subsidiary condition. In the μ-»0
limit, in which we will compute Feynman graphs, the covariant free
field propagators in momentum space are:

f ^ (11)
p —10

Eq. (12) is reminiscent of the "Landau gauge" in contrast to the usual
Stuckelberg vector propagator which is in the "Feynman gauge".

We now make the unitary transformation

N(x). (13)

Substituting in the Lagrangian (4) we obtain, in the new basis,

^ = - i (8μφv - dvφμf - H(3V0V)2 - \mlφl - \(dvθf - \μ2θ2

-ψyμdμ\p + gjμφμ-mψ exp U~y5θ\ ψ
L ^ J

where

Separating out the fermion mass term, the interaction Lagrangian to
be used in perturbation theory is:

L \ ^ ] \ (15)
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The Lagrangians (1) and (15) will lead to the same on mass shell matrix
elements since the two formulations are related by a canonical trans-
formation. In any given order of perturbation theory the most divergent
piece due to the pμpv term in the W propagator can be traced to the ex-
ponential interaction in (15). The most divergent piece in any given
process can be traced to θ graphs with all θ lines emitted and absorbed
at the same point, and it can be removed from all processes by a single
mass renormalisation [6]. Alternatively, in terms of the interaction
Lagrangian (15), these may be removed by Wick ordering the Lagrangian
(15). We shall therefore take as our interaction Lagrangian

:. (16)
L \ \ w I I \

Introducing the notations:

Λ± = ̂ p- (17)
and

Θ±= :(exp(±iκ i0)~l):
where

(16) is conveniently written in the form

ψ:Θ++:ψΛ_ψ:Θ-) (18)

We will iterate S£ixA to generate the perturbation series. The following
time ordered products enter our analysis:

(T(Θ±(x)Θ±(y)))0^Qχp{-κDF(x-y))-U (19a)

x-y))-ί, (19b)

where the righthand sides are obtained formally by Dyson-Wick re-
duction. DF(x — y) is the free propagator of a scalar particle. Because of
the freedom of the generalised Stϋckelberg formalism, we can specialise
to massless scalar particles.

We introduce the notation:

9 ± (x) - exp( ± κ DF{x)) - 1. (20)

It is not difficult to show that an arbitrary time ordered product
(Γ(Θ ± (x / ) . . . Θ+ (xn) ...)>0 involving any number of fields can be
represented in terms of products of ^ ( x ) * in (20). However, the ex-
pression (20) for ̂ ( x ) * is purely formal and it is necessary to obtain a
more precise definition as a generalised function. One may then proceed
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to the analysis of more complicated matrix elements. Our method will
consist first in introducing generalised Feynman amplitudes [1]. These
are generalised functions, depending on parameters /, defined on a
fundamental space of test functions consistent with strict localizability.
The physical amplitudes will then be obtained through analytic re-
gularisation [10]. The next section is devoted first to defining the funda-
mental space and elucidating some of its essential properties. Subsequently
the analytic method of obtaining a definition of ®±(x) as a generalised
function is studied.

Section III. Analytic Regularisation

A. Test Function Spaces

In order to motivate our choice of test function spaces let us consider
the spectral function of the Green's function (20). On using the phase
space representation of N massless particles we get:

ρ±(p2) is not a tempered distribution. However, it may be defined as a
generalised function on certain test function spaces of type S in which the
condition of strict localizability may be satisfied. This condition implies
that there should exist non zero test functions of compact support in this
space. Constantinescu [11] has shown that spaces of type S may be used,
as an alternative to the Jaffe space [8] to formulate strictly local field
theories and these spaces are sufficient for our purpose2. In particular
we will use the test function space Sβ [9]. However, the methods and
proofs of this paper are also valid for Jaffe's space and the reader may
interpret freely the space ^ (subsequently defined) as such. For con-
venience we state some relevant definitions.

We recall that the space SβiR1), where β is a non-negative number,
consists of all test functions φ(p) which are infinitely differentiable and
satisfy the inequalities

\pkD{q)φ(p)\^CqA
kkkβ (22)

where the constants A and C depend on φ.
An important restriction on the growths of the functions φ(p) and

its derivatives follows [9] from the inequality (22),

(23)

I am indebted to Professor J. G. Taylor for a helpful discussion.
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where

b = β/eAι/β.

Its extension to φ(p\ pεRn, is:

\D(q) φ(p)\ ύ Cq. exp[-ί>(|p 1 | 1 / ' + ••• + IpJ1'")] . (24)

The spaces Sβ are reciprocal in the sense that under Fourier transforms
they pass into each other. We have [9]

= Sβ (25)

and the Fourier operator is continuous in the topology of this space.
The configuration space test functions in Sβ satisfy the conditions

\xkD{q)φ{x)\SCqB
qqqβ (26)

where the constants B, C depend on φ.
The topology of the space Sβ is studied in Ref. [9] where it is shown

that it is a union of complete countably normed spaced with compatible
norms.

The condition of strict localizability i.e. the condition that there exist
non-zero configuration space test functions of compact support, can be
satisfied with a restriction on β. Indeed we have the

Theorem. The space Sβ(xεRn) has at least one non-zero test function
of compact support provided β>\.

The proof of this theorem follows from the considerations of Gelfand
and Shilov [9] and we shall not elaborate on it here.

Furthermore, on the basis of considerations analogous to that of
Ref. [8], the intersection Sβn^(β > 1) is dense in 3) where Q) is the space
of all infinitely differentiable functions of compact support. In the follow-
ing we introduce the notation # ( = Sβ, β>\) for the class of configuration
space test functions and $ ( = Sβ, β > 1) for the class of momentum space
test functions. <€' and # ' denote the corresponding dual spaces of
generalised functions.

It remains for us to check that the spectral functions ρ±{p2) exist
as generalised functions in (€'. Now the convergence of the series (21)
in the (weak) topology of & is assured if we majorise using (24) and take
β < §. Then g±(p2) ε %>' by virtue of completeness of %?'.

B. Analytic Approach to Regularisation

We now turn to the problem of giving distribution theoretic meaning
to the two point function (20) of Section II. We start with the formal
expression

3)±(x)=exp{±κDF(x))-l (27)
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where .

DF(x)=-τ^r(x2 + ioΓ1 (28)

is the propagator of a massless particle [7]. We use the metric x2 — x2 — xl.
In order to give meaning to (27) we shall consider a class of functional

in <€' depending on a complex parameter λ [10]. Let us write

^ ~1 (29)DF(λ,x)=Ύ(x

4π
and

2>± (λ, x) = exp[± κ DF(λ, x)] - 1 (30)
where we hold

0 < R e λ < l , I n U > 0 (31)

(x2 + io)λ~ι are tempered distributions meromorphic in λ [10] with poles
a t λ = - l - f c ( f c = 0,l,2,...).

Now the series of tempered distributions

* + '#°-" < 3 2 )

converges in #'. From the continuity of the Fourier operator it follows
that the Fourier transform of (30) may be constructed by taking the
Four transform of (32) term by term. We then obtain by using standard
results [10]

(33)

y v 4 * / .Γ(2-(1-A)N) m _ 2

h r(N+i) m-λ)N) {p l0)

{λ, p) exists as a generalised function in <$'.
In the following we consider the restricted domain

> 0 } . (34)

In the region Λ, ^±(λ,p) is analytic. However, the physical point λ = 0
is a singular point due to the poles of the numerator Γ functions in the

k + 2
series (33). The JVth term has poles at λ= 1 , where k is any

non-negative integer. Due to the infinite set of terms in the series, all
these poles accumulate at λ = 0 to give a non-isolated singularity at that
point. Thus the wellknown method [1, 10] of extracting a regular part
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as a distribution by taking the constant term in the Laurent expansion
in λ, which is valid for meromorphic distributions, cannot be applied here.
We shall develop a new procedure.

In order to extract a regular part we first write (33) in the form of an
integral representation. We do this by summing the series by Watson's
method. We get

/Cosπz\ ( κ

An2

2i / SinπzSinπ(l-λ)z
(35)

with λ ε A as in (34).

By smearing (35) with a test function from <% we find that the integral
is meaningful in the sense of generalised functions3. The integrand in (35)
is continuous in z(λεA), zεΓ. The contour Γ(\lmz\<a) runs counter-
clockwise and encloses the positive real axis as shown in Fig. 1.

Fig. 1. The contour Γ in the Z plane

We now attempt to analytically continue 3>(λ,p) in λ from the
region A, where it is regular, to λ = 0.

In the integrand of (35) there are two sets of poles in the z plane.
There are the fixed poles arising from sinπz, and poles arising from
Sinπ(l — ?,)z, which move with λ. The latter poles are located at

z = zn = n{l-λ)'1 , n = 2,3, . . . .

With λ εA we have 0 < Reλ < 1 and 1 > Ini/l > a > 0. Thus the poles at
zn are in the upper quadrant of the right half z plane exterior to the
contour Γ. We now continue in λ towards λ = 0. The motion of the poles
at zn(λ) is shown in Fig. 2.

It is evident that in the process of continuation a pinch singularity
is generated at λ = 0, since the contour gets trapped between the zn

poles and the fixed poles at the positive integers and one cannot escape
the trap by contour deformation. We now turn to extracting the singularity.

3 See Appendix 2, p. 137 of Ref. [10].
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Fig. 2. Motion of poles at Zn(λ) in the Z plane

We can rewrite (35) by deforming the contour Γ so that the zn poles
are now enclosed by it and using Cauchy's theorem to compute the dis-
continuity.

W e ° b t a m § ± (λ, p) = $i (λ, p) + ΔD± (λ, p) (36)
where

/CosπzW κ
1 \2

Sinπz Sinπ(l — λ)z
(37)

and the discontinuity is given by

πn

(38)

Fig. 3. The contour Γ in the Z-plane

We hold λεΛ where A is the region o<Reλ< 1 and a>ImA>0 and
the contour Γ in the definition (37) of 2$0*(λ,p) is shown in Fig. 3.

S(^,}(Λ, p) is analytic in λ at λ = 0 and may be continued to that point.
On the other hand AD±(Λ, p) contains a non-isolated singularity at λ = 0.



Analytic Renormalisation 261

We now define the generalised function 2 ± (/,, p) at λ — 0 by discarding
the non-meromorphic discontinuity ΔD±(λ,p)\

# ± ( p ) = Anal. Cont 3>ϊR)(λ,p). (39)

We have 9)± (/?) β # ' since &fR){λ, p) ε & and is analytic at λ = 0. Finally,
evaluating (39) by using Cauchy's theorem we get

pι-io \p2 I nf2 Γ(n - 1) Γ(n) Γ(« + 1)

(40)

where

(^)'. (41)

The imaginary part of (40) is ρ± (p2) which was discussed as a generalised
function in <$' in subsection A. The configuration space propagator
Q)± (x) is now defined as the Fourier transform of Q)± (p) and is a generalised
function in cβ'.

The result (40) had been obtained earlier by heuristic methods by
Volkov [2] and Okubo [3]. A special feature is the emergence of a
logarithmic dependence on the coupling constant "g" and consequent
lack of analyticity in "g". Now the regularisation (40) has been achieved
by discarding the non-isolated singularity at λ = 0 which, in configuration
space, ic concentrated at the light cone vertex since (38) represents an
entire function of order less than one half. In configuration space it

amounts to a freedom in adding to S>± (x) arbitrary functionals of point
support in <€' to obtain different choices for the propagator. Such func-
tionals have the form / ( • ) δ(x) where f(s) is an entire function of s
of type zero and order less than half. We note that precisely the same
definition of @±(x) as a distribution has been independently obtained
through an alternative route by Lehmann and Pohlmeyer [4]. From
their work it is known in addition that Q)±(x) does not contain any
distribution concentrated at the vertex of the light cone4. This choice
for the propagator is the smoothest possible one (the minimum singularity
hypothesis [4]) and the addition of further functionals of point support
would imply the addition of counter terms to J£]p[ [7]. In the following
we shall work with the smooth propagator Q)±(x).

4 An unambiguous characterisation is given in Ref. [4].
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Section IV. Higher Orders; Renormalisation of Loop Diagrams

Having obtained the exponential interaction propagator as a distribu-
tion Sι± (x) our next task is to examine its insertion in loop diagrams. The
renormalisation problem is that of giving a rule for multiplying the
distributions in & so as to obtain further distributions in *$' which are
fixed up to functionals concentrated at the origin of Rn. In this section
we consider the simplest case: that in which a single super-propagator
<3±(x) is involved together with any other propagator (e.g. a spinor line).
From the present discussion the outline of the solution for the general
case (in which any number of 3)± (x) are involved) will emerge, although we
will postpone the systematic discussion of the general case to another
occasion.

We consider specifically the fermion self-energy part which arises
on two iterations of j£?int. Σ{

θ

2)(p) is the real object of concern and cor-
responds formally to the graphs of Fig. 4.

Fig. 4. The self energy part Σθ

In configuration space we have to consider the product S)±(x) SF(x)
where 3±{x) is the super propagator defined in the previous section as
the Fourier transform of @±(p). Although SF(x) and, now, 3±(x) are
well defined as distributions, their product is yet undefined and our
task is to give meaning to it.

To this end we define as usual [1] generalised propagators:

F () (42)
where

(43)

and ignore (for our purposes) the inessential complication of the spin
of the fermion. (The following arguments can be easily generalised.)

We also define an analytic extension of Θ±(x)\

(P, A)), (44)

/Cosπz\/2Jl_κ_y ^ (̂45)

* 2i ^ Sin2 π z Γ(z+ 1) Γ(z) Γ((l —2)z—1)

Note that the propagator in (45) is not to be confused with (34). In the
above we shall hold ImA > a > 0. Then <3±(p,λ) is analytic in λ. We have
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introduced the real parameter μ to control "infra-red" divergences. We
will show that the limit μ-»0 can be smoothly taken in the analytically
renormalised amplitude.

In configuration space we have:

Cosπz\ / λ + 1

Sin2πz Γ{z + 1) Γ((l - λ)z- 1) Γ{z) (46)

Γ{2-(l-λ)z)(x2 l-λ)z '

In the following " iV should be understood as "fε" and the limit ε—>0
is taken in the end in the sense of distributions. With 3 > R e A > l ,
l>lmλ>a>0, AF(λ9p) and <&±(λ,p) are L1 functions. The I) nature
of <3 ± (λ, p) follows from the convergence of its series representation in the
1} norm. Thus the product ΔF(λ2, x)x^±(λ1, x) (~£±(x)) is well
defined and can be obtained as J>{Σ±(p, λ)) where Σ±(p9λ) is the con-
volution of ΔF with Q}±. On using the continuity of the convolution
operation we get

ίCosπz\/2λ_κ

„+,„ , , , I 1 A 4τi
V ? F ; I S'm2πzΓ(z+l)Γ(z)Γ{(l-λ)z-l) (47)

• J dAk(m2 + {p-k)2- iε)" 1 (k2 + μ2- iε) ( 1 " λ ) z ~ 2 .

In (47) we have set λx—λ and λ2 = 0 which does not affect the convergence
of the convolution integral (which we call J(λ,z;p)) and simplifies the
analysis. From the standard analysis [1] it is known that J(λ,z;p) is
meromorphic in the combination (\ — λ)z so that the search for the λ
singularity may be conducted as in the previous section. More precisely,
we get, after Feynman parametrisation [7] and integration in the
variable corresponding to the sum of the parameters,

Γ(2-(\-λ)z)

Sξ

the meromorphy of J(λ, z; p) in (1 — λ)z follows on integration by parts.
We can now write:

(C°l"ψ^J (49)
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Where

f(λ,z;P) = ίπ3(mψ~λ)

1 \Δ — {1 — A)'Δ)

M 2

Γ(2-(l-λ)z)
- / ) z - ι ( '

Clearly ^/(A, z; p) is entire in λ. Thus it can be analytically continued to
the region Re2< 1. Returning to (49) we continue in λ to the region
ReA<l, l > I m 2 > α > 0 . In doing so the moving Zn(λ) poles, arising
from Sinπ(l — λ)z (see Section III) migrate from the upper left to the
upper right quadrant in the z plane, but, since ImA > α, they can reside
in the exterior of the contour Γ. With ReΛ. < 1, Imλ > a > 0 the analytic
continuation of (50) is given by:

where the contour begins and ends at 1 encircling the origin once counter-
clockwise, and hold ε > 0 . The representation (51) can be obtained from
(50) by first restricting to the region 0 < Re(l — λ)z<2. In that region
writing the integral in (50) as:

-(\ -λ)z 1+
μ1 \ mI{\-μI)

( l - Λ ) z - l

(52)

then expanding the integrand in a binomial series, next employing a
standard contour representation for hypergeometric functions [12]
and summing back we derive (51). Then the representation (51) continues
to hold in the region of interest R e / < 1, R e z > 0 (arbitrary) since both
sides are analytic.

At this stage ( R e / < 1 , 1 > Im/ί > α > 0) we note that the boundary
value ε-^0 of (49) is a distribution in &'. This follows [1] by smearing
(51) (a tempered distribution), with a test function from # and examining
the convergence of the Z integration in (49). (The conditions of the Lebesgue
bounded convergence theorem are satisfied. We use it in two stages (i)
to interchange ξ, z integration (the z-integral corresponds to a series)
(ii) to prove the existence of the ε-^0 limit [1].) We also note that the
limit μ2->0 can now be taken smoothly in the sense of distributions as
asserted earlier. We can now extract the λ singularity using the method
of Section III. As we continue in λ to λ = 0 the moving Zn(λ) singularities
trap the contour Γ against the fixed poles at Z = n leading finally to a
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pinch. We deform the contour Γ-+Γ, as before, so as to enclose the Zn(λ)
poles and compute the discontinuity. Then:

Σ± (A p) = Σ%{λ,p) + ΔΣ± (A, p), (53)

ΣR is Z with the contour Γ replaced by Γ and ΔΣ is the discontinuity.
ΣR is analytic at λ = 0 whereas ΔΣ contains a non-isolated singularity
at / = 0. We can now define Σ± at λ = 0 as a distribution in ^ ' :

Σ± (p) = Anal. Cont Σ | (Λ, p). (54)

We then get:
/Cosπz\ / κ

r S i r π z Γ(z+ 1) Γ(z) Γ(z — 1)
where 7

(55)

(56)

1

The expression (56) can also be identified with a hypergeometric func-
tion [12]:

P * - 1 0 ' (57)

From (57) and (55) more detailed expressions can be obtained by using
series expansions of (57) and employing the residue calculus. These ex-
pressions which display a non-analytic dependence on κ agree precisely
with those obtained earlier by Volkov [2] and are now seen to have a
precise distribution theoretic significance.

We now discuss two further points connected with finite renormalisa-
tion ambiguity and smoothness.

Since we have extended a continuous linear functional defined on
a subspace of C00 test functions which vanish, together with all its
derivatives, at the origin to <&' in principle we are free to add a distribution
concentrated at the origin. This can be seen explicitly from our renormalisa-
tion procedure. In computing the discontinuity ΔΣ± (which we sub-
sequently subtract off) we have to evaluate Σ±(λ, p) using (51) and taking
only the contributions from the moving poles at z = zn = n(\ — λ)~ι.
The residues of the poles are polynomials in p2 (since (51) is now trivially
evaluated using residue theory). The polynomials are easily recognisable
(degenerate case of a hypergeometric function), and the sum is an entire
function of p2 of order less than half. In configuration space the sub-
tractional ambiguity is a distribution concentrated at the vertex of the
light cone. This also shows that unitarity remains unaffected as one may
verify tediously.
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We now turn to the question whether in spite of the above "in principle"
ambiguity there is some sense in which the renormalised amptitude is
unique. For this purpose we pass smoothly to the m = 0 limit in Σ±(p).
In that limit we recover essentially the super propagator <3)± (p) (except
for a trivial combinatorial difference which is expected). Then, [2],
^"(RelΛ) is strongly decreasing as p 2 ->+oo (a G-function [12]).
Then smearing e.g. Σ~(x) with a test function φ(x°) we show that it is
C00 in the remaining variables [4]. Since we expect the leading short
distance singularity to be independent of the external mass "m" Σ±

is maximally smooth and the addition of any further distribution con-
centrated at x = 0 (equivalently a counterterm) would destroy this
property.

The method we have given for loop integrals involving a single super
propagator can, in principle, be extended to the case when any number
oϊ@±(x, λ) are involved. This will happen in arbitrary orders of perturba-
tion theory in the exponential interaction.

The formal product Π ^ w t a " xb) where / indexes each super-
i

propagator) is to be replaced by f| @w(xa ~
 xb> ̂ ι) w i t r i R eΛ > 1 a n d this

i

is well defined since each ^^)(p,λt) is I}; the convolution now leads to
a well defined momentum space representation as a distribution in <β'.

The analysis of singularities in the components λt of the λ has to be
repeated. Consider the generalisation of Eq. (47) to this case. Then it is
known [1] that the momentum space integral is a meromorphic function
of the combinations (1 — A£) Zx (ί= 1 ... n). We would expect a similar
pinch analysis to lead to a regular part as a distribution in <€'. However,
this problem needs further precise discussion and we shall return to it
elsewhere.

Section V. Concluding Remarks

Given a classical Lagrangian it is well known that the quantum
Lagrangian in perturbation theory is fixed only after completing the
definition of T-products for coinciding arguments [7]. The axioms of
local field theory require that the defined T-products be localisable
distributions. The choice is arbitrary to the extent that one is free to add
to the definitions distributions concentrated at the origin of
Rn (Xί = X2 = = Xn = 0) and these have interpretations as counter-
terms [7]. We have shown, through the simple cases, how the analytic
method might be exploited to complete the definition of T-products as
unitary localisable distributions for the present theory.

The question naturally arises as to whether the considerable finite
renormalisation arbitrariness can be further restricted. For this we find
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most appealing the introduction of the notion of ''minimum singularity"
by Lehmann and Pohlmeyer [4] in order to define the least singular
(perturbative) quantum field theory corresponding to the given classical
interaction. This amounts to selecting the smoothest regularised ampli-
tudes (in the sense of absence of distributions concentrated at the light
cone vertex). This hypothesis would eliminate finite renormalisation
counter terms associated with the exponential interaction. It is known
that the Froissart bound holds [13] for strictly localisable field theories
and one may hope that in some way it is the least singular perturbative
amplitudes which sum up correctly. Thus, in the context of analytic
renormalisation, the main problem is to make more systematic the dis-
cussion of higher orders especially in relation to the property of smooth-
ness. For the simple cases the analytically renormalised amplitudes
enjoy this property. Given the lack of an appealing local renormalisable
theory of weak interactions these questions would appear to warrant
further discussion.
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