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Abstract. We analyse the extensions of the Poincare algebra 2P with arbitrary kernels.
The main tool is a reduction theorem which generalizes the Hochschild-Serre theorem
for n = 2. This reduction theorem is proved and used to investigate the structure of the Lie
algebras obtained by extension.

We look particularly for the irreducible and ^-irreducible extensions of & and we
classify the types of irreducible extensions with arbitrary kernels.

Introduction

We pursue here the analysis of the irreducible extensions of the
Poincare algebra begun in [1]. In this II. Part we concentrate on the
more complicated problem of extensions with arbitrary kernels.

The difficulties in the non-abelian case have their roots in the fact
that the Chevalley-Eilenberg cohomology can not be directly used. As a
consequence the set of extensions with fixed character of a given Lie
algebra by a non-abelian Lie algebra can also be empty. But something
of the Chevalley-Eilenberg cohomology subsists also if the kernel is
non-abelian: we have a pseudocohomology (cohomology in Calabrs
sense [2]) which allows us to generalize the results in [1]. This pseudo-
cohomology is defined only if n = 2, since it is intimately related to the
extension theory of Lie algebras. Then we are able to generalize the
Hochschild-Serre theorem for n = 2 to a reduction theorem valid also
in the non-abelian case.

Starting from this result it is possible to develop an extension theory
of the Poincare algebra with arbitrary kernels.

We introduce in Section I the ideas of prerepresentation and pseudo-
cohomology [2]. We show how they are linked to the theory of Lie
algebra kernels [2-5].

The preinessential extensions, which form the bridge between the
extensions with arbitrary kernels and those with abelian kernels, are
considered in Section II.
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In Section III we prove the important reduction theorem which
generalizes the Hochschild-Serre theorem for n = 2.

In Section IV the structure of the Lie algebras obtained by extending
2P with arbitrary kernels is analysed.

The irreducible and ^-irreducible extensions of 0* are studied in
Section V. Furthermore, we classify the types of irreducible extensions
of .̂

Some Conventions
The conventions of [1] are again used in this paper.
Particularly we recall that all Lie algebras, modules and vector

spaces considered are of finite dimension over a field F of characteristic 0.
This statement is tacitly understood throughout the paper. We use also
the following new symbols:

derivation Lie algebra of ̂
ideal of D(^) consisting of the inner derivations of ̂

center of ̂
vector space of the Lie algebra homomorphisms of
into τΓ;

^natural monomorphism of Hom(D(^),
jy : natural monomorphism of

Πif: canonical epimorphism

I. Lie Algebra Kernels and Extensions with Arbitrary Kernels

Li. Pseudocohomology of Degree 2 of Lie Algebras

Let ^ and i^ be Lie algebras and h2 e A2(G, V). A prerepresentation
φ of ^ into D(ιΓ) associated with h2 is a linear map φ : ̂  — >D(f~) such
that

φ(g) φ(g') - φ(gf) φ(g} = φ([g, g^) + ad h2(g, g') V g, g' ε & .

If it is not important to specify the alternating map h2 eA2(G, V), to
which the prerepresentation φ is associated, we say briefly that we have
a prerepresentation φ : $ — ->D("/0 (of ̂  into D(f" )).

Given a prerepresentation φ:<g— ̂ D(^) we have a unique linear
map Φ:<&-+A(i^) such that the following diagram is commutative:

φ i.e. Π«r o φ = φ ,

It follows immediately that Φ e Hom(^,
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Conversely: each Φ e Hom(^, Δ(i^}} can be lifted to a prerepresenta-
tion φ : & — ->D(^) by the canonical epimorphism Π^. We call φ a
prerepresentation lifted over Φ.

Let φ : <& — -»D(^) be a prerepresentation. A linear operator

δn(φ):An(G,V)-+An + ί(G,

is defined through

= Σ (-l) ί +

(Li)

+ Σ (-iy

and

(SΌ(φ)fo) (9) - φ(9)fo V(/0 E^; 0 e 9) .

Then, given Φ e Hom(^, Δ(Ϋ")\ the following definitions are suitable:

/2 e A2(G9 V}\ φ : Ή — ̂ D(^) prerepresentation)

associated with /2 and lifted over Φ j

The elements of (£|(̂ , i^) are called (2; ̂ , f, Φ)-pseudocochains and the
elements of 3l(^ ̂ ) are called (2; ̂ , ̂ , Φ)-pseudococycles.

We have an equivalence relation between (2; ̂ , ,̂ Φ)-pseudo-
cocycles which amounts to a generalization of the equivalence relation
between cocycles of degree 2 in the Chevalley-Eilenberg cohomology.

Consider the (2; ̂ , f, Φ)-pseudococycles (φ,/2) and (φ',f2). These
two elements are set to be equivalent if there exists fl e L(G, V) such that:

R

where [, ] is the Lie product in ̂ .
One easily verifies that R is actually an equivalence relation between

elements of 3l(^ ^O Symbolically we write: (φ,/2)~(φ',/2)(modR).
We note that, given a (2; ̂ , f^ Φ)-pseudococycle (φ,/2) and any

fιβL(G,V\ the (2; ,̂ ̂  Φ)-pseudocochain ( φ \ f 2 ) obtained according
to (1.2) is also a (2; ̂ , i^ Φ)-pseudococycle and obviously
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At this stage we can define the set of equivalence classes of 3Φ(^? ^0
with respect to the relation R:

The set §|(̂ , Ό is referred to as the set of pseudocohomology of degree
2 of ̂  over ̂  associated with Φ.

A few comments are now necessary:
(1) When Ίf is an abelian Lie algebra D(f)~^0^0ί so we can

identify Φ and φ lifted over Φ with a representation ^— »EndF(F), which
we will call even Φ. We have then the natural bijections

and

All the sets here considered carry a canonical structure of vector spaces.
(2) As ^(i^) is a characteristic ideal of 1^ we define ψ = i^ o φ and

<f = jγo φ (ψ is independent of the choice of φ lifted over Φ).

is lifted over Ψ e Hom(^, zl (#(Ή)); therefore we can define G£(
3£(Sί, ̂ OO) and §|(̂ , ̂ (f")). According to (I), there exists a bijection
of these sets into, respectively, C2(^, C(i^}Ψ\ Z2(^,C(i^)Ψ) and

1.2. Lie Algebra Extensions with Arbitrary Kernels

Let (<§, Q) be an extension of ^ by stf [1,6]. Consider the homo-
morphism ad^ : S(&, j/)-»D(j/) defined by:

(zd^e}a = le, a]

The restriction ad^ \ stf — ad is then the epimorphism

By passing to the quotients we obtain Φ e Hom(^, Δ(jtf)) referred to as
the character of the extension (<ί, ρ).

ext(J*, j/, Φ) will stand for the set of equivalence classes of extensions
of ̂  by j/ with character Φ.

We choose a representative element (<ί, ρ) of the class {((?, ρ)}
e ext(J*, j/, Φ) and a section σ of (<ί , ρ) over J* [1]. There exists an element
/2 (fc, fc') e /I such that

[σ(b), σ(b')] - σ([b, b']) + /2 (b, b') V6, 6' E « . (1.3)
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/2 6 A2(B, A) is the factor set associated with the section σ. The Jacobi
identity implies δ2(φ}f2 = 0, where φ = ad^o σ : 3$—+Ό(£#). It follows
that (φ,/2)e3φ(^^) since φ is a prerepresentation of 3& into D(X)
lifted over Φ and associated with /2, i.e.

φ(b) φ(b') - φ(b') φ(b) = φ([b, b']) + ad/2 (b, b') Vb, b' e ̂  .

We call φ the pseudocharacter of (<ί, ρ) determined by σ and (φ, /2) the
(2; J^ j/, Φ)-pseudococycle associated with ($, ρ) by σ.

Taking another section σ' of (<^, ρ) over 3$ such that

σ'(b)-σ(b) = /;(&)£ A V b e ^ , (1.4)

where fleL(B,Λ], we have a (2; ̂ , j/, Φ)-pseudococycle (φ',/2) asso-
ciated with (if, ρ) by σ', and

' = ') + (δ,(φ)f1}(^b') + Uι(b\f1(b')']^b ^^

ad/1(b),

i.e. (φ,/2)~(</Λ/2)(modR).
Therefore the pseudococycles (φ,/2) and ( φ ' , f 2 ) belong to the same

equivalence class of 3Φ(^? ̂ )
If conversely there exists (φ,/2)e3φ(^ $&\ we can determine a

corresponding extension (<f , ρ) of ^ by ,o/ with character Φ. This is
performed following the lines of reference [1]: the elements of E are
identified with the couples (ft, a) (bε&; ciEstf] and we define ρ and σ
by ρ(b, α) = b and σ(b) = (b, 0) V(α e d\ b e J*). The Lie algebra product
is now defined by the bilinear alternating map α : ExE^ E such that:

- ([bt, b2], [Λ!, Λ2] + φtbj^ - φ(b2)^ + /2 (b l 9 b2)) (1.6)

V(b 1 ? b 2 e^; α l 5 α 2 e j / ) .

Then, even in the case of extensions with arbitrary kernels,

ext (<#, j/, Φ) « §1̂ , ja^) (1.7)

but, if s$ is a non-abelian Lie algebra, the isomorphism is only a set
isomorphism, i.e. a bijection. Moreover, for some Φ, ext(^, j/, Φ) and
§Φ(^, -£/) can also be the empty set (see Section 1.3).

7.3. The Moή-Hochschίld Theory of Lie Algebra Kernels [3, 4]

Let jtf and <% be Lie algebras. A ^-kernel [3, 4] is a triple (Jf, j/, Φ),
where Φ e Hom(Jf,

Each ^-kernel (̂ , j/, Φ) induces a ^-kernel (̂ , ̂ (j/), !P). This is
called the nucleus of (β, stf, Φ) and is determined in the following way:
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let Ψ =j^o φ : ^-^Δ(^(^}} « D(^(j/)), where φ is a prerepresentation
lifted over Φ. Then ΨE Hom(^, Δ(^(^}}} and is independent of the
choice of ψ.

If (S, Q) is an extension of & by j/ with character Φ, the triple (̂ , j/, Φ)
is a ^-kernel. A ^-kernel (̂ , j/, Φ) is said to be extendable whenever
there exists an extension (<?, ρ) of ̂  by j/ with character Φ. Alternatively
(̂ , ρ) is said to be an extension of <JS with the ^-kernel (3ί, j/, Φ).

Let us consider the set of J*-kernels with the same nucleus ( J*, #, Ψ).
Mori [3] and Hochschild [4] introduced in this set an equivalence
relation which allows the definition of a vector space structure K(&, %>, Ψ)
on the set of equivalence classes. The extendable ^-kernels with nucleus
(8&, #, Ψ) constitute the null vector of K(3S, #, Ψ). One can show that
there is a vector space monomorphism

m : K(3S, #, Ψ)>-+H3(3S, CΨ)

defined by m{(J>, jaf, Φ)} - {δ2(φ)f2}.
(3S, stf, Φ) is here a representative element of an equivalence class

{(̂ , ja/, Φ)} e K(@, <#, Ψ\ and <52(φ)/2, where (φ, /2) e (£|(̂ , jaf), is a
representative element of an equivalence class {δ2(φ)f2} of Z3(^, C(j/)^).

In general the monomorphism m is not an isomorphism as in the case
of extensions of abstract groups [7-9],

We have indeed [5, 10]

Imm = (0) provided that 3$ is semisimple (hence all

^-kernels are extendable if ̂  is semisimple),

Imm - #3(Jf, CΨ) if 2 is solvable.

Only by considering infinite-dimensional Lie algebras j/, we have
K(3S, <β, Ψ) « #3(^, C,p) for any J1.

δ2(φ}f2 is called an obstruction of the J'-kernel (̂ , j/, Φ) and one
uses the notation {δ2(φ)f2} = Obs(J>, ĵ , Φ) e H3(^, Cy). It follows [3, 4]
that a ^-kernel (36, $ί, Φ) is extendable if and only if Obs(^, -j/, Φ) = 0.

It is obvious that, if s$ is an abelian Lie algebra, Obs(^, j/, Φ) = 0
for any Lie algebra ^ and any Φ e Hom(^,

II. Inessential and Preinessential Extensions

We first state the algebraic translation of a theorem proved by
Michel [11] in the case of abstract groups.

Theorem 1. There exists an inessential extension of $ by stf with
character Φ if and only if there is a φe Hom(^, D(J/)) lifted over Φ.

Theorem 1 is easily proved by applying the results of 1.2 [12].
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The existence of φ e Hom(^, D(j/)) lifted over Φ allows us to equip
A with the ^-module structure Aφ associated with the representation
φ : ̂  -» D(j<) £ Endf (A). In this case we have obviously Obs(^, tc/, Φ) = 0.

Corollary. The existence of a monomorphίsm ί e Hom(ImΦ, /T^(ImΦ))
such that (ΠrfO i) Φ(b) = Φ(b) V f r e ̂  is a sufficient condition in order to
have an inessential extension of & by <$/ with character Φ.

The sufficient condition of this corollary is obviously satisfied if
Φ = 0, £0 and $ being any Lie algebra, and hence Obs(^, j/, 0) = 0.
The condition is also satisfied, for each Φ e Hom(^, Δ(,tf)} and each Lie
algebra ,̂ if (D(j/), Πj) is an inessential extension of Δ(sί) by !(,<).
Therefore, in this case, Obs(^, j/, Φ) = 0 for any Lie algebra ^ and any

The following exceptional cases for stf are then particularly interesting :
i) ,ζ/ abelian Lie algebra: D(j/) % A(jtf);

ii) j2/ complete Lie algebra: D(X) = I(^/), #(«£/) = {0} (in particular:
,s/ semisimple).

The inessential extensions belong to a remarkable family of Lie
algebra extensions to which also belong the abelian extensions: the
family of the preinessential extensions [2].

Definition 1. We call an extension (S3, ρ) of $ by j/ preinessential if the
induced extension (S/^(^\ ρq) of & by ^/^(^\ obtained by passing
to the quotient, is inessential

If (§, ρ) is a preinessential extension, then any extension of the equi-
valence class {($,ρ)} is preinessential. We therefore speak of classes of
preinessential extensions.

The following proposition is a straightforward consequence of
Definition 1:

Proposition 1. The extension ($, ρ) of 28 by s$ with character Φ is
preinessential if and only if there exists a (2;&,£/,Φ)-pseudococycle
(φ,/2) associated with (<§, ρ) and such that Im/2 £ C(jz/).

The following proposition provides another necessary and sufficient
condition in order to prove that a given extension is preinessential:

Proposition 2. The extension ($, ρ) of ^ by ̂  with character Φ is
preinessential if and only if there exists an inessential extension of & by
^ with character Φ.

We prove first the following lemma:

Lemma 1. Let(φ\f2)bea(2;&,s/,Φ)-pseudococycleandφ:&—*Ό(<$/)
a prerepresentation lifted over Φ. Then there exists a (2; ̂ , .$/, Φ)-pseudo-
cocycle (φ, /2) ~ (φ', /2) (mod R).
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Proof. We consider ω — φ — φ' . ω is a linear map of 3$ into I(^/), since
φ and φ' are lifted over Φ. We choose f^ e L(B, A) such that ad o fl = ω
and we define (φ,/2)~(φ',/2) (modR) by the following relations:

/2 ̂  ft') ̂  /2 (&, ft') + & (Φ') Λ) (^ ft') + [/! (ft), /! (ft')]

If we fix a prerepresentation φ : J*— ~>D(«s/) lifted over Φ there exists,
by Lemma 1, a (2; J*, ,s/, Φ)-pseudococycle (φ, /2) (where /2 is changeable)
in each equivalence class of 3l(^> ̂ )

Proo/ o/ Proposition 2. Necessity: Let (φ,/2) be a (2;^, j/, Φ)-
pseudococycle such that Im/2 £ C(j/) and associated with the pre-
inessential extension (β, ρ). Then φ E Hom(^, D(j/)) and an inessential
extension of ̂  by j/ with character Φ exists by Theorem 1.

Sufficiency: If an inessential extension of 36 by tc/ with character Φ
exists, then there exists also a representation φ e Hom(^, D(j/)) lifted
over Φ. By the preceding Lemma 1 : If (<?, ρ) is any extension of J1 by j/
with character Φ, there exists an associated (2; gβ, $4, Φ)-pseudococycle
(φ,/2). Therefore Im/2 C C(j/), and (̂ , ρ) is a preinessential extension
by Proposition 1.

Corollary. Whenever there exists a preinessential extension of 36 by
s/ with character Φ, any extension of 36 by j/ with character Φ is pre-
inessential

By Proposition 2 all the extensions of a Lie algebra ̂  by a complete
Lie algebra j/ are preinessential. Moreover, they all are trivial as is well
known. This is achieved here by the fact that the character Φ of any such
extension is 0 and it is possible to choose a representation φ = 0 lifted
over Φ. Lemma 1 states that there exists a (2; 36, ,o#, 0)-pseudococycle
(0,/2) in each equivalence class of 3Φ(^? ̂ \ Since Im/2 £ C(j^) = {0},
we have only trivial extensions. Let φ be a prerepresentation of $ into
D(.j<ι/) lifted over Φ. Then, given a (2; ̂ , j/, Φ)-pseudococycle (</>', /2),
there exists a (2; ̂ , j/, Φ)-pseudococycle (φ,/2)^(φ/,/2)(modR). We
choose a fixed (2; J*, j/, Φ)-pseudococycle (φ, ̂ 2) and we consider the set

{(Ψ, f2-92)\ (<P, Λ) ̂  (<?', /2) (mod R) (φ , /^ e 3lW )̂} ,

where ip — i^o φ.
It is easily verified [12] that

{(^,/2 - #2)} - 3£(#> *(^)) « ̂ 2(^ c(^v) , (π. i)
and that we have the bijections

ext(J>, j^, Φ) « §|(̂ , j/) w ff2(^, C(jafV) , (II.2)

where Ψ — j^o φ,
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We note that, if no (2; ̂ , j/, Φ)-pseudococycle exists (i.e.
Obs(^, «.< Φ) φ 0), the set {(φ, /2 - #2)} is not defined.

If (̂O - {0}, then Obs(J>, « ,̂ Φ) = 0 for any Φ and any J>. In this
case there exists one and only one equivalence class of extensions of $
with any J'-kernel (3S, st, Φ).

III. A Reduction Theorem and the Extensions of the Poincare Algebra

1 1 I.I. The Reduction Theorem

Let ^ and i^ be Lie algebras and φ a prerepresentation of ̂  into
) associated with h2.

We define the following ^-multiplication in An(G, V):

(IIL1)

We consider also the linear maps [1]

such that

If

The following identities are easily proved:

(β(ψ) /„),< =

L - δ«-ι(ψ) (fn)g ,„,

and



Extensions of Poincare Algebra. II 229

These identities allow us to prove, by induction on n, the following
lemma [12]:

Lemma 2. Let φ be a prerepresentation of & into D(i^) associated
with h2 and let fn e An(G, V}\/neN. Then:

1) (g(φ) g'(φ) fn) (gί9 ..., gn) - (g'(φ) g(φ) fn) (9ι, >.,gn)

2) (0(φ) fo(φ)^

3)

Let ̂  and f^ be Lie algebras, ffl a subalgebra of ̂  and ω a representa-
tion of Jf into D(Ό. we call /Λ e /tπ(G, V) ω-orthogonal to Jf if

•/„ = ()
7n (III.8)

Then we can define the sets:

and

If (<p,/2) 6 3φ.ω(^, ̂ , ̂ ), let /! e L(G, 7) be ω-orthogonal to Jf and
consider:

it is easy to prove [12] that (φ',/2)e3j>ω(0, Jf, f) and that (III.9)
defines an equivalence relation R(ω) in 3l,ω(^ ̂  )̂

is then the set of relative pseudocohomology of degree 2 of ̂  mod(Jf, ω)
associated with Φ. If f is an abelian Lie algebra we obtain the relative
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cohomology of Chevalley-Eilenberg (after introduction of the natural
vector space structures).

Theorem 2 (Reduction Theorem). Let <& and V be Lie algebras and
Φ e Hom(^, A (^O) Suppose that Q> is an ideal of $ such that &/@ is semi-
simple, and let ̂  be a subalgebra of^S isomorphic to &/@ by the canonical
epimorphism &-»&/&. There are then a representation ω of ̂  into
lifted over Φ \ ϊf and a bijection

Proof. The following two lemmas are required in order to prove the
theorem:

Lemma 3. Let <&, i^, Q), £P and Φ be as in Theorem 2. If ( φ , f 2 )
ε'3φ(y, an and Im(/2)5SC(Ή V s e ̂  there exists f2 eZ2(^, C(Y\\
Ψ = j^oψ, such that (f2)s = (/2)s V s E <f.

Proof. Using Lemma 2, identity (IIL6):

δ2(φ) (s(φ) h2) = s(φ) (δ2(φ)h2) V(fc 2 6 A2(G, F); se&).

Hence, by (III. 5), we can equip the subspace Z2 = {h2\h2 6 A2(G, F);
^2(^)^2 — 0} of the vector space A2(G, F) with the 5^-module structure
Z2

Ω associated with the representation Ω : ̂ -*EndF(Z2) given by
Ω(s) = s(φ) and (III.l). The set {δ^φjh^ \hv eL(G, C(T}}} becomes an
y-submodule (δ1(φ)L)Ω of Z^. Then, by WeyΓs theorem on the semi-
simplicity of semisimple Lie algebra modules [6], there is an ^-module
H2

Ω such that

Z2

Ω = HΩ@(δl(φ)L}Ω.

In particular we have f2 = h'2 + δί(φ)h(, where h2 E HΩ and
h( e L(G, C(-T)); hence Im(Λ2)s £ C(^) V s e ̂  Using (III.4):

2l = s(φ) . A'2 - δj (φ) (ft'2)s = 0 V s e

and therefore

s(φ) h'2 = δl (φ) (h'2\ = 0 V s 6 .9".

We define j7 e Z2(^, C(rV) as follows:

It is easily verified that ^2/2' = 0, since (δ2f2)s ~ (δ2(φ)hf

2)^ = 0 V s e 5̂
by (III.4).

Therefore the definition /2 = f2' + δl(φ)h[ = f2 +δlh'ί provides the
quoted result.
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Lemma 4. Let Ή, Ϋ\ @, -CS, Φ and ω be as in Theorem 2 and let (φ,/2),
(φV2Ίe3έ,ω(^, ,̂ //Ί be such that (φ,/2) - •(<?", /2") (modR). T/ien
(φ,/2)-(φ",/2')(modR(ω)).

Proof. This lemma is proved in the same way as Lemma 3 [12].

We now prove Theorem 2.
Let (φ', /2) be a (2; ̂ , f, Φ)-pseudococycle. Consider Φ\^ and

the semisimple Lie algebra Im Φ | <? . (77; 1 (Im Φ \ <?\ 77; ), where
77; = 77^ 1 77; * (Im Φ I y ), is an inessential extension of lmΦ\6f.
Thus we have a monomorphism i : lmΦ\ <(f> — >ΓI^l(lmΦ\ ,cf] such that
Ή V 0 / = I i m Φ | y (tne identity map of ImΦ ,̂ ). There is the possibility
to choose a prerepresentation φ : (&— ->D(^) lifted over Φ and such that
ω = φ ,9" = i o φ I y . ω 6 Hom(^, D(r)) since

(s')] = [(z o Φ) (5), (ί o Φ) (S')] = (/ o Φ) ([s, 5'])

Lemma 1 proves the existence of a (2;^, / /\ Φ)-pseudococycle (φjϊ2)
^(φ\ f 2) (modR), where Λ'2(s, s') e C(YO V^s 'e^. 77^ J (ImΦ) carries
the structure of a semisimple ,9^-module /7^1(ImΦ)I associated with the
representation Γ: f^-^Endf (77^ ! (ImΦ)) given by

Σ(s)r - [oj(s), r] V(s e //; r e 77^ J (ImΦ)) ,

where [ , ] is the Lie product in D(1/"). Obviously we have an ^-sub-
module Πγl(lmΦ\<(/)Σ of TT^ImΦ)^ and by WeiΓs theorem there is
an ^-module LΣ such that

Moreover l(i )Σ is an c^-submodule of 77 γ7 1(ImΦ| ^)Σ, since l(Ϋ ) is an

ideal of D(Ή:

Σ(s) adυ = [ω(s), adu] - adω(s)ι; V(s e ̂  t; e f) .

(Imω)^ is an V- module too and 1(1 /')In(Imω)I = {0}. We have therefore
the following ,9"- module decomposition:

77;. ! (Im Φ I ,$0ι = I ( *~)ι; θ (Im ω)Σ ,

which implies

The prerepresentation φ can now be completely fixed by choosing
(Imφ &)Σ = LΣ. Then:

[φ(s\ φ(d)~\ - φ([s, d]) = 'άdh'2(s, d) = 0 V(s e //; d e Qi] ,

17 Commun math Phys., Vol 20
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as ad/ί2(s, d) e I(l/Oι and ad/z'2(s, d) e (Imφ | ®)Σ. Hence Im(/ι2)4 £ C(f )

Lemma 3 gives us an h2 £ Z2($, C(f^)Ψ\ Ψ =j^ o φ, satisfying
(h2)!ί = (h2)s Vse t 9^ and the Hochschild-Serre theorem [1] provides us
with hi E Z2(^, ̂  C(T)Ψ) and J\ e C1 (̂ , C(i^)Ψ) such that ft2 = h'2 + δl j\ .

It follows that /2 - h'2 -δ1fl= h'2 - δ1 (φ}j\ satisfies (/2)s = 0 Vs e V
and (<p', /2) - (φ, /z'2) ~ (<p, /2) (mod R).

Further (<52(φ)/2)s = 0 V s E & gives directly s(ω) /2 = 0 V s e ̂  i.e.

(φ,/2)e3φ.ω(^ ̂ n.
We have thus established a surjection of §|,ω(^, ̂  /7 ) into §|( ,̂ f )

such that { ( φ ' , f 2 ) } (modR) is the image of {(φ,/2)} (modR(ω)). This
surjection is actually a bijection as follows from Lemma 4. It is possible
to give another proof of Theorem 2 by using the bijection §|(C^, Ί/ 1
«ext(^, i< Φ) [12].

A meaning of the theorem is the following: Let (<f, ρ) be an extension
of ̂  by ,c/ with character Φ. Suppose that Q) is an ideal of ̂  such that
,^/j@ ^ y; g -̂  by ρ, and .^/@ is semisimple. Then there exists, associated
with (<ί, ρ), a (2; :̂ , ,«/, Φ)-pseudococycle (φ,/2) e 3φ,ω(^, ̂  ,<), i.e.
such that

Obviously the preceding proof is also correct in the (exceptional) abelian
case: in which case the result coincides with the Hochschild-Serre
theorem for n = 2 (after introduction of the natural vector space struc-
tures).

Corollary. Let ,̂ Ύ\ ®, <A Φ be as in Theorem 2 and let Obs(C^, V\ Φ) = 0.
Then there is a pr ere present at ion φ of ^ into Ό(Y'} lifted over Φ such that

φ <?ε Uom(^ D(r')) and [φ(s), φ(d)~] = φ([s, d]) V(s e ̂  d e 9)\

III.2. Extensions of the Poincare Algebra 2P with Arbitrary Kernels

We consider now the extensions of £P with character Φ by an arbitrary
kernel tf. We suppose Obs(^, $C, Φ) = 0. Then, given a representative
element of an equivalence class of 3φ(^, tf\ we can determine a represen-
tative element of the corresponding class of equivalent extensions. By
Theorem 2 there is a representation ω of J^ into D(jf) lifted over Φ\<£
such that we can construct in every equivalence class, according to (1.6),
one extension whose associated (2; ,̂ ̂  Φ)-pseudococycle belongs to
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Kω will denote the semisimple ^f-module defined on K by a pre-
representation φ of 2P into D(JΓ) lifted over Φ and such that

Horn (j^, D(Jf )), [<p(/), φ(ί)] = φ([/, ί]) V(i 6 ̂  ί e

Such a prerepresentation φ exists by the Corollary to Theorem 2. There
is then a (φ, /2) e 3l,ω(^ ̂  ^O in everY equivalence class of 3l(^» ?O
and on Im/2 the structure of an ^-submodule of Kω.

In analogy with [1], (<ί, τ)φ>/2 will stand for the extension (β, τ) of ̂
by ,̂  considered with the factor set /2 and the pseudocharacter φ such

,
If / 2 Φ O we have on Im/2 the structure of a simple ^-module

X^{1 0}. As in the abelian case we will refer to this simple ^-module as
the fundamental ^-module K(f2) of (<?, τ)φ?/2.

Tf /2 = 0, then K(f2) = {0} too, and all extensions of the equivalence
class {(<?, τ)Φ > / 2} are inessential.

We note that, in general, Jf does not induce a Lie algebra structure
jΓ(/2) on K(/2) (see Section IV, Corollary to Theorem 5).

The following proposition generalizes Proposition 2 of [1]:

Proposition 3. Lei Obs(^, JΓ, Φ) - 0 and (φ, /2) e 3|sCϋ(^, J^, .5Γ). //
the semisimple ^-module Kω contains no simple component K^{i 0},
then /2 = 0.

Corollary . Let Obs(^, Jf; Φ) = 0. Then any extension (6ύ, τ) of 0> by
tf with character Φ is inessential, provided thai the semisimple ^-module
Kω does not contain any simple component K^{1 -0}.

If we consider in ?7 the standard basis {ί0, ί 1 ? ί2, ί3) we obtain two
simple ^-modules K^{±^} generated by

and

In order to have <52(φ)/2 = 0 we must require t' = 0 V ρ e {0, 1,2, 3}.

IV. The Structure of <f(^, Jf)

K/. T/ιe Levi Decomposition of £(&, Jf)

The following generalizations of Theorem 2 and Theorem 3 of [1]
are obvious:

Theorem 3. Let (if, τ) be an extension of gP. The Lie algebra $ then
contains a subalgebra isomorphίc to ̂  by τ.
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Theorem 4. Let (δ, τ) be an extension of & by tf. There exists an
inessential extension (δ, τ'} of ^£ such that τ' factors uniquely through τ.

The following theorem gives the structure of the algebra δ(3P, JΓ)
obtained by extending 2P by JΓ:

Theorem 5. Let (<?, τ) be an extension of ̂  by J^ and let ctC = ̂  -B 3t±
be a Levi decomposition of 3Γ, where &! is the radical of^andDn^1 = {0}.
Then £ = (&f® &[)•&& is a Levi decomposition of <f, where &' « <e
by τ. The radical & of £ is such that Dn + ί& = {0}.

Proof, (δj&ί^ τq) is an extension of & by Jf/^ « ̂  which is trivial
since ̂  is semisimple. Therefore

where [̂ 1? ̂ ] = {0}. We obtain a short exact sequence:

where τ* | ̂  = I<^ . Using a trivial generalization of Theorem 3 we see
that δ contains a subalgebra ^ © Jδf' « ̂  ® jSf by τ*. Let ̂  = ̂  © J5f.
We have a Lie product on E « P* x R1? defined by the bilinear alternating
map a" : ExE-*E such that :

α"((p* , 0), (p*, 0)) - (α(pf, p5),/2*(pf, pf)) Vpf , pf 6 P*

α"((0, rj, (0, r2}} = (0, α'^, r2)) Mr^r^R^ (IV.l)

α"((p*, 0), (0, r)) - (0, φ*(p*)r) V(p* e P*; r e K t ) ,

where α : P* x P* ->P* and a' : R^ x 1̂  -> R! are, respectively, the bilinear
alternating maps which define the Lie products on P* and on jR t. (φ*, /*)
is a (2;^*, ̂ ls Φ*)-pseudococycle associated with the extension (<f , τ*)
of ^* by ^j (with character Φ* = /7^1 o φ*).

We select (φ*,f$) e 3!*,ω*(^*, ̂  ̂ ) and we look for the extension
($', τ'*)φ*?/5 in {( ,̂ τ*)}, constructed according to (IV.l), identifying
δ' and δ.

There is T7 « T by τ such that α" induces on R - R1 0 T (JR C E) the
structure of a solvable ideal of δ. Sfβt « JSf φ ̂  and thus ^ is the
radical of δ. $ = (^®J£')-E)& is a Levi decomposition of δ, where
3"*&by τ. Here D1^ - [̂ , ̂ ] £ .«15 i.e. D" + 1^ - {0}.

Theorem 5 implies the existence of a section σ of (δ , τ) over ^ such
that:

1) σ JSf e Hom(^, ^) and σ(«Sf ) = JT, [σ(^), ̂ ] - {0}
2) [σθn^l = {0}:
3) the (2;^, JfJ Φ)-pseudococycle (φ,/2) associated with (<ί, τ) by σ

belongs to 3j,ω(^, JSf, Jf ) and Im/2 £ R l 9 -̂ ! being the radical of Jf!
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in the following, whenever we will consider an extension (&, τ)φ>f2

of & by Jf, we mean that (φ,/2)e3φ,ω(^, JSf, Jf) is associated with
(ίf, τ) by such a σ.

Corollary. Given f/ι<? extension ($,τ}φj2 of & by JΓ, if Jf induces a
Lie algebra structure Jf (/2) on K(/2), ί/ίen ^(Λ) *'5 abelian.

Proof. As Im/2 QR^ ^1 being the radical of JΓ, J^(/2) is a solvable
Lie algebra. Moreover D1JΓ(/2) is an ^f-submodule of X(/2). But
^(Λ) is {0} or a simple ^-module and therefore D1 Jf (/2) - {0}, i.e.
jΓ(/2) is an abelian Lie algebra.

We remark that, contrary to the abelian case, the extensions ($ , τ)
of ^ by arbitrary kernels Jf give Lie algebras $ with radical ^ not
necessarily nilpotent. Indeed, if (<f , τ) is an extension of ̂  by a solvable
and non-nilpotent Jf, then 3C C ̂  is impossible if ̂  is nilpotent.

In general we can study the series {Dl&}"=Q of the derived ideals of
<%>. r£όft — \(% όft~\ c (% n1^ — ΓD^1^ D1"1^ C Π*"1 ̂ , ThetLXίί- . ix s^/t — J^ίLXί- , ^xt- J >= cxc- ^ , . . . , XX ixί' — L ̂  ''̂  ' ̂  ^^ J — ! ? • • • • -"• iA^

ideals D'^ are nilpotent if i e N + . If <%* is the biggest nilpotent ideal of
,̂ then D'^c^* V i e N + .

7F.2. Extensions of 0> by Jf
wiί/z α Simple or a Trivial ^-Module Structure

We consider the extensions (<f, τ) of ̂  by JΓ with character Φ and
with an associated simple ^-module Kω.

Theorem 6. Let Jf be a non-abelian Lie algebra. There are no essential
extensions (6\ τ) of & by JΓ with character Φ if Kω is simple.

Proof. Let (<f, τ)φ /2 be an essential extension of & by a non-abelian
Lie algebra JΓ such that Kω is simple. It follows from the Corollary to
Proposition 3 that Kω = K(f2). This is impossible by the Corollary to
Theorem 5.

Therefore, even in the case of extensions of 0* by arbitrary Lie algebras
Jf^ the abelian extensions of ̂  by a simple ^-module Xφ{ι,0}

 w^ ^e

called minimal essential extensions [1].
Now consider a ^-kernel (̂ , Jf, 0). There is, in any equivalence

class of 3^,JΓ), a pseudococycle (<p,/2)e3gf0(^,^,«3f), i.e. the
j^-module Kω is trivial (ω = 0). Therefore /2 = 0 and φ = 0. We arrive
at the same result of Michel [13] and Galindo [10]: all extensions of
& by JΓ with character Φ = 0 are trivial.
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IV. 3. Extensions of 2? by a Reductive Lie Algebra

Let Jf be a reductive Lie algebra, i.e. a Lie algebra such that
is completely reducible (in particular: ,>Γ compact Lie algebra) [14].
Then Jf = ̂  © s4, where y is a semisimple and <$/ an abelian Lie algebra
[6, 14, 15].

If JΓ is reductive we have Obs(^, JΓ, Φ) = 0 for any character Φ.
Indeed l(tf)&£e and (D(Jf ), 77^) is a trivial extension of Δ(tf) by I(jf ).
We consider the extension (S, τ)φ /2 of ^ by JΓ with character Φ.
Im/2 £ >4, hence the extension is preinessential and φ e Hom(^, D(Jf)).
We have on Jf the ^-module structure Kφ,

By Theorem 5 we obtain : δ = (^ ® £?'} -B m = ̂  © (^' -B ̂ ), where
cSf' » ϊ£ by τ, D2^ = {0}. Therefore it is sufficient to study the induced
abelian extension (£" -B&,τ\£" -DOS) of ^ by Aφ, and all the results
of [1] can be easily extended to the case where Jf is a reductive Lie
algebra. In particular we have:

i) If the ^-module Aω contains no simple component A^{1>0}, then
there exists no essential extension of 0> by Jf with character Φ.

ii) If the J^- module Aω is simple, then the extensions of 2P by jf
with character Φ can be essential only if Aω = A^(l ?0}.

V. The Irreducible and ^-Irreducible Extensions of 3P

VΛ. Irreducibility and ^-Irreducibility of Extensions

The irreducibility of an arbitrary extension ($, ρ) of & is defined as
in the abelian case:

Definition 2. Let ($, ρ) be an extension of 36. We say that (<$, ρ) is
irreducible if there is no proper subalgebra $' C$ such that

, ρ) is irreducible (reducible), then all extensions of the equivalence
class {(6\ ρ)} are irreducible (reducible). We can prove the following
theorem pursuing the same procedure as for the proof of Theorem 5
(Necessity) in [1] :

Theorem 7 (Irreducibility Criterion). In order that an extension (6°, ρ)
of 2& by -j/ be irreducible a necessary condition is that the induced exten-
sions (S/.stf*, ρq) of & by jtf/jtf* are essential for every proper ideal
,9$* C $0 of d>. If .$$ is an abelian Lie algebra this condition is also sufficient.

The proof of the following proposition is now obvious:

Proposition 4. Let (§, ρ) be a preinessential extension of 36 by jtf. If
(β , ρ) is irreducible, then ,$/ is abelian.
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Using an immediate generalization of Theorem 5 we see that any
extension ($, ρ) of ̂  by a non-solvable Lie algebra s$ is reducible. But
we will define a weak form of irreducibility, such that the semisimple
Lie algebras are not disregarded.

Definition 3. An extension ($, Q) of J* is ^-irreducible if there is no
proper subalgebra $' C$ such that:

ii) there exists one Levi subalgebra of Sϋ which is also a Levi subalgebra

o f f 1 .
(<?, Q) is ^-reducible if there is a proper subalgebra £' C $ which

satisfies i) and ii).

Clearly, as in the case of irreducibility, if a representative element
of an equivalence class of extensions is ^-irreducible (^-reducible), then
all extensions of this class are ^-irreducible (^-reducible).

An ^-irreducibility criterion, analogous to the irreducibility criterion
of Theorem 7, can be easily proved [12] :

Theorem 8 (^-Irreducibility Criterion). Let ($, Q) be an extension of
3$ by s$ and let ̂  be the radical of jtf. In order that (β, ρ) be ^-irreducible
a necessary condition is that the induced extensions (<ί/j/*, ρq) of $ by
s$ls$* are essential for every proper ideal s$* C ̂  of $ . // ̂ 1 is an
abelian Lie algebra this condition is also sufficient.

Note also the following definition (according to [1]):

Definition 4. The extensions (<?, ρ) of ^ by ̂  and (<Γ, ρf) of & by stf'
are of the same type if $ & £' .

In Section V.4 we shall give a classification of the types of irreducible
extensions of ̂ .

V.2. Irreducible and ^-Irreducible Extensions of 3P

We are going to study the irreducible and ^-irreducible exten-
sions of 0*.

If JΓ is non-solvable, then the extension ($, τ) of 2? by Jf is reducible
(Theorem 5).

Proposition 5. Let ($, τ) be an ^-irreducible or irreducible extension
of'£P by Jrif. Then the radical $ of $ is nilpotent (the biggest nilpotent ideal).

Proof. We examine only the case of ^-irreducibility, since, if the
statement is right in this instance, it is a fortiori right for the irreducibility.

We suppose that @t is non-nilpotent, then the biggest nilpotent ideal
J>* of ̂  is a proper subalgebra of ̂ .
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We consider (S, τ)φj2, (φ,f2) being associated with (<ί, τ) by σ. Let
Jf = 5^ -E> ^ibe a Levi decomposition of Jf and let ω' e Hom(J5f, D(^))
be defined by ω'(^f) - ad^σ(^), where ω'(JSf) | ̂  = ω(JSf), ω - φ \ <£.
Rω> is an ^-module and we have the decomposition Rω, = R%,®R'ω,,
where R'ω> is a trivial ^f-module. Furthermore R contains a vector
space T = σ(T) which becomes an J^f-module T^ such that T^r^R'ω> — {0}.

Now, if/2 = 0, ((f, t)φtf2 is an inessential extension which is ^-reducible
if Jf is non-semisimple. lϊ Jf is semisimple, T' becomes an abelian Lie
algebra ZΓ' = & and so $ is nilpotent.

If/2 ΦO, then £(/2) - K^.o} and K(f2)nR'ωf = {0}. Hence there is
(<T, τ') C (<?, τ), where ^'= (σ(JSf)θ^ι)-B^* and τ; = τ | ̂ '. This is
contrary to the assumption and we infer that & — $*.

Any subalgebra of a nilpotent Lie algebra is nilpotent, thus:

Corollary. All extensions of ̂  by a solvable, non-nilpotent Lie algebra
Jf are reducible (and ^-reducible).

If ((?, τ)φ>f2 is an irreducible extension of ̂  by Jf we have

<? = JSr-B^, (V.I)

where JSf « Jgf, T' « T by τ, and R = T'@K (Theorem 5). Jf is a nil-
potent Lie algebra. We will now limit ourselves to extensions of & by
a nilpotent Lie algebra Jf! Let (β, τ)φ^2 be a representative element of
a class {(£, τ)} of equivalent extensions.

We will say that K(f2) is maximal in Kω if K(f2) φ Kω and there is
no ideal Jf' of <f such that K ( f 2 } Q K'ωCKω. We have the following
irreducibility criterion:

Theorem 9. T/ze extension (β, τ)φ>/2 of 0> by 3f is irreducible if and
only if K(f2) = Kω or K(f2) is maximal in Kω.

Proof. The necessity of the condition K(f2) = Kω or K(f2) maximal
in Kω for the irreducibility of (̂ , τ)φ>/2 is easily proved following the
lines of the proof of Theorem 7 (Necessity) of [1]. This condition is also
sufficient, as follows from the fact that Kω has to be spanned by elements
of the form φ ( t 1 ) φ ( t 2 ) ... φ(tn)k (ίl9 ...9tne&Ί feeK(/2)).

Corollary. // K(/2) Φ Kω and φ(t)k = 0 V(ί e «T; k e X(/2)),
extension (β\ τ)φj2 of & by Jf is reducible.

Recall the following definitions:
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where { } means the vector space spanned by { }, and φ°(^~) K(f2)
= K(f2).

The nilpotency of ffi requires the existence of neN such that

We consider the vector space K' = Σ φl(&~)K(f2) and the

^-module K'ω.

Proposition 6. Given the extension ($, τ)φ^2 of £P by JΓ, tf induces a
CO

Lie algebra structure W on the vector space K' — Σ φl(^~) K(f2)9 where

($-) K(f2), φj($-} K(f2)-] ς φί+ i + 2(#-) K(f2) ViJeN . (V.2)

Proof. We prove tφ>(,T) K(f2\ φ>(P) X(/2)] ζ φί + i+2(.T) K(f2) by
induction.

First:

since

<p(tι) <p(h)f2(t'i> '2)

V ί l 5 ί2,ίl, ί^e^.

For the same reason it is also \K(f2\ ψj(^}K(f2)] g φj+2(^)K(f2)
Vj E N. Let / e JV + , then we make the induction hypothesis

) K ( f 2 ) VjeN.

Therefore :

[φ'(^) K(f2), φj(^) K(/2)] = [[σ(̂ ), φ-1^) K(/2)], φi(<

), φ>(D K(f2)l σ

+ ιy +ι(.
ςφl+J+2(3-)K(f2) V j e N ,

where σ is the section by which (φ, /2) is associated with (J5, τ).

Theorem 9 can now be stated: (S , τ)φ j /2 is an irreducible extension
of & by .̂ " if and only if:

Kω = "l Ψ^} K(f2} ψn(HΓ} K(f2) = {0} . (V.3)
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Therefore we have again that (g, τ)φj2 is reducible if the ^-module Kω

contains simple components K^{jlj2} where j1 +j2 is half integer.
If only ^-irreducibility is required we have the following theorem :

Theorem 10. The extension ($,τ)φ,f2 of 3P by JίΓ is ^-irreducible if
and only if K(/2) = R ] ω or K(f2) is maximal in R l ω, where Ml is the
radical of 3C.

Proof. The theorem is proved in like manner as Theorem 9, but
applying the ^-irreducibility criterion (Theorem 8).

We can also express the ^-irreducibility condition of Theorem 10 by:

*ιω = Σ' <P'(F) K(f2); φ*(Γ) K(f2) = {0} . (V.4)
ί = 0

Corollary.// the extension ($, τ)φj2 of & by tf is ^-irreducible, then
there is a Levi decomposition tf — &ι®$ι of JΓ, where ^l is nilpoίent
and ff\ semisimple.

Proof. Using the notation of Theorem 5 we have g = (J&?'0#5) -B &9

where &' = σ(^) and \_σ(9~\ -̂ ] = {0}, σ being the section by which
(φ,/2) is associated with ($ , τ). Let rte φl(3~) K(f2) £ ̂ , then there
exist mεN+ and {t{, t{, ..., tj

i + 2}™=\ OF such that

(ttjER and [,] is the Lie product in ^). Therefore: [η,s] =0
n — ί

The ^-irreducibility of (β, τ)φ,/2 implies r = ^ r{ V r e ^ j and thus
i = 0

[r,s]=0 V(re^; se^). The nilpotency of ̂  follows from Pro-
position 5.

If (S, τ}φj2 is an ^-irreducible extension of ̂  by JΓ = ̂  Θ^i we
have

# = ϊ^1e(j5?/-D«), (V.5)

where .Sf' = σ(Jδf), R - αίT)©^, σ being the section by which (φ,/2)
is associated with ($, τ). ̂  is a nilpotent Lie algebra. If $' — <£ ' -D 3ft,
and τ'= τ \ £", then ($', τ') is an irreducible extension of 0> by .̂

It follows easily that any extension (<f, τ)φ /2 of ̂  by a reductive Lie
algebra Jf = ̂  © j</ is ^-irreducible if and only if the induced abelian
extension of & by Aφ is irreducible.
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FJ. Examples

We look for the nilpotent and non-abelian Lie algebras JΓ of low
dimension such that the extensions ( ,̂ τ)φ /2 of 0* by Jf are irreducible.

Let {ί0, tl9 ί2ί £3} be the standard basis in 2Γ. We choose the basis
(W..O., *,/.„,]} of 9l(^)K(f2), where //,, . . . ,μ, + 2 e {0, 1,2, 3}, de-
fined by:

kμ,μ2...μ,lμ,fiμ,,2] = φ(tμί)φ(tμ2)...φ(lμ)f2(tμι + ,,tμιt2). (V.6)

Therefore :

The symbol [ζv] means antisymmetrization of (v.
a) Let Kω = K(f2)@K^{l ,0}®^^ ,i} ίn order to obtain an ir-

reducible extension of ̂  by a non-abelian Jf we must have (Pro-
position 6):

φ(<Γ) K(f2) = K^^
and

all other commutators of JΓ vanishing. {kfμρ]} is a basis of K^^t^ (see
Section 1II.2) and we can define

^α ^ + / α ^

where gf is the metric tensor. JΓ is nilpotent and C1.^ = ̂ {1 0},
= {0}. We obtain an irreducible extension (^\τ[^])φf2, where

b) Let jKr

a) = K(/2)©X1 ) { l f 0 }®X I > { | > i }. We have a result analogous
to that of case a): an irreducible extension (<ί[

3

2], τ[

3

2])φ /2, where

c) If Kω = ^(/^©X^ii ̂ jΘX^μ < 1 } we must have by Proposition 6:

K(f2) = K^t ,},
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and [K(/2), K(f2]} = ^£{1,1}' a^ other commutators of Jf vanishing.
is a basis of ^1){i,i.} and we can define

l ' ί = ̂ k, — a k

~ 9vσg*βk[μa][ρβ] Vμ, v, ρ, σ e {0, i, 2, 3}.

JΓ is nilpotent and C1 .XT = ̂  {1 Λ } , C
2 jf - {0} . We obtain an irreducible

extension (^[

3

3], τ[

3

3\/2, where dim43] - 29.
d) Let Kω = K(f2)ζ&K^ί±}@K^ί>ί}: this case is analogous to case c)

and the extension (&¥\τl*\tf2 so obtained is such that dim^4J = 41.
The irreducible extensions of the class {(^1], τ[

3

1])φ /2} are the minimal
essential extensions of & by a non-abelian jf!

V.4. Types of Irreducible Extensions of 0>

We consider the descending central series {Cl&}, where ^ is the
radical of ίί in the extension (<?, τ)^^ of .̂  by tf. We know that ̂  and ̂
are nilpotent if (β, τ}φ>f2 is irreducible. Even in the case of extensions of
2P with arbitrary kernels it follows :

Theorem 11. Given the extension (<?, τ)φ</2 of & by tf, let 3$ be the
radical of <%. Then (<f, τ)φ>/2 is irreducible if 'and only if C1^ - Jf and ̂
is nilpotent.

We can now classify the types of irreducible extensions with arbitrary
kernels following the procedure of [1].

Let gπ - {(n, [i])} ^ %n (i eln and n e N) be the set of all types (n, [i])
of irreducible extensions ($, τ) of ̂  for which the radical ̂  of $ satisfies

Cn + 1^ = {0} and C^Φ{0} V O ' e N j ^ n) . (V.7)

In is an index set of the types of irreducible extensions of 2P satisfying
(V.7) and $*„ is the subset of types of irreducible abelian extensions.

The family g0 contains only the truly trivial extension type; the
family gx contains only one element too: the type (1) of the minimal
essential extensions. The family 32 contains 3 elements.

We note that & - ̂  if i = 0, 1, 2, but fy 3 ̂  V / ^ 3. In effect there
exist non-abelian irreducible extensions ϊorj = 3 (see Section V. 3), and
also for j > 3 g; contains always non-abelian extension types.

After some obvious notational changes, Proposition 6 of [1J and its
Corollary are also right if Jf is arbitrary. Using Theorems 9 and 11 it is
easy to prove [12] the following result which generalizes Theorem 9
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Theorem 12. The extension (<f , τ)φ /2 of & by JΓ is irreducible of type
(n, [i]), where n e N + , zf and oπ/j; z/:

φn(F) K(f2) = {0} φ\F} K(f2) Φ {0} V(/ e N; 7 < w)

and

// n = 0, JΓ = {0} is ί/ie necessary and sufficient condition for the ir-
reducibility.

For the construction of a representative element of the equivalence
classes of type (n, [z]) ( / 7 E / V + ; z e l n ) we can build Kω starting from

n-l

K(f2): by Theorem 12 Kω = £ φj(^) X(/2), where
j = o

<P(*ι) <P(ί2) ~ Φ(^) φ(ίι) = ad/2(ί l5 ί2) V f 1 ; t2 G «r ,

and φ2(F) KlnKl = {0} for any simple ^-submodule K* of Xω. It is
then possible to equip K with a Lie algebra structure JΓ following
Proposition 6.

We end with a few comments about the extensions of ̂ c, the com-
plexiflcation of ̂ . The remarks in the Appendix of [1] fit also in the case
of extensions with arbitrary kernels.

We have & - &, i - 0, 1, 2, but ̂  3 g, Vj ^ 3 too.
It can easily be seen that we have 2 types of irreducible extensions

by a non-abelian JΓ of lower dimension. They belong to 33 and if
(&Ψ> τ3\,/2> i = 1, 2, is one of these extensions, then dim&ψ = 24.
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