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World Lines of Dust in C-Field Cosmology*
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Abstract. Geodesic and non-geodesic world lines of dust are investigated in Pryce's
C-field cosmology. A Raychaudhuri type equation is derived for the non-geodesic, rotational
dust flow.

I. Introduction

In their investigation of the steady state theory, Raychaudhuri and
Banerji [1] obtained a generalization of Raychaudhuri's equation [2].
A similar investigation of the C-field equations of Pryce [3] yielded
inconclusive results; however, their conclusions were based on the
assumption that dust always follows geodesies and also, that rotational
motion must be excluded by these C-field equations. Nariai [4] pointed
out that rotational motion is not excluded by the assumption of a
geodesic dust flow and further, that non-geodesic world lines are per-
missible. Nariai's investigation of the non-geodesic flow led him to
postulate an irrotational velocity field.

Here we investigate all possible world lines for dust in Pryce's theory,
paying particular attention to the non-geodesic flow. In section III of
this paper we show that Nariai's postulate is unnecessary and in section IV
we derive a general version of Raychaudhuri's equation for non-geodesic,
rotational motion of dust.

II. The Field Equations of Pryce

We are concerned with the following C-field equations which Pryce
derived from an action principle:

y ) ] 9 (2.1)

? (2.2)

where Cα is the gradient of a scalar (Cα = C α) and/is a coupling constant.
We adopt the usual notation and denote ordinary differentiation by a

* Queen's Mathematical Preprints No. 1970--9.



124 M. C. Faulkes:

comma, covariant differentiation by a semi-colon, covariant differentia-
tion along world lines by a dot and the lie derivative with respect to a
vector field if by j£?M. So, for example, for an arbitrary vector Aa we have
Aa — Λa.βUβ as the effective time derivative for an observer moving with
the standard velocity and

^A^A^ + u^A" (2.3)

as the lie derivative defined by Schouten [5]. Greek indices α,/?,...
= 1, 2, 3,4. We consider the simple case of a continuous medium where
the energy momentum tensor 7^, and the mass current vector Jα are
given by

Tξ = QU*uβ, (2.4)

Jα - ρua , (2.5)

where ρ is the density and ua is the 4-velocity of the matter. We take this
vector to be normalized so that

u " u β = - l (2.6)

and therefore
«"««;/, = 0 . (2.7)

We refer to this continuous medium as "dust". It follows immediately
from the above equations and assumptions that:

Cκβ = Cβ,a, (2.8)

7?/ = fCxCβ

β, (2.9)

iie = A(C e - M e ) (2.10)

where

ρλ^(ρu%. (2.11)

By contracting (2.10) with ua, and using (2.7), we have (Nariai, 1964):

λuaA« = 0 (2.12)

where

V= £«-««• (2-13)

Lemma. 1) i? u C α = 0 o 2 ) ££uAa = -ύα<i>3) CαM
α = constant.

Proof. 1 ) ^ 2 ) : if B C β = Ooί? 1 I X β + jS?1,uβ = 0 by (2.13),
< ^ u A α + ώα = 0 by (2.3).

1)<=>3): C;SM'f = constant^>(Cβu
β).Oί = 0
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III. The World Lines of Dust

In general relativity the contracted Bianchi identities are

T ;

α /= 0 (3.1)

which for dust give

ύ α - 0 , ρ + ρθ = 0, (3.2)

that is, the world lines are geodesic and the mass is conserved. Here if
is the acceleration vector and θ = ua

a is the volume expansion. However,
in the C-fϊeld theory we must replace (3.1) by the Eq. (2.9) which for dust
gives

ύ« = λA\ ρ + θρ = λρ, (3.3)

in which case, unless λΛa — 0, the world lines are not geodesic. Further-
more, if A φ 0 then we have continuous creation of matter. In what
follows we attempt to classify the various types of world lines that dust
will follow in accordance with Eqs. (3.3), the classification is in two parts.
First, however, we note that on combining the Eqs. (2.2), (2.5), and (2.11)
we can write

fC*a = λρ (3.4)

as the source equation for the C-field.
Type A: Aa = 0
It follows immediately from Eqs. (3.3) and (2.13) that for Aa = 0

we have

ύα = 0, ρ + ρθ = λρ, ua = CtΛ (3.5)

that is, the world lines are geodesic, matter is continuously created (is
conserved) if λ + 0 (if λ = 0) and the velocity field is irrotational, i.e.
uίoc;β] = 0 (where square brackets denote skew-symmetrized indices).

A(i) is given by λ = 0: we have Aa = 0=>Cα = ua and therefore the
expansion θ = C?α. It follows from (3.4) that 0 = 0.

A(ii) is given by λ + 0: again we have θ = C*a = λρ/f by (3.4). On
substituting for λ from (2.11) we find that the expansion is given by

The A(ii) motion has been discussed by Raychaudhuri and Banerji in [1].
TypeB: A^ + 0
We divide the type B motion into two cases, B(i) given by λ — 0 and

B(ii) given by AΦO:
B(i) The Eqs. (3.3) together with the condition λ = 0 reproduce the

Bianchi identities (3.2), and (3.4) gives the homogeneous source equation

C?α = 0. (3.6)
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Now, the velocity field wα is given by (2.13) as ua = Ca — Λa, and is therefore
rotational (irrotational) if Aa is (is not) the gradient of a scalar. The
B(i) motion has been investigated, in the irrotational case, by Hoyle
and Narlikar [6].

B(ii) We have ΛφO, ^ α φ 0 but A"ua = 0, that is Cau
a = - 1 . Λa is

therefore a non zero space-like vector orthogonal to the velocity field
vector uα. Since Cau

a is constant it follows from the lemma that

< = -2uAΛ. (3.7)

On substituting for Aa from (3.3) in (3.7) we obtain

ύa=-seu(ύjλ) (3.8)

which, on using the definition (2.3), becomes

ύa + ύβuβ;a = ύa(λ-λ2)/λ. (3.9)

The Eq. (3.9) says that the lie derivative of the acceleration vector ύa

with respect to the velocity field wα, is proportional to the acceleration
vector. The congruence of world lines of type B(ii) is non geodesic
(cf. (3.3)) and rotational (since if the flow were irrotational then u[a:β] = 0,
which together with (2.7) would imply ύa = 0). On specifying a source
equation for the C-field we may obtain a value for λ from (3.4). This
value of A in (3.9) then specifies the congruence of non geodesic, rotational
dust world lines.

IV. General Relations for Type B(ii)

We recall that the congruence of world lines for dust type B(ii) is
characterized by the relations

K = Ca - ua + 0, λ = {QU%JQ Φ 0, A*ua - 0, (4.1)

and the total energy E created by the occurrence of the C-field is given
by E2 = CaCa where

C«Ca = (A« + u«)(Aa + ua)

= A°Aa-l.

The world lines for dust type B(ii) are not geodesic, we ask now what
is the next simplest timelike world line? Following Synge [7], we define
an orthonormal tetrad (wα, Aa, J3α, Dα) where

if = λAa, (4.2)

Aa = λu" (4.3)
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and the vectors Ba and Da are defined by

B« = £« = o (4.4)

together with

A*Aa = B*Ba = DαDα = 1, M χ = - 1 (4.5)

and

uaBa = uaDa = uaAa = 0 . (4.6)

On choosing λ — constant we obtain the Frenet-Serret formula
(Eqs. (4.2)-(4.6)) for a "hyperbola of constant curvature". However, in
obtaining this particular world line we have assumed that AaAa = 1, or
in terms of the scalar field Cα that

C T α = 0, (4.7)

which we interpret to mean the creation of photons. On eliminating Aa

between (4.2) and (4.3) we find that the time-like world line for dust
satisfying (4.7) has velocity field ua where

ua = λ2ua. (4.8)

We now derive two general equations for this congruence in terms
of its expansion, shear and rotation. First we obtain the components
of the Ricci tensor RΛβ from the field Eqs. (2.1), (2.2), (2.4), and (2.5); we
find

Kβ = SπfCaCβ - Sπρ(uauβ + %gΛβ). (4.9)

For the time-like congruence of world lines type B(ii) we have Cαw
α = — 1,

and therefore we obtain the components of RΛβu
β along the congruence

and orthogonal to it, to be

Raβu
auβ = 8 π / - 4πρ , (4.10)

h*βRβyu
γ = 8π/(w α - Cα), (4.11)

where, using the notation and results of Ehlers [8], we have

Raβu*uβ = θ + ^θ2-ύ% + 2(σ2 - ω2), (4.12)

haβRβyu
y = h«β(ωβ.J - σf; + f θ>β) + (ωa

β + &$ύβ (4.13)

h<xβ ~ daβ + uauβ i s t n e projection operator into the hyperplane orthog-
onal to Mα, σaβ = u{γ;δ)hlhδ

β -^θhaβ is the shear tensor and ωaβ = u[y;δ]h
y

ah
δ

p

is the vorticity tensor. The magnitude of these tensors gives the shear
σ = {^σaβσ

aβγ and the vorticity ω = %ωaβω
aβγ. Round brackets denote

symmetrized indices.
In Eq. (4.12) the component ύ*α is given by (2.10) and (3.4) as

ύ?α = λ2ρ/f — λθ, for λ = constant, which on combining with Eqs. (4.10)
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to (4.13) yields:

θ + ^θ2 + λθ + 2(σ2 - ω2) - 8 π / - 4πρ(l - A2/4π/) (4.14)

and

ΛJ(ωf; - σf/ + §0 *) + (ωj + «rg)ύ* - 8 π / 0 / - Cα), (4.15)

for the B(ii) motion with constant λ.
To conclude, we list all equations relevant to each type of motion,

and for comparison we include the corresponding results for the Einstein
equations for dust, namely

β β , (4.16)

given by Ellis [9]:

θ + \θ2 + 2(σ2 - ω2) - A - 4πρ , (4.17 a)

(4.17b)

(4.17c)

For type A(i):

σ2 = 2 π ( 2 / - ρ ) , ω = 0,
(4.18)

0 = 0, ρ = 0, tiα = 0, C?β = 0;

for type A(ii):

^ 2 2 ω = 0, ώα = 0,
α 0,

(419)

W ' - ^/) = 0, 0 = <?(/- ρ Γ 1 = Cfβ

for type B(i):

0 + i θ 2 + 2(σ2 - ω2) = 8 π / - 4πρ ,

Λ?(f 0^ - σf/ + ωf/) = 8π/(uα - Cα), (4.20)

for type B(ii):

0 + i θ 2 + Aθ + 2(σ2 - ω2) = 8 π / - 4πρ(l - A2/4π/),

ΛJ(ωf; - σf/ + f 0'*) + (ωj + σ ^ = 8π/(uα - Cα), (4.21)

Aρ, /Cfβ = λρ .

The Eq. (4.17 a) is referred to as Raychaudhuri's equation. We note that
on identifying the cosmological constant A with the coupling constant
8 π / then the Raychaudhuri equation includes the geodesic C-field
motions A(i), A(ii) and B(i) as immediate consequences. That is, the
C-field does not affect the components of Raβu

β along the geodesic dust
world lines. However, the presence of the C-field does affect a) the
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components of Raβu
β in the hyperplane orthogonal to ua in the B(i)

motion and b) both components of Raβu
β along and orthogonal to the

congruence in the B(ii) motion.
A referee has drawn my attention to the fact that the Lagrangian for

a scalar field theory of the type considered in this paper (where the
"coupling constant" is a constant) can be transformed, by a conformal
transformation of the metric tensor, into the Lagrangian for a scalar
field theory of the Brans-Dicke type (where the "coupling constant" is a
function of the scalar field). A question then arises as to whether the
results presented here can be transformed and applied to the Brans-
Dicke theory. Unfortunately the answer is negative since not all of the
geometric properties dealt with are conformally invariant. For example,
the condition ύa = 0 for the time-like congruence of world lines to be
geodesic in the one space-time does not transform under the conformal
transformation of the metric tensor into the same condition ύa = 0 in
the conformal space-time. In this case it appears to be necessary to
repeat this work starting with the Brans-Dicke equations in order to get
the equivalent results for that theory.
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