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Abstract. A phenomenological theory of simple hysteresis is constructed with the aid
of certain concepts from the theory of probabilistic metric spaces. The predicted forms of
the dependence of average energy loss per hysteresis cycle on the maximum excursion of
the hysteresis coordinate agree well with experimental results.

1. Introduction

During the last half-century numerous attempts have been made to
devise appropriate measures for sets of curves in ordinary or phase
spaces. Much of this effort has had its roots in the work of N. Wiener on
Brownian motion [1,2] and, in common with Wiener's work, is motivated
by problems derived from physics. Indeed, two of the better-known
methods are due principally to physicists: these are the methods of lattice
enumerations [3], and Feynman path-integrals [4]. In the first, the
formidable convergence difficulties that inevitably arise were averted
by replacing continuous paths by finite sequences of lattice points;
in the second, convergence problems were essentially brushed aside,
and results obtained formally under the guidance of physical intuition.

Many of these convergence and general measure-theoretic difficulties
arise from the necessity of taking into account paths whose behavior
may be indecorous in various ways: nonrectifiable paths; paths that
backtrack and retrace themselves, perhaps infinitely often; self-inter-
secting paths paths without tangents etc. Such paths do in fact correspond
to current idealizations of the behavior of physical systems in certain
situations, e.g., Brownian motion, Zitterbewegung, and turbulence.
However, there are non-trivial physical systems in which such mathe-
matical intricacies are ruled out. Specifically, in systems undergoing
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hysteresis, the paths of the points representing the systems in appropriate
phase spaces will never backtrack, will cross themselves rarely, if at all,
and will be piecewise smooth. In such cases we can on physical grounds
approximate each admissible path by a rectifiable arc. A set of such
arcs will fill out some region in the enveloping space, and it seems
entirely reasonable to adopt the measure of this region as a crude but
serviceable measure for the set of arcs. In fact we will show in Section 4
that the quantitative conclusions which are implicit in this choice of
measure are in general agreement with experimental results from a wide
variety of hysteresis systems.

Specifically, we shall construct a theory which is motivated by the
following model: In a metric space with a suitable measure, consider
a "test particle" exploring various paths, each a rectifiable arc, from a
point p to another point q. For any real number x, the set of paths from
p to q of length not greater than x will cover a certain region, say R,
of the metric space. Assuming R to be measurable, we then consider the
ratio of the measure of R to the measure of some fixed set - perhaps
the set covered by all rectifiable arcs joining p to q - to be the probability
that the distance between p and q is not greater than x for the test particle.

In this way, we are led to define a particular kind of probabilistic
metric space [5, 6] which we call an ellipse m-metric. The theory of these
spaces is developed in Sections 2 and 3. The specific connection with
hysteresis systems is discussed in Section 4, and illustrated by a number
of cases of practical interest.

2. Preliminaries

For the purpose of facilitating comparison with the later definition
of probabilistic metric space we begin with:

Definition 1. A metric space is a pair (M, d\ where M is a set whose
elements are the points of the space, and the distance function d is a mapping
from M x M into R+ (the set of non-negative real numbers) satisfying:

d(p,p) = Q for all p in M; (2.1)

d(p,q)>0 for all p, q in M if p φ g ; (2.2)

dip, q} = d(q, p) for all p,q in M; (2.3)

dip, r] ^ dip, q) + d(q, r) for all p,q,r in M . (2.4)

In any metric space the notions of arc, rectifiable arc, and length
of a (rectifiable) arc are well-defined (for details, see [7], p. 59). A segment
joining points p, q of a metric space is a rectifiable arc with endpoints
p, q whose length is exactly dip, q). Segments, when they exist (they may
not!) need not be unique.
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Definition 2. Let p, q be two points of a metric space with distance
function d, and let x be any real number. The (closed) metric ellipse
E(p, q; x) with foci p, q and major axis x is the set of points r of the metric
space such that

d(p,r} + d(r,q)^x. (2.5)

Clearly, E ( p , q ; x ) is empty if x<d(p,q), while if x^d(p,q) then
£(p, g x) contains at least the points p and q. In the Euclidean plane,
metric ellipses coincide with ordinary ellipses, in Euclidean 3-space
with prolate spheroids. If we metrize a 2-sphere by the usual great-circle
distance, then certain metric ellipses stand out by virtue of their simplicity.
In particular, if p and q are distinct non-antipodal points on a sphere of
radius ρ, then E(p, q; πρ) is a hemisphere whose pole is the midpoint of
the segment (great circular arc) joining p and q, while E(p, q; 2πρ — d(p, q))
is the entire sphere. If p and q are antipodal points, then the only non-
empty metric ellipse with foci p, q is the entire sphere.

Lemma 1. Let (M, d) be a metric space admitting segments joining
any two of its points. For p, q in M and any real number x, let A(p, q\ x)
denote the set of all points r in M such that r lies on some arc with endpoints
p, q whose length does not exceed x. Then

A(p,q;x) = E ( p , q ; x ) . (2.6)

Proof. If x < d(p, q), then A(p, q\ x) is empty, since no arc with end-
points p, q can have a length less than d(p, q}. Hence (2.6) holds trivially
in this case. If x^d(p,q), then both E ( p , q \ x ) and A ( p , q \ x ) are non-
empty, the latter because it now contains all points on any segment
joining p and q. Now let r be any point in A(p, q\ x}. Then r lies on some
arc α with endpoints p, q such that /(α) ̂  x, where /(α) is the length of α.
But by the definition of arc length ([7], p. 59) l ( a ) ^ d ( p , r ) + d(r,q).
Hence (2.5) holds, so r is in E(p, g x). Conversely, if r is in E(p, g x),
let s(p, r) denote a segment joining p and r, and s(r, q) a segment joining
r and q. Then 5(7?, r) and s(r, q) together form a (polygonal) arc with end-
points p, q whose length is

I(s(p9 r}) + /(s(r, q)) = d(p, r) + d(r, q)^x.

Hence r is in A(p9q'9 x) and the lemma is proved.
Now it is clear that we want metric ellipses to have proper "areas"

or "volumes". In this spirit, we make the following:

Definition 3. A metric space (M, d) is admissible if it (a) admits segments
joining any two of its points, and (b) admits a measure μ such that: (i) every
metric ellipse is μ-measurable; (ii) for p, q in M and x > d(p, q) we have

;x))< + oo. (2.7)
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In a probabilistic metric space the set of non-negative real numbers .R
of Definition 1 is replaced by a set of probability distribution functions
A+. We introduce this set via:

Definition 4. A+ is the set of all real functions F which are defined on
the entire real line, are non-decreasing, right-continuous, and satisfy
the conditions

F(x) = 0 for x<0; lim F(x)=l .
χ-» + oo

N.B. Right-continuity could, without loss, be replaced by some other
normalizing condition, e.g. left-continuity.

Among the elements of Δ+ are the functions εα defined, for any a
in R+, by:

Ill:
If F is in A+, then various "truncations" of F are also in A+. In particular,
for F in A+ and x in R+, it is useful to define F(x) by:

f 0 t < 0 ,

F(x)(t)= F(f)-F(x)+l O ^ ί ^ x , (2.9)

Notice that FU) differs from the usual truncated distributions in that the
"mass" removed from the "tail" of the distribution is concentrated at 0
instead of being redistributed over the entire interval [0, x].

By using some basic properties of Stieltjes integrals, in particular
integration by parts, we obtain:

Lemma 2. Let F be in A + and x in R+. Then we have :

00 X X X

J t dF(x\t) - J t dF(x}(t] = f t dF(t) = xF(x) - J F(ί) at . (2.10)
0 0 0 0

Definition 5. A probabilistic metric space (briefly, a PM-space)
is a pair (M, ̂ \ where M is a set whose elements are the points of the
space, and the probabilistic distance function 3F is a mapping from M x M
into A+ such that, if we denote the function 3P(p, q) by Fpq for p, q in M,
then we have:

for all p in M. (2.11)

, q) = Fpq φ ε0 for all p, q in M whenever p φ q . (2.12)

) f o r a l l p , q i n M . (2.13)

If FM(x) = Fqr(y) = 1, then Fpr(x + y}=l

for all p, q, r in M and all x, y in R+.
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Comparing this with Definition 1, we see that any metric space gives
rise to a PM-space via

Conversely, if a PM-space (M, 3F) satisfies (2.15), where d is some mapping
from M x M into jR+, then we readily see that d is a distance function,
and hence (M, d) is a metric space. In this way we can regard metric spaces
as special cases of PM-spaces.

Of the many types of PM-spaces that have been studied (a survey
is given in [5]), one particularly elementary type will be relevant in this
paper. We introduce it via:

Definition 6. Let (M, d) be a metric space, and G any function in zΓ
other than ε0 . The simple space over (M, d) generated by G is the PM-space
(M, <3F) in which 3F is given by

G(x/d(p, q)}

It is shown in [6] that triangle inequalities stronger than (2.14)
hold in any simple space. In particular, we have

Ppr(
x + y}= Min(Fp (x), F (y)) (2.17)

for all x, y in R+ whenever p and q are points of a simple space. Clearly,
(2.17) implies (2.14).

3. Ellipse m-Metrics

Let (M, d) be an admissible metric space (Def. 3) in which the measure
μ is such that μ(M) exists and is finite. Then one of the first things which
suggests itself is to introduce a PM-space on M by defining

FM(x) = μ(M) ' •" (3.1)

MX) P = <?

Of course this procedure is unavailable if μ(M) is infinite. Furthermore, it
may lead to unwanted side effects even when μ(M) is finite. This is
illustrated by the following example: Let M be a sphere of radius ρ, d the
usual great-circle distance, and μ the standard Lebesgue measure, so that
μ(M) = 4πρ2. Let p be an arbitrary point of M and {pn} a sequence of
points of M distinct from p and converging to p. Then E(p,pn\ x) converges
to a circular disk of radius x/2 and area 4πρ2 sin2(x/4ρ), whence by (3.1)
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we have:

lim F__ (x) =

Ό x ̂  0,

sin2(x/4ρ) 0^x^

1 x

But FPP = SQ, so limFppn^Fpp. In other words, the probabilistic dis-

tance function J^ is not continuous. This will be the typical situation
whenever ̂  is defined via (3.1).

An alternative procedure, which works whether μ(M) is finite or
infinite, and leads to continuous J^'s, is suggested by the following
considerations: Going back to our original picture of a test particle
exploring various paths from p to q, it seems not unreasonable to suppose
that as soon as the path length exceeds some fixed - and perhaps very
large — multiple of the underlying distance d (p, q) between p and q,
then the particle is certain to arrive at q after having started from p.
More formally, we make the ansatz that there is a number m > 1 such
that for all p, q in M we have Fpq(x) = 1 whenever x^ md(p, q). (This
is a mathematical counterpart of the obvious physical requirement that
the phase space trajectories of a system going through successive
hysteresis cycles are of bounded length.) These considerations lead to:

Definition 7. Let (M, d) be an admissible metric space with measure μ,
and let m > 1 be fixed. Then the ellipse m-metric on (M, d, μ) is the PM-
space on M in which Fpq is given by

μ(E(p,q',x))

μ ( E ( p , q ; m d ( p , q ) } }
(3.2)

= q.

It is easy to verify from (3.2) that Fpq=>ε0 if p-+q and that Fpq=>εd(pίq}

if we allow m to approach 1 from above. Here => indicates weak convergence,
i.e., convergence at all points of continuity of the limit function.

In many admissible metric spaces, the measure of a metric ellipse
depends only on the length of the major axis and the distance between
the foci, i.e. there exists a 2-place real function H such that

μ(E(p, qix)) = H(x, d(p, q}). (3.3)

It may further happen that the function H factors in the sense that there
exist non-negative one-place functions g and h such that

H(x,d(p,q)) =
\ d f a q )

(3.4)
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If (3.4) holds, then it is easy to see that g must be nondecreasing, and
g(i) > 0 for t > 1. We can therefore define a function G in Δ+ via:

f 0 x < 0,

G ( x ) = \ g ( x ) / g ( n ) O g x ^
x>m.

(3.5)

Upon combining (3.2), (3.3), (3.4), and (3.5) we then obtain

Fpq(x) = G(x/d(p,q))

for all pairs of distinct points p, q in M. Thus we have established

Lemma 3. Let (M, d) be an admissible metric space in which (3.3)
and (3.4) hold. Then the ellipse m-metric on (M, d, μ) is a simple space, for
which the function G of Definition 6 has the representation given by (3.5).

Of course the Euclidean plane is the prototype of the set of metric
spaces to which Lemma 3 applies. Upon taking μ to be the ordinary
Lebesgue measure in the Euclidean plane, we immediately obtain

μ ( E ( p , q ; x ) ) =

d(p, q)

\ 2

\d(p,q)}
-d(p,q)2

whenever x^.d(p, q). Hence (3.3) and (3.4) hold, with ί/, g, and h given
explicitly by:

ί°H(x,y) = I π 2 _ 2 i

4 %^X y

(3.6)

β(χ) =
°

x g l ,
(3.7)

(3.8)
f̂

By virtue of Lemma 3 we immediately obtain:

Theorem 1. Let (M, d) be the Euclidean plane and μ planar Lebesgue
measure. Then for any m > 1 the ellipse m-metric on (M, d, μ) is the simple
space over (M, d) generated by the function G given by:

G(x) =

0

x

m

1

(3.9)
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Hence the functions Fpq have the following form for pή= q:

fθ x^d(p,q),

x / x2- dip, q)2

md(p, q)2 \ m2 — 1

1

(3ΛO)

Lemma 2 and some straightforward calculation now yield the
following:

Corollary. With Fpq as given by (3.10), we have, for any x ̂  0:

fθ x < d ( p , f l f ) ,

2m2

3m
-d(p,q) ^m d(p, q} .

Similar considerations apply in other Euclidean spaces and lead to:

Theorem 2. Let (M, d) be Euclidean n-space (n g: 1) and μ n-dimensional
Lebesgue measure. Then for any m > 1, the ellipse m-metric on (M, d, μ)
is the simple space over (M, d) generated by G(n), where

0

x I x2 - 1

m \ m — 1

1

x < 1 ,

x> m.

(3.12)

Thus G(1) has a jump of height 1/m at 1 and is otherwise piecewise
linear, while G(3) is given in the interval [1, m] by

x x

m — m

Our final examples are somewhat more complicated. Let M be a
coordinatized affine plane with coordinates ξ, η, and for l ^ / ί r g o o ,
let dλ be the Minkowski distance defined by

l - ξ2, -η2\) .
(3.13)

For each value of λ, there is a "natural" measure μA of area (see [8],
pp. 9-10). In particular, d2 is the usual Euclidean distance and μ2

 tne

standard planar Lebesgue measure, while for any λ there exists a pro-
portionality factor kλ, depending only on A, such that μλ = kλ<μ2.
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Hence in any Minkowski plane relative areas are the same as in the
Euclidean plane.

In a non-Euclidean Minkowski plane, the shape of a metric ellipse
with foci /?, q will generally depend on the direction of the segment
joining p and q. It follows that (3.3) will not hold in general. However
(3.3) and (3.4) will hold in a restricted sense, and in particular for all
point-pairs p, q that lie on lines parallel to a fixed line.

17 (hysteresis coordinate)

ζ configuration

Fig. 1. Metric ellipses in "standard position" in the Minkowski plane with λ — 1

Figure 1 shows metric ellipses in ''standard position" for λ = l ,
± dl (p, q) = c. The Euclidean area of the ellipse is readily seen to be
x2 — dί(p, q)2). Hence we have

μί(E(p,q;mdv(p, q))} μ2(E(p,q;mdί(p, q))}

for x^d(p, q), which yields

Theorem 3. Let M be a coordinatized affine plane, d± the Minkowski
distance function defined in (3.13) with λ— 1, and μt the corresponding
"natural" area measure. Let p, q be distinct points of M such that the line
through p and q is parallel to one of the coordinate axes. Then the func-
tion F in the ellipse m-metric is given by:

where

= G1(x/d1(p,q))

x 2-!

m 2-!

x>m.

(3.14)

(3.15)
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Again, a direct computation yields the following

Corollary. With Fpq as given by (3.14) and (3.15), for any x 3:0 we have:

(3.16)

Fig. 2. Metric ellipses in ''standard position" in the Minkowski plane with λ = oc . Although
the figure is symmetric, in physical applications η is associated with the hysteresis coordinate

and ξ with the configuration coordinate

The other value of λ which lends itself to simple illustration is λ = oo.

Fig. 2 shows two metric ellipses in standard position for the case λ = oo,
x^d^(p,q) = c. As in the previous case, simple calculation leads to:

Theorem 4. Let M be a coordίnatized qffine plane, d^ the Minkowski
distance function defined in (3.13), and μ^ the cooresponding area measure.
Let p, q be distinct points of M such that the line through p and q is parallel
to one of the coordinate axes. Then in the ellipse m-metric on (M, d^, /O
we have:

where

2x 2 -l

2m2 -Γ

x < 1,

x>m.

(3.17)

(3.18)
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Note that G^ has a jump of height l/(2m2 — 1) at 1. This is due to the
fact that there are (non-denumerably) many segments joining p and q,
so the smallest possible non-empty metric ellipse (given by x — c in
Fig. 2) already has a non-zero area.

Corollary. With Fpq as given by (3.17) and (3.18) and any x ̂  0, we have:

0 x<d<X)(p,q),

P,q), (3-19)

1 4m 3-1

4. Applications to Hysteresis Systems

Many macroscopic physical systems exhibit hysteresis. In the most
general terms this means that their response to the variation of some
external agency, for instance magnetic fields, stress, etc. is not single
valued; or in other words that the evolution of such a system cannot
be described in terms of a state function but rather is history-dependent.
Such systems were first investigated by Ewing [9]. A general survey of
hysteresis is given in [10].

A system undergoing hysteresis will generally dissipate energy,
and it is the elucidation of this energy loss that is the principal object
of any phenomenological theory of hysteresis. Using the formalism of
the previous sections, it is possible to develop such a theory to a quantitative
stage with the following procedure:

First we assume that the physical systems can be represented by
points in appropriate phase spaces, generally of enormously high dimen-
sion. In some cases these high-dimensional "exact" spaces can be re-
placed by "approximate" phase spaces of much lower dimensionality.
In particular, there are systems whose gross behavior can be characterized
in a practical sense by a single "phase" parameter: e.g., the magnetiza-
tion induced by external fields, or the strain manifested in response to
external stress. Such systems are the ones we shall consider here. The
single remaining "phase" parameter for any such system will be called
the configuration coordinate and denoted by ξ.

The external agencies which induce the hysteresis will themselves
often be specifiable in terms of a finite, though possibly very large,
number of parameters. Again, we shall confine our attention to those
cases in which the external agencies can be described by means of a single
parameter, e.g. "external field strength", "stress", and the like. Such a
parameter will be called the hysteresis coordinate and denoted by η.

16 Commun math Phys.. Vol 20
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Systems whose behavior can be adequately characterized in terms of the
two coordinates ς and η will be called simple hysteresis systems.

Thus a simple hysteresis system (at any given instant) can be visualized
as a point in the (ξ, /7)-plane. When η is varied, the point will describe
some path in the plane; and the existence of hysteresis will be manifested
by the fact that if η is returned to its initial state, then the corresponding
final value of ξ will differ from the original one. A hysteresis cycle will
therefore be defined as a path in the (ξ, τ/)-plane from a point p to a
point q such that η(p} = η(q\ but ξ(p) Φ ξ(q). (Note that this justifies the
restrictions in the hypotheses of Theorems 3 and 4.)

Partly on physical grounds (compare [10] and [11]) and partly
for the sake of simplicity, we make the following specific assumptions:

1. At each stage of the hysteresis regime of a system there is a distance
function d under which the (ς, ̂ )-plane becomes a metric space, and which
is invariant under translations and reflections in the ^-axis.

2. At each stage the distance between the initial and final point of
any hysteresis cycle is fixed. It follows that by translation and reflection
we can regard all hysteresis cycles as beginning at a fixed point p and
ending at another fixed point q.

3. Every hysteresis cycle is a rectifiable arc.
4. The energy loss in a hysteresis cycle is proportional to the length

of the cycle for lengths not greater than some fixed multiple m of the
distance d(p, q} [11]. If the length is greater than this critical value then the
energy loss is constant ("saturation").

These assumptions obviously point in the direction of characterizing
hysteresis in terms of ellipse m-metrics in the (ξ, ^)-plane. We are therefore
led to our last assumptions:

5. There is a measure μ under which the (ξ, ^)-plane with the distance
function d is an admissible metric space in the sense of Definition 3.

6. The average energy loss per hysteresis cycle for all hysteresis cycles
of length not exceeding x is proportional to

J t d F W ( ί ) , (4.1)
0

where F(

p

x

q

} is the truncation (2.9) of the distance distribution function
Fpq in the ellipse m-metric on the (ξ, ^)-plane (3.2) (cf. [10, 11]).

It should be noted that the number x in (4.1) is not only the maximum
permitted path length, but is also, in virtue of Lemma 1, the major axis
of a metric ellipse within which all the permitted hysteresis cycles lie.
As can be seen from Fig. 3, the major axis of the metric ellipse has the
direct physical significance of corresponding to the maximum possible
variation in the configuration coordinate ξ over the set of permitted
hysteresis cycles. However, from the point of view of practical applica-
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tions, we are also interested in the maximum variation of the hysteresis
coordinate η. According to Fig. 3, this is obviously the minor axis, y, of
the metric ellipse. If we re-express the integral (4.1) in terms of y, the
result will evidently depend on the particular distance function d, and
the particular measure μ. It is easy to obtain explicit results corresponding
to the three cases discussed in the preceding section (Theorems 1, 3, 4

η (hysteresis
coordinate )

(£^^<^:_^A
(major axis)

y (minor axis)

1

*£ (rnnfmurntio
coordinate)

Fig. 3. Metric ellipse in the (£, ^)-plane containing hysteresis cycles of length not greater than x

and their corollaries). In the Euclidean case (Theorem 1) we obviously
have x = (y2 + d(p, g)2)% whence the corollary to Theorem 1 yields:

(4.2)
>, q)2 m(m2 —

2m' + 1 At ^—~ d(p,q)
3m

In the Minkowski case with λ = 1, it is clear from Fig. 1 that we have
x = y + d(p, q). Then the corollary to Theorem 3 yields:

2 m2 + m+ 1

T m + l

(4.3)

dι(p,q)

Similarly, in the Minkowski case with Λ. = oo, we find from Fig. 2 that
x = y, and thence from the corollary to Theorem 4 that

0

3dΰ0(p,q}2(2m2-l}

1 4m 3-1
T~o~2—rdaofaq)3 2m — 1

(4.4)
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The most striking feature of these expressions is that in all cases
they predict a very simple polynomial relation between the average
energy loss per hysteresis cycle and the maximum excursion of the hysteresis
coordinate. In particular, for m ^> 1 the identical cubic dependence is
present in all three cases. Clearly the single condition

y>d(i,2,oc)(p^) (4 5)
is sufficient to yield the estimate

]tdF£(t}^y\ (4.6)
o

for all three metric choices. The physical interpretation of (4.5) is that
the shift in the state of the system during a hysteresis cycle is small
compared to the variation of the hysteresis coordinate. It is well known
that this condition most often obtains during asymptotic hysteresis
[10, 11], and indeed the cubic dependence exhibited by (4.6) then cor-
responds to the Rayleigh law [ferromagnetic hysteresis] and Dorey's
rule [stress-strain hysteresis] which are amply supported by experiment.

Of course it may happen that the shift in the configuration coordinate
of a system is comparable to the excursion in the hysteresis coordinate
during a cycle. This is likely to occur for virgin hysteresis where the hystere-
sis loops drift and do not "close", and in the case of shake-down systems
where there is a continual drift towards "fatigue" failure [11]. Eqs. (4.2)
and (4.3) indicate that in this limit, i.e.

y ^ d ( 1 . 2 } ( p , q ) (4.7)

the ellipse ra-metrics lead to the linear relation

]tdFfi(t)~y. (4.8)
o

This transition to strict proportionality has also been confirmed ex-
perimentally for magnetic cooperative systems and shake-down.

It is remarkable that even the discontinuous Minkowski case (4.4)
lends itself to a transparent physical interpretation. In particular, if we
consider phase spaces with densely packed instability points and systems
that have been cycled to asymptotic hysteresis beyond a second band-
edge (see [11]), then the energy losses below this band-edge vanish
identically. Eq. (4.4) shows that at the band-edge there is a discontinuous
jump (~d/(2m2 — 1)) in the energy losses, and beyond this edge one finds
again a cubic dependence. It can be shown that the "shake-down"
point of structures is precisely such a discontinuous band-edge, and that
the magnitude of the discontinuity is scaled by the Portevin-LeChatelier
jumps in the constituent materials.
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