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Abstract. Recent work of Davies and Lewis has shown how partially ordered vector
spaces provide a setting in which the operational approach to statistical physical systems
may be studied. In this paper, certain physically relevant classes of operations are iden-
tified in the abstract framework, some of their properties are derived and applications to
the Von Neumann algebra model for quantum theory are discussed.

§ 1. Introduction

In a previous paper [7], the operational approach to the theory of
statistical physical systems, originally suggested by Haag and Kastler [13]
and recently formulated in terms of partially ordered vector spaces by
Davies and Lewis [4], was discussed in some detail.

Briefly, the abstract formulation may be described as follows. Regard-
ing states as (equivalence classes of) statistical ensembles of the physical
system under examination, the set of states may be represented by a
generating cone K for a real vector space V, where addition of elements
of K represents a process in which the corresponding states are mixed
and where multiplication by positive scalars represents the proportional
increase in the number of copies of the system in the corresponding
state. The element 0 of K represents the state in which there are no
systems. A state / may be thought of as a beam of systems emerging
from some conditioning apparatus at a constant rate e(f). Then, e ex-
tends to a strictly positive linear functional, called the strength func-
tional, on V and the set B of states / such that e(f) = 1 forms a base for
the cone K. B is said to be the set of normalized states of the system.
The Minkowski functional on the convex hull of B^j(-B) defines a
semi-norm on V which coincides with e on K. The assumption that
countable mixtures of states may be formed leads to the conclusion that
this semi-norm is, in fact, a norm with respect to which V is complete
[8]. In general, K need not be closed for the norm topology although
a result of Ellis [11] shows that if K, B are_the completions of K, B
respectively, then K is a cone in V with base B and that the associated
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semi-norm coincides with the norm on V. Therefore, there is little loss
of generality in supposing that K is closed in V. An operation on the
system may be regarded as some kind of filtering process on the states
and may be described by an affine mapping j from K to itself satisfying
j(0) = 0 , e ( j ( f ) ) ^ e ( f ) , VfeK. Each such mapping has a unique exten-
sion to a positive, norm non-increasing linear operator on V and hence,
the set 3P of operations may be identified with the positive part of the
unit ball in the space fi(F) of bounded linear operators on V. The dual
space F* of V possesses a dual cone K* containing e as an order unit
and the ordering of F* by K* is Archimedean. Associated with each
operation j, there is an element T(j) e V* such that 0 ̂  T(j) rg e, defined
by T(j) (/) = e(j(f)), V/e K. T(j) is said to be the simple observable cor-
responding to the operation j and the order interval [0, e] = Ά is said
to be the set of simple observables of the system. It is easily verified that
the mapping jH>T(/) sends & onto Ά. For feK, T(j)(f)/e(f) is the
transmission probability for the state / under the operation j. It follows
that, if only experiments which count systems are allowed, =2 forms the
set of all measurable quantities. A restriction of the physical system may
be regarded physically as some process which reduces the number of
states of the system in a particular way. The set of states of the restricted
system forms a subset H of K. Simple physical considerations lead to
the conclusion that H is an extremal set of K satisfying a certain extension
property for bounded positive affine functionals on H. The former stems
from the obvious properties of mixed states whilst the latter is suggested
by the requirement that the set of simple observables of the restricted
system is precisely the set of simple observables of the whole system
where two are identified when they have equal probabilities on the set
of restricted states. The possibility that complementary restrictions exist
suggests that the annihilator H° of H in F* be positively generated and
the Heisenberg-Schrδdinger duality between sets of simple observables
and sets of states suggests that H is norm closed in K.

An example of the situation described above is obtained by choosing
K to be the set of positive normal linear functionals on a Von Neumann
algebra 23 acting on a Hubert space X and having identity e. Then, F
is the space of hermitean elements in the pre-dual 23^ of 23, B is the set
of normal states of 23, F* is the space of self-adjoint elements of 23 and
K* is the set of positive elements of 23. The set J of simple observables
in this case reduces to the set of positive operators A in 23 such that
A ̂  e. J is an ultraweakly compact convex subset of F* and by the Krein-
Milman theorem is the ultraweak closure of the convex hull of its set
E(2) of extreme points. E(Ά) is the set of projections in 23 [16]. A par-
ticular case of this example is obtained by choosing 23 to be the Von Neu-
mann envelope of an abstract C*-algebra 91. This leads to the approach
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to quantum theory suggested by Segal [19], Haag and Kastler [13].
The set of restrictions in the Von Neumann algebra model is in one-one
correspondence with the set of central projections in 93. In fact, for each
central projection E in 93, the set of states of the corresponding restricted
system is the set of positive normal linear functionals on the Von Neu-
mann algebra E^BE acting on EX, whilst the set of simple observables
of the restricted system is the set of positive elements A of E93E such
that A^E. In the particular case in which 93 is the Von Neumann
envelope of the C*-algebra $1, the set of restrictions is also in one-one
correspondence with the set of quasi-equivalence classes of representa-
tions of 21.

The main object of this paper is to investigate the properties of
various physically relevant subsets of Ά and & in the abstract formulation
and attempt to identify them in the Von Neumann algebra model. It
should be remarked that & is usually an extremely large set even in the
simplest examples and it would, therefore, be unreasonable to expect
that a characterization of all elements of & to be possible [20]. In § 3,
the structure of J and then of & is examined. It is shown that the set
£(J) of extreme points of J plays quite an important role in measurement
theory (Prop. 3.1) and it is shown that the set of operations, which
satisfy conditions similar to those imposed by Von Neumann [21] in
his measurement theory, lead to simple observables in E(S) (Prop. 3.6).
A still more restrictive class of operations is defined and it is shown that
the effect of such operations is to produce sets of states of restrictions
of the system (Prop. 3.12). In this connection, Prop. 3.11 owes much
to Alfsen [1] and Gerzon [12]. Several of the classes of operations
defined in § 3 stem from the work of Davies and Lewis [4].

In § 4, the results of § 3 are applied to the Von Neumann algebra
model for quantum mechanics. It is shown that the various classes of
operations can be described by means of projections in the Von Neumann
algebra. In § 5, application is made to two particular classes of operations
which are important in algebraic quantum theory but which have not
been discussed in the abstract framework. It is not claimed that the results
in §§ 4, 5 are the strongest possible, for the Von Neumann algebra 93 con-
sidered is arbitrary. Clearly, more powerful results may be obtained by
choosing 93 to be a Von Neumann algebra or factor of fixed type.

§ 2. Preliminaries

For the most part the definitions and notation of [7] are maintained.
A non-empty subset K of a real vector space V is said to be a cone if
K + K C K, ocK C K, α ̂  0 and Kn(- K) = {0}. The cone defines a partial
ordering on elements of V if / ^g is defined to mean that f — geK. If
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K — K = V,K is said to be a generating cone. A subset H of K is said
to be an extremal set (support) of K if H + H C H, uH C H, Vα ̂  0 and
if /6H, / = ί/ι + (l-ί)/2,/ι,/2eiς ίe(0,l) implies /1?/2eH. The
union #' of all extremal sets G in K such that HnG= {0} is said to be
the complementary set of H. If //' is an extremal set and every element /
of K has a unique decomposition f = g + h, geH, heH', following
Alfsen and Anderson [1], H is said to be a -split extremal set. A non-
empty convex subset B of K is said to be a base for K if, for each / e X,
/ φ 0, there exist uniquely g e B, α > 0 such that / = α#. A linear func-
tional e on F is said to be strictly positive if e(/) ̂  0, V / e K and /e X,
e(/) = 0 implies / = 0. K possesses a base B if and only if there exists
a strictly positive linear functional e on V and in this case B may be
written as {/ :/e JK, e(/) - 1}. If, for /e F,

where conv (B u ( — B)) is the convex hull of Bu(— J3), then, providing
that K generates F, || . H^ is a semi-norm on F and

|| . || B is a norm on F if and only if conv(J5u(— B)) is linearly bounded in
which case (F, 5) is said to be a base norm space [10].

If S is any convex subset of a real vector space, a non-empty convex
subset F of S is said to be a /αcβ of S if, /e F, / = tf± + (1 - ί)/2 /l9/2

e S, ί e (0, 1) implies /1? /2 e F. If F is a face of S, the union F' of all faces
of S disjoint from F is said to be the complementary set of F. If F' is a
face and every /G S has a unique decomposition f = tg + (l — t)h, geF,
hεF',tE [0, 1], F is said to be a sp/iί /αce [1]. If {/} C S is a face of S, / is
said to be an extreme point of S and the set of extreme points of S is
denoted by E(S).

Let (F, β) be a complete base norm space with norm closed cone K.
Then, there exists a bijection H\-*F between the set of extremal sets H
oϊK and the set of faces F of £ defined by F = HnB, H = {α/ : α ̂  0,/eF}.
# is norm closed in K if and only if F is norm closed in B. Let F* be the
dual of F and let K* = {T: Te F*, Γ(/)^0, V/eK}. Then X* is a
σ(F*, F) closed generating cone for F* and if B = {/:/eX, e(f)= 1},
eeK* and for Te F, there exists 1^0 such that -λe^ T^λe. K* is
said to be the cone dual to K and e is said to be an order unit for the
ordering of F* by X*. In fact, if Te F*, T ̂  α 7", some Γ' e K*, Vα > 0,
T ^ 0 and in this case the ordering of F* by X* is said to be Archimedean.
Moreover, if for Te F*,

|| T\\e = inf μ ^0,-λe^T^
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|| . || e is a norm on F* and (F*, e) is said to be an Archimedean ordered
order unit space. In fact the norm \\.\\ e coincides with the Banach space
norm and the order interval \_—e,e~] is the unit ball in (F*, e). The cones
K, K* are compatible in the sense that K={f:fEV, T(f) ^ 0, V Te K*}.

For each subset L of F or J of F*, let L°, J0 be the annihilators of L
in F* and J in F respectively. L°, J0 are subspaces which are σ(F*, F)
and norm closed respectively. If LcLnK — LnK, in which case L is
said to be positively generated, L° n K* is an extremal set in K* and if J
is positively generated, J0 n K is an extremal set in K.

If S, S' are convex subsets of real vector spaces a mapping φ:S-*S'
is said to be affine if and only if φ(tf + (l-t)g) = tφ(f) + (1 - t) φ(#),
V/, 0 e S, £ e [0, 1]. When φ maps 5 one-one onto S", φ is said to be an
affine isomorphism. When Sf is a convex subset of the real line R, an
affine mapping is said to be an affine functional. If K, K' are cones in
real vector spaces a mapping φ:K-*Kf is said to be affine if φ(f + g)
= Φ(f) + Φ(9\ <£(α/) = <*</>(/), V/, 0 e K, α ̂  0, and if K'cR.φ is said to
be an αj^we functional. If (F, 5) is a complete base norm space with norm
closed cone K, F* may be identified with the space of all bounded affine
functionals on B or K and for Te F*,

A Borel space (^ &) is a space Sf together with a set $ of subsets
of y closed under the formation of countable unions, countable inter-
sections and complements and contains £/ as an element. If F is a real
topological space and K is a cone in F, a mapping μ:&-+K such that
for any family {Mn} of mutually disjoint elements of J*,

=1

where the sum converges in the topology of F, is said to be a K-valued
measure on (̂  J*). If the range of μ lies in some subset K' of K, μ is said
to be a K' -valued measure.

§ 3. Operations and Simple Observables

Using [4], the following list of postulates were proposed in [7] for
the description of statistical physical systems.

1. The set of states of the system is represented by a norm closed cone
K in a complete base norm space (F, B).

2. The set of operations on the system is represented by the set & of
positive elements in the unit ball in the space 2(V) of bounded linear
operators on V.



Operations in Quantum Theory 31

3. The set of simple obserυables of the system is represented by the
set Ά of elements A in the dual space (F*, e) of (F, B) satisfying 0 ̂  A ̂  e
where the ordering is defined by the dual cone K* of K.

4. The set of instruments on the system is represented by the set of
^-valued measures £ on Borel spaces (ίf,0i) such that e(δ (£f) f) = e(f\
V / e K .

5. The set of observables of the system is represented by the set of
^-valued measures stf on Borel spaces (5̂  &) such that <stf(ίf) = e.

6. The set of states of a restriction of the system is represented by
a norm closed extremal set HofK satisfying,

(i) IfL = H — H,F = HnB, (L, F) is a complete base norm space with
norm closed generating cone H.

(ii) // A is an affine functional on H such that 0 ̂  A(f) ^ e(f\ M f e H,
there exists an affine functional A on K such that O^A(f)^ e(f\ V/ e K

(iii) H° is positively generated.

The first part of this section is devoted to a discussion of the general
properties of & and Ά and the mapping y'f-* T(j) from & onto Ά defined by

TO') (/) = </(/)), V / e X . (3.1)

Ά is the intersection of the σ(F*, F) compact unit ball in (F*, e) with
the σ(F*, F) closed cone K* in F* and is therefore σ(F*, F) compact.
Let E(Ά) be the set of extreme points of J. Elements of E(Ά) are said to
be extreme simple obserυables. Clearly, 0, e e E(J), A e E(Ά\ A Φ 0 implies
that \\A\\ = 1 and A ε E(Ά) if and only iΐe-Ae E(Ά). The Krein-Milman
theorem shows that for ^eJ,/eX, β>0, there exist (A
i = 1, 2, ... n, {ίj C [0, 1], i = 1, 2, ... n such that

- Σ t t A t ( f ) <ε.
i = l

Let Z denote the set of integers and for i e Z, define

^ (̂1) = ̂ , 0 < ϊ ^ n ,

= 0 , i = 0, z < — n, i > n ,
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For ΛcZ, let Λ+ = {i:ieA,i^0}, ΛL = {i:ieΛ, i<0} and define

ieΛ

(3-2)

i = 1 i = 1

= e .

Hence, so f^(Λ) e 2L and if {Λm} is a countable family of disjoint subsets
of Z,

•*/.« U 4n = Σ^Λ^J (3-3)
\ m = l / m = l

Further, s$f^(Z} = e and hence j//>ε is an observable defined on Z.
Finally,

_) = β - £ *Λ - (3.4)
i = l

Following [4], an observable is said to be discrete if it is defined on
a discrete space and finite if it is defined on a finite space. A discrete
observable #0 based on &* is said to be extreme if s#(s)εE(Ά\ V s e 5 .̂
A restatement of the Krein-Milman theorem in these terms follows from
the discussion above.

Proposition 3.1. For each A e j2, /e K, ε > 0, ί/zere exists a finite ex-
treme observable £#f>ε defined on a subset £f of Z such that

It follows that the set E(Ά) fulfils quite an important role in measure-
ment theory since every simple observable can be approximated by finite
extreme observables.

Let Jf = {/ -7 e fi(F),;(J£) C £}. Then, JΓ is a strongly closed cone in
£(F), not, in general, generating [11], and ̂  is the intersection of jf
with the unit ball in fi(F). It follows that & is a uniformly closed convex
set in fi(F). Let ^* denote the set of all σ(F*, F) continuous linear
mappings from F* to itself which are norm non-increasing and map K*
into K*. Then, if 7* denotes the adjoint ofje^, it is clear that 7* e^*
and that the mapping j ι->/* is an affine isomorphism between & and ^*.
It follows that any study of ̂  is automatically bound up with a study
of ^*.

For 7'e^, T(/)e J is defined by T(j)(f) = e(j(f)\ V / e X , and it is
clear that j H* Γ(/) is an affine mapping from & into J. Further, for ,4 e J,
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if 7 E & is defined by

J(fi = A ( f ) g < # e £ , V / e X , (3.5)

then T(j) = A and hence the mapping ji->T(/) sends & onto J. For
A e =2, T"1^) is said to be an isotony class of operations corresponding
to the the simple observable A, and two operations in the same isotony
class are said to be isotonic.

Notice that, for j e ̂ ,

and therefore the mapping j π->T(/) is norm non-increasing. However,
this result does not give any information about continuity properties as
far as the relativised topologies of 9 and J are concerned, since it is
not linear. However, forj1J2 e0),fl,f2e X,

It follows that, for /e K

(3.7)

and hence that7'ι-> T(/) is continuous for the relativised uniform topology
of 0> and the relativised norm topology of Ά. Hence, every isotony class
is a uniformly closed convex subset of 3P. Further, since jh->T(/) is affine
and maps onto J, A e E(Ά) if and only if T~l(A] is a face of 9.

For jί9j2e&>JιJ2 is said to be the composition oϊjί and 7*2 and cor-
responds to a physical process in which j1 follows 7*2 . For /eX,

and hence, T(jJ2)^T(j2).
For the ordering of £(7) defined by ^fjί9j2 e ,̂7*1 ^72 if and only

iϊA((j2 -A) (/)) ̂  0, V / 6 X, A e J and hence, if and only if T(jj2) ^

Finally, notice that, for j e ̂ , T(/) =7*(^). The properties of =2, ̂  and
7'κ>T(/) are listed below.

Proposition 3.2. 7'κ> T(/) is απ α/)7πe mapping from the uniformly closed
convex set & in £(F) onto the σ(F*, F) compact set Ά in V* continuous

3 Commun. math. Phys., Vol 20
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for the relativised uniform topology of 3? and the relativised norm topology
of 2, and satisfying,

(i) T(ft=f(e),Vje0>.
(ii) For h,}2eSP, T ( j J 2 ) £ T ( j 2 ) and jί^j2 if and only if T(/Λ)

(iii) For A e Ά, T 1 (^4) is a uniformly closed convex subset of & and
is a face of & if and only if A e E(£).

The properties of operations which are likely to be of physical interest
fall into two categories, namely those which are shared by all members
of an isotony class and those which are not. Physically, the difference
between the two categories of properties is that the existence of the
former type of property can be determined by experiments which merely
count the systems in any state, whilst the latter type of property requires
more sophisticated experiments to determine its existence. An example
of the former is "under an operation all copies of the system in every
state are transmitted", and an example of the latter is "under an opera-
tion all copies of the system in every state are transmitted and the beam
of systems is rotated through some angle". By merely counting trans-
mitted systems the two patently different properties are indistinguishable.

For A e J, define

(3.8)

KA, HA are said to be the sets of non-transmitted and transmitted states,
respectively, under the operation j. Since {^4}, {e — A} are positively
generated sets in V*, KA, HA are norm closed extremal sets in K. Asso-
ciated with each simple observable A, there is a unique complementary
simple observable e — A and for; e T~ί(A\ ^ = T~1(e — A) is said to be
the isotony class of operations complementary to j. Since A e E(Ά] if and
only iϊe-Ae E(Ά\ it follows that ̂  is a face of 9 if and only T(/) e E( J).

Clearly, for AeΆ, Ke_A = HA, He_A = KA and for Al9 A2 e J, ΛI ̂  A2

implies that KA2CKAί,HAlCHA2. Some discussion of such properties
was given by Davies and Lewis [4] in their remarks on material implica-
tion. They defined a notion of material implication for simple observables
as follows: Aλ=>A2 if and only if HAl CHA2. As they pointed out, this
definition is most reasonable from a physical point of view, although it
is weaker in general than that of Mackey [17] whose axioms for quantum
mechanics would lead to the definition: A1=>A2 if and only if A1^
in this case.

For;,/ e &, since T(//) ̂  Γ(/') it follows that

KT(j.) C KT(jn, HT(jjΊ C HT(jΊ .
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T(jf) (/) =
V / e K

and hence,

(//) = T(j') - T(j'2\ T(j'j) = T(j) - Γ(/2) .

The following result lists the properties of complementation.

Proposition 3.3. (i) For A E J, KA, HA are norm closed extremal sets
inK.

(ii) For A^A2E J, ίε[0, 1],

(iii) For ^ e J, Ke_A = HA, He_A = KA and for t E (0, 1),

t e - ~ "t

(iv) Forj E &, 3~j is a uniformly dosed convex subset of 0* and is a face
of 0> if ana only if T(j) E E(Ά).

(v)

f] = Ttf) - T(j'2\ T(j'j) = T(j) - T(j2) .

An operation j is said to be a transmission if and only if HT(j] = K.
Physically, j is a transmission if and only if the number of copies of the
system in every state is unchanged when operated upon by j. Let &τ

denote the set of transmissions in ̂ . Clearly j e &Ύ if and only if T(j) = e
and if and only if/*(e) = e. Since e E £(=2) it follows that &τ is a uniformly
closed face of 0>. The properties of transmissions are listed below.

Proposition 3.4. (i) The set g?τ of transmissions is a uniformly closed
face of &.

(ii) The following conditions on j E ̂  are equivalent: JE£?T; KT(j}

= {0} j maps V one-one into F; j*(e) = e; j'j E 3?τ some f E 0*.
(iii) ForjJ'e^

(a) jj' E 0>τ implies j f E 0>τ, (b) j E 0>τ implies T(jf) = T(j'), (c) j E 0>τ,
j ̂ / implies f E 0*τ.

Two operations j,/e^ are said to be weakly commuting when
T(//)= T(j'j) or alternatively when;*/*(β)=/*j*(β) For je^, let

, Ttfj) = 0} , fy = {]' :/ ε 0, T(jf) = 0}

<&j, &j, <%j are said to be the sets of operations, nullifying j, nullified by j,
and disjoint from j respectively, ̂ ^j,^ are uniformly closed faces of
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T(jJ) (/) = TOΊ) (/(/)) =

V / e X and hence ΛE^, It follows that T-l(T(j'))c^ Prop. 3.3 (v)
shows that / e ̂ }n Jδf,. if and only if T(/) = TO'2) and / e ̂ }n ̂  if and
only if TO") = TO"2). From this remark it follows that ̂ -n^ Φ 0 if and
only if T(j) = T(j2) and in this case }̂ C J^ and ̂ n^ Φ 0 if and only
if there exists/ e ̂  such that Γ(/") = TO"2) and in this case, T"1 (TO)) C &r.

If «f}nJSf,.φ0, T(j)=T(j2) ana, VfeKJ(f)eHTU) and hence i f / φ O ,

ll/ΊI ^ II TO) || = sup {TO) (/)M/) :/e K} = 1 .

It follows that ||Γ(/)|| = |[/|| = 1. Hence, the following important result
has been proved.

Proposition 3.5. (i) j£?7 , ̂  , <%j are uniformly closed faces of &.
(ii)/e^ implies T'^T^C^j.

(Ίiΐϊ Φ y C _^. & Φ C & Φtfj C tf/ tf/ Φ C tf/ and if Ί < / f= _9^ ?̂^111^ tX <=H^ : ̂  c^ . , L/Z, itx V^_ tXt, , ^X ίe : ^_ tί . , 16 :*S \^_ It j (Λιl(Λ Ij J ^ ^^J^ tl o^ , exZ'

or %,;Ί e ̂ , ̂ 7 or <%} respectively.
(iv) For j e ,̂ «^}n JSfy Φ 0 ι/ αnrf o^lj; ι/ T(/) = T(/2) and in ίftis case

^CJ^ and i/; ΦO, #ra)Φ{0}, W - I|T(/')|| - 1, ̂  n^Φ0 ι/ and on/y
ϊ/ ίnere exists f e ̂  swc/z ίnaί Γ(/") = T(/'/2) and in this case T'1 (T(/)) C JSf, ,
and ι/ Φl, KT(j)Φ{0}, I L l = ||TO")II = l ^ π%Φ0 if and only if
T(j) — T(/2) and there exists f e SΓ^ such that T(j') = T(j'2) and in this case
PJC&j9&'rC&r and ϊ / j Φ O or 1, HΓϋ)Φ{0}, XΓ(j) Φ {0} |[/|| = ||/||

= II TO") II = 1 1 TO") 1 1 = 1-
The set of operations) such that ̂ n^ Φ 0 form an important class.

Following Davies and Lewis [4], such operations are said to be repeat-
able and the set of all such operations is denoted by 3PR. It follows from
Propn. 3.5 (iv) that j e &R if and only if there exists / e & such that

(i) r(/) + r(/;) = *,
(ϋ) Γ(/)=T(72),T(/')=T(/'2),

and (ii) can alternatively be replaced by

The symmetric nature of the definition shows that j E &R if and only if
/ e &R. In future, / will be said to be a repeatable operation complemen-
tary to j e &R. Physically, repeatable operations are those for which a
second application yields the same transmission probabilities on all
states as did the first and which possesses a complementary operation
with the same property. Two points now arise. First, as was pointed
out in [4], it may be thought that repeatable operations are those which
produce states according to Von Neumann's measurement theory [21].
Secondly, since, for j e 0>R, j φO, || TO') II = 1 and it might be thought that
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repeatable operations give rise to extreme simple observables. The next
result shows that this is the case if a further condition is imposed.

Proposition 3.6. Let j e 3?R and let / be a complementary repeatable
operation. If one of the following equivalent conditions holds, then

(a) For j, E ̂  T(jJ) = T(j\ T(jJ) = 0 implies T(/Ί) = T(/).
(b) For J2 E 9, T(j2j) = 0, T(/2/) = T(j') implies T(/2) = T(j'\

Proof. First, conditions (a) and (b) are shown to be equivalent.
Suppose (a) holds and let j2 E 0> satisfy T(j2j) = 0, T(/2/) = T(/ ) Then, if

= (e- T(J2)) (/(/)) = (T(/) - T(j2j)) (/) = T(/ ) (/) ,

V / e X , and hence, T(jJ)=T(j). Similarly T(/Ί/) = 0 and therefore,
Γ(/Ί)=T(/), T(j2) = e-T(j)=τ(if) and (b) holds. A similar argument
shows that (b) implies (a).

Let Al9 A2EΆ,tE (0, 1) and suppose that for j

Then,

and therefore, replacing / by j ' ( f \ j ( f ) respectively,

0 = T(//) (/) - *(//(/)) = tA, (/'(/)) + (1 ~ ί) Λ2(/"(/)) , (3.9)

TO") (/) = T(j2) (/) - e(j2(f)) = tA,(j(f)) + (1 - ί) Λ2(/(/)) , (3.10)

V/6 X. It follows from (3.9) that ^(/(/)) = 0,i = 1, 2, V / e X, and, since
A i ( j ( f ) ) £ e ( j ( f ) ) = T ϋ ) ( f ) , i=l ,2 , V/eJC, from (3.10) that Λ(/(/))
= T(j)(f\ i=ί,2, V / e X . If (a) holds, choosing J1?j2 G^ such that
Tfa) = Aίy i = 1, 2, it follows that At = T(j\ i = 1, 2. Therefore, Γ(/) e E(Ά\
This completes the proof.

Suppose that j e ̂  has complementary repeatable operation / and
let Ί e 9 satisfy T(jJ) = T(j\ T(jJ) = 0. Then, physically, a measurement
of the simple observable defined by Ί on the states obtained by operating
with j,f produces an effect indistinguishable from that obtained by a
second measurement of) and/. In a sense, therefore conditions (a) or
(b) of Prop. 3.6 can be interpreted as a physical condition preventing
the existence of superselection rules for measurements of T(j) and T(j').

Notice that conditions (a), (b) of Prop. 3.6 appear to differ from
condition SR 3 of [4]. For 7 e 0*R with complementary repeatable opera-
tion /, this condition may be stated,

(c) For AeΆ,A{j(f)) = A(j'(f)) = Q, V/eX, implies A = Q. The fol-
lowing result shows that conditions (a) and (b) imply that a slightly
weakened version of (c) is true.
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Proposition 3.7. Let j e 0*R have complementary repeatable operation f
and letj,f satisfy condition (a) or (b) of Prop. 3.6. Then,j,f satisfy the
following condition.

(d) For A E J, A ̂  T(j\ A(j(f)) = A(j'(f)) = 0, V/e K, implies A = 0.

Proof. Suppose, 7, / satisfy condition (a) of Prop. 3.6 and let A e Ά
be such that A^T(j\ A (/(/)) = 4(/*(/)) = 0, V / e X . Let^e^ satisfy

- 4 OX/)) - τ(/2) (/) = r(/) (/), v/6 x ,
T(jjf) (/) - (T(/) - A) (/'(/)) - Γ(//) (/) = 0 , V/e JK

and therefore T(j\)= T(/), A = Q. Therefore (d) above holds and since (a)
and (b) are equivalent (b) also implies (d).

In the following, a repeatable operation j with complementary repeat-
able operation/ satisfying conditions (a) and (b) or (c) is said to be (a) or
(c) -repeatable respectively.

The properties of operations which have so far been discussed have
been such that their existence may be determined by a consideration of
transmission probabilities alone. Next, an examination is made of a wider
class of properties of operations. For example,;,/ are said to commute
strongly ifjf =j'j.

Recall that the set έPτ of transmissions coincides with the set of
operations mapping K one-one into itself. A transmission j such that
j(K) = K is said to be a symmetry of the system. Clearly, the set 0>s of
symmetries forms a group with identity 1.

At this stage it is convenient to introduce a further set of states
associated with any operation. For j e ̂ , let

G j = { f : f e K J ( f ) = f}.

Then, GJ is said to be the set of unchanged states under the operation j.
GJ is clearly a uniformly closed convex subset of Hτ(j) and GJ = Kiϊ and
only if 7 = 1. Before proceeding to a discussion of the class of operations
for which G7 has the greatest importance, the properties of symmetries
are listed.

Proposition 3.8. (i) &s is a group with identity 1.
(ii)

and in particular, for f

At the other extreme from the group of symmetries of the system is
the set of operations which act only as filters. An operation 7 is said to
be a filtering if and only if GJ = HT(^. Physically, any state which is
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unaltered numerically under j is unchanged. Let έ?F denote the set of
filterings in 0*. Clearly g?F is convex and if jl5 j2 e &FJJ2

 E ^F
Let j e 0>F, f e ̂ . Then, Prop. 3.3 (v) shows that T(j'j) = T(j) - T(j2)

and /e KT(jΊ} if and only if j(f) e HT(j} = Gj. It follows that /e KT(rj} if
and only if /(/) =;(/). Similarly, for j e »,}' e ̂ .n^F, /e KT(jf) if and
only if /2(/) =/(/). Using Prop. 3.5 (iv) it follows that for je^F,
^r.n jSf} Φ 0 if and only if 7 =</2 and for 7 e 9, ̂ -n^n^ Φ 0 if and only
if there exists/ e ̂ }n^F such that/ =/2.

The properties of £PF are summarised in

Proposition 3.9. (i) &F is a convex subset of 0> such that, for jjf e ̂ F,

if e &F.
(ii) j e ^>F, / G ̂  implies that KT(fj} = {/ :/e X, /(/) =7'(/)}, 7 e 0»

/e^.n^V imp/ies ίΛαί KT(sn = { f : f e K , j ' 2 ( f ) = j ' ( f ) } .
(iii) ^>Fn^τ = {l}, andΓl&FjC&F,Vj€0>s.
(iv) For 7 e ̂ F, ̂ }n JSfj Φ 0 ι/ and only if j =/, /or 7 e 9, ̂ n

Φ 0 if and only if there exists / e ̂ n^F swc/z ί/zαί / =/2 απJ /or 7 e
Φ 0 z/ αrcd oπ/y 1/7 =j2 αnrf there exists / e ̂ }n^F SMC/I

Following [4], an (a) or (c)-repeatable operation 7 with complemen-
tary repeatable operation/ is said to be strongly (a) or (c)-repeatable
if and only if 7,7' e^F. The sets of all such operations will be denoted
by £?SRa and &SRc respectively. Summarising, 7 e @*SRa or £?SRc if and only
if there exists / e & such that

(i) T(j)+T(j') = e,
(ii) τ(, ) = τ(/ 2),r(, ')=τ(/ '2),

(iii) TO') (/) = e(f) implies j(f) = /, Γ(/") (/) = e(/), implies /(/) = /,
(iv) (a) if Λ e 9 satisfies Γ&j) = Γ(/), T(jJ) = 0, then T(/ι) = T(/), or

equivalently,
(b) if Ί e ^ satisfies T(/ι/) = 0, T(jJ) = TO"), then T(/ι)=T(/'), or,
(c) if ^e Ά satisfies ^(/(/)) = yl(/'(/)) = 0, V/eX, then 4 = 0, re-

spectively.
Immediate consequences of the definition are that;/=/; = 0,;'=;'2 and

/=/2

For 7 e^,l —7 is a bounded though not necessarily positive element
of fi(F). When, relative to the ordering of £(F) by tfj^lj is said to
be a reflection. In this case, it is clear that 1— j e 0* and that T(l — 7)
= e — T(j\ which implies that 1 —j e ̂ }. Let ^V denote the set of reflec-
tions in .̂ Physically, an operation 7 produces a new state j(f) from a
state / and any complementary operation/ produces a new state /(/)
from /, in such a way that the total number of systems in / is preserved.
Reflections 7 are distinguished among all operations in that there exists
a unique complementary operation 1 —7 such that the mixture of the two
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states obtained by operating with j and 1 —j on f is f itself, j may be
thought of as producing a transmitted state j ( f ) and a reflected state

Clearly £PW is a uniformly closed convex subset of & and the mapping
7'H»1— 7 is a uniformly continuous affine automorphism of &w. For
JE&W, suppose feHT(j). Then, e ( ( l — j ) f ) = Q which implies that j(f)
= f,fe GJ. It follows that j e ̂ F. For j e ^V, Propn. 3.9 (iv) shows that
^•nĴ  ΦO if and only if j=j2 and hence, if and only if 7(1— j) = Q or
(l-j)7-0. L e t Λ e ^ satisfy TOΊ Ή T(/), 7 (̂1 -;)) = 0. Then clearly
T(j1)=T(j) and similarly if 4eJ satisfies A (/(/)) = 4((1 -7) /)=0,
V / G K, then ,4 = 0. The properties of 0*w are listed below.

Proposition 3.10. (i) 3PW is a uniformly closed convex subset of & ana
the mapping jt->ΐ —j is a uniformly continuous affine automorphism of

(ϋ) &WC0F.
(iii) The following conditions on j e 0>w are equivalent:

(iv) Ifjε0>wJ=j
(v) 7,/e^V implies jj'

An operation) in P^ satisfying) =72 is said to be a strongly repeatable
reflection and the set of all such operations is denoted by 0*SRW. Such
operations are clearly of a very special nature. It should be remarked
that elements of 0*SRW

 are "^-projections" in the sense of [2] and have
also been studied by Gerzon [12].

It is not proposed to make a complete study of the structure of ̂ SRW

here. However, certain remarks are required for the successive sections.

is a decomposition into elements ./(/) e HT(j} = GJ9 (1 —j) (f) e KT(jγ Sup-
pose / = /i + /2 is a further such decomposition. Then,

j(f) =;(/ι) = /ι,(i -/) (/) = /i + /2 - /i = Λ

and hence the decomposition (3.11) is unique. Suppose H is an extremal
set in K such that HnHT(j) = {0}. Then, for /E H

f =j(f) + (1 -j)f, j ( f } ε HΓ(/), (1 -7) (/) 6 XΓ(Λ .

Since H is extremal, )(/), (1 —j) (f) e H and hence, j(f) e HnHT(j) which
implies that j(f) = 0 and H C KT(j}. It follows that the complementary
set H' of H is contained in KT(j). However, KT(j} is an extremal set in K
such that KT(j}r\HT(j} = {0} ,and therefore KT(j)CH'. Hence Hf = KT(j}

and H is a split extremal set.
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Conversely, suppose j e &F and every /e K has a decomposition

/ = A + Λ , /i e HΓU) = GrA e KT(Λ . (3.12)

Then, j(f) = /! and / -;(/) = f2eK. Therefore j e ̂ V and

72(/)=;(/ι) = /ι=7(

which implies that; = j2 and j e ^SRW- It follows then that HT(j) is a split
extremal set with complementary set KT(j) and that the decomposition
(3.12) is unique.

Next suppose that H is any split extremal set in K and for / e X,
define ;'(/) = /i where / = /i + /2 is the unique decomposition of/ into
elements of//, H' respectively. Then, clearly, j is an affine mapping from
K into H and hence extends to a positive linear mapping on V. For /e K,

and therefore je^. Further, f-j(f)eK,VfeK which implies that
. Clearly, j=j2 and hence e^^^. Finally,

It follows that //τo } = // and therefore the mapping j ±->HT(j) sends
onto the set of all split extremal sets in K, and the uniqueness of the
decomposition (3.11) shows that the mapping is one-one.

Proposition 3.11. (i) There exists a one-one correspondence j\-*HT(j)

between the set 0*SRW and the set of all split extremal sets in K.
(ii) If j 6 0*F satisfies the condition that every element fεK has a de-

composition / = /i + /2 , /i e HT(j}, /2 e KT(j) then j e 0>SRW.

It is obvious from the proof of Prop. 3.11 that the mapping j\->HT(j)
has far more properties than have been stated above. A list of some of
the properties is given below. The proofs which are not obvious can be
found in [1, 2, 12].

(i) For each split extremal set H, H' is a split extremal set and if
H = HT(j), H' = HT(ί _j}.

(ii) Every split extremal set is norm closed.
(iii) For split extremal sets Hίy H2, H1nH2,conv(H1uH2) are split

extremal sets and if Hv - HT(jί), H2 = HT(J2)9 HίnH2 = Hτ^ίJ2) = HT(J2Jl)9

conv(//! uH2) - HT(jί+J2.hJ2). Hence, for jί9j2 e 0>SRwJιJ2 =M>Λ +h

~~hJ2 G ^SRW

It was remarked above, that έPSRW forms a very limited class of
operations. The following result gives some idea how limited it is.



42 CM. Edwards:

Proposition 3.12. Forj e &SRW, HT(j} is the set of states of a restriction
of the system.

Proof. For convenience, let H = HT(J)9 H' = Kτ(j), F = H n£, F1 = Hf

n£, L ={f : f e V J ( f ) = f},L = { f : f e V J ( f ) = 0}. Then clearly H-H
C L and conversely, suppose / e L, / = fl — /2, /l5/2 e X. Then, / =j(f)
=j(fι) - j(/2) e H - H . Hence, H-H = Land similarly H'-H' = L. It
follows that (L, F) is a base norm space with cone H and clearly, L, H
and F are all norm closed in V. The base norm || . ||F on L is defined by

= inf{e(/1) + e(/2):/ = /1-/2,/1J26H}, V / e L

and the base norm in (F, 5) is defined by

||/||B - inf {e(f1) + *(/2) :/ = f, - /2,Λ,/2 e K} , V/E 7.

For /1?/2 eX, there exist uniquely /n, /21 e H, /12, /22 e//' such that

and hence /12 = /22. Therefore,

e(A) + *(/2) - *(Λ J + β(/2 J + 2*(/2 2)

/ιι , /2i e ̂ , /22 e H', / = fn - /21 . It follows that

= inf {e(g1) + e(g2) + 2e(g) : f = g1-g2, 9ι, g2eH,ge H'}

Therefore, (L, F) is a complete base norm space with norm closed cone H
and base norm identical to the norm as a closed subspace of (F, B).
Hence condition (i) of Postulate 6 holds. Notice that similar remarks
apply to (L, F').

Let A be an affine functional on H such that O^A(f)^ e(f\ V/e H
and define A on K by A(f) = A(j(f)). Then, clearly A is an affine func-
tional on K such that 0 ̂  A(f) ^ e(f\ V/e K and 4(/) - A(f\ V/e H.
This proves (ii) of Postulate 6.

The dual space (L*,eF.) of (L', F') is a complete order unit space
Archimedean ordered by H'* and as a Banach space L'* may be identified
with V*/L° by means of the identification

φ ( T ) ( f ) = T ( f ) , V T e F * , V / e L ' ,

where φ : F*-+ F*/L/0 is the canonical mapping. If φ(K*) = K*/L° is the
quotient cone in F*/L/0, since K* generates F*, K*/L/0 generates F*/L'°.
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For φ(T)eK*/Z°9 φ(T)(f)^09 V / G H ' a n d hence φ(T)eH'*. Con-
versely, for fe Hf* define T on V by T ( f ) = f ( ( l -j)/), V/6 V. Then,
Te X*, </>(T) - f and hence #'* - K*/L°.

In order to show that H° is positively generated, let Te V*, T(f)
= 0, V / G L and T= T\L. Then, from the result above, since K*/L°
generates V*/L°9 there exists T^K* such that φ(T^T or equiv-
alently Tl(f}^T(f)=T(f\ V / e f f . Define Γ2 G V* by T2(/)
- 7\((1 - j)/), V/e K Then T2 e K*nH°, and for /G K,

since Γ(/) = 0, V / e J f f ,

Hence T 2-TeK*n//°, T- T2 -(T2 - Γ)e K*nH° -X*nH° which
implies that H° is positively generated. This completes the proof.

Hence, the effect of any element of ^SΛΪF is to produce the set of
states of a restriction of the system. A class of operations likely to be of
some physical significance is the set of elements j e & such that for each
split extremal set H of KJ(H)CH. Such operations will be said to be
strong operations. The following result shows how they may be char-
acterized.

Proposition 3.13. For j e 0>Jjf =fj, V/ 6 0*SRW if and only if for each
split extremal set H in K,j(H)cH.

Proof. Suppose 7 G^ satisfies jj'=fj> Vj'e&sRw Let H be a split
extremal set in K and let jΈ &SRW be such that H = HT(jΎ For feH,
let j ( f ) = Λ + /2,/i G H, /2 e H'. Then,

/i =/;(/)=;/(/) =;(/) = /i +Λ

which implies that /2 = 05</(/) G H.
Conversely, suppose j G ̂ , satisfies j(/ί) C H for each split extremal

set H in K. Let / G 0>SRW and let H = HT(jΎ For / e X, let / = Λ + /2,
Λ G H, /2 G #'. Then, 7(Λ) G H, ;(/2) G ff' and

/j'(/)=j(/ι) =;/(/)-

Therefore;/ =/7 and the proof is complete.
As was remarked above, the set of split extremal sets in K define

a subset of the set of restrictions of the corresponding physical system
and for each restriction corresponding to a split extremal set H a com-
plementary restriction is defined by the complementary split extremal
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set H''. As was pointed out in [7], this is a desirable property for restric-
tions to possess. In the following sections, restrictions corresponding to
split extremal sets are called strong restrictions.

§ 4. The Von Neumann Algebra Model

For details of the theory of Von Neumann algebras the reader is
referred to [5, 6, 9,18]. Let 23 be a Von Neumann algebra acting on the
Hubert space X and let e, the identity in 23, be also the identity in the
algebra Q(X) of bounded linear operators on X. Let 23^ be the pre-dual
of 23, 7(23) the space of hermitean elements of 23^,^(23) the cone of
positive elements of 7(23) and #(23) the subset of K(%>) consisting of
elements ω such that ω(e) = 1. K(23) is the cone of positive normal linear
functionals on 23 and £(23) is the set of normal states of 23. For ω e K(23),
there exists {xn} C X such that

\\ω\\=ω(e)= f \\xn\\2 (4.1)

and "^
<o(T)=ΣωXn(T), VTe23 (4.2)

n=l

where for xeX, ωx(T) = <Tx, x>, V T e 23. Then, (7(93), 5(23)) is a com-
plete base norm space with norm closed cone K(23) and hence provides
a suitable model for a statistical physical system. This is said to be the
Von Neumann algebra model for quantum theory. The dual (7* (23), e) of
(7(23), #(23)) is a complete order unit space, Archimedean ordered by
the cone K*(23). 7* (93) and K*(93) may be identified with the sets of
self-adjoint and positive elements of 23 respectively, and e with the identity
in 23. Hence, the set Ά of simple observables may be identified with the
set of elements A of 23 such that 0 rg A £Ξ e. The set £(J) of extreme points
of Ά may be identified, therefore, with the set of projections in 23 [16].
It was shown in [7] that there is a one-one correspondence between
restrictions of the system and central projections in 23. In fact, for any
central projection A, the set of states of the corresponding restriction is
the set {ω:ωeK(B\ω(T) = ω(ATA\VTe?β} whilst the set of simple
observables in the restriction is the set {T : ΓG 23,0 ̂  T ̂  A}.

It is clear from the results of § 3 that the norm closed extremal sets
in K(%5) play an important role in the theory. The following result, most
of which is well known, summarizes their properties. For completeness
a proof is given. First, some notation is established. For ω e 23 ̂ , A, A e 23,
let Aω, ωA, AωA be defined respectively by

(Aω) (T) = ω(A T), (ωAf) (T) = ω(TA\ (AωA) (T) = ω(A TA'\ V T e ®

and for any subset £ of 23^, AQA = {AωA : ω e £}.
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Proposition 4.1. There exists a bίjection H±->EH between the set
of all norm closed extremal sets in K(23) and the set £(J) of projections
in 23, defined by,

EH = minimal projection in 93 such that ω = EHωEH, Vω e 77,
EHX={x:xeX,ωxeH}9

H = EHK(%>) EH={ω\ωε 7£(93), ω(e - EH) = 0}.

H C Hf if and only if EH ^ EH> and, if EH, EH, are orthogonal, 77n77' = {0}.
The mapping sends the set Γ(23) of all split extremal sets onto the set of
central projections in 33 and for 77eΓ(93) with complementary set
H', EH + EH, = e.IfHε 77(93), and H' is the smallest element of Γ(B) con-
taining 77, EH, is the central support of EH.

Proof. For 77 e 77(93), let XH = {x : x e X, ωx e 77}. For x,yεXH,aε C,

ωx+y + ωx_y = 2ωx + 2ωyeH, (4.3)

ωax = \a\2ωxεH. (4.4)

Since H is extremal, (4.3) shows that x + yeXH and (4.4) shows that
αxeX H . Hence, JfHisasubspaceofX. If {xπ} C^H,xeXand ||xn — x|| ->0
a simple limit argument shows that Hω^ — ωj| ->0 which implies, since
77 is norm closed that XH is closed. Let EH be the corresponding projec-
tion onto XH, For U unitary in 23', ωx = ωUx, Vx e X and hence, x e XH

implies UxeXH,VU unitary in 93'. It follows that UEH = EHU,VU
unitary in 93' and, since 23' is generated by its unitary elements, that
EH e 93" - 93. For ω e 77, let {xj C X be such that (4.1), (4.2) hold. Then,
since 77 is extremal, ωXn e 77, Vn, which implies that xn e EHX, Vn. Since
for A e flpf), x e X, ω^ = A*ωxA, it follows that ωXn = ojEflXn = EHωXnEH.
A simple limit argument now shows that ω = EHωEH. Suppose P is
a further projection in 93 such that ω = PωP, Vω E 77. Then, for x e XH,
ωx = ωPx which implies that <x, x> = <Px, x> and hence that Px = x. It
follows that EH^P. Therefore the mapping 77h>EH sends 77(93) into

Let P e E(Ά) and let 77 = 7£(93)n {e ~ P}0. Then 77 is a norm closed
extremal set and

EHX ={x:xεX,ωxGH} = {x:xeX,Px = x} = PX.

Therefore EH = P and H^EH maps onto E(Ά). Let 77, 77' e Π(B) and let
EH = EH' Suppose ω e H is given by (4.2). Then, ωXn e 77, Vn and there-
fore, since EHX = EH,X,ωXnEH'^n. Since 77' is norm closed, ωe77'
and therefore 77 C 77'. Similarly, 77' C 77 and therefore 77h->£H is a bijec-
tion. Let G = EHK(3β)EH. Then, for ωe G,EHωEH = ω which implies
that ω(EH) = ω(e) and hence that ωe77. Therefore Gc77 and con-
versely, for ω 6 77, ω = EHωEHE G. It follows that G = H and the first
part of the proof is complete.
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Let 77, H' E 77(33) and let 77 C 77'. Then, clearly XH C XH> and there-
fore EH^EH,. Conversely, if EH^EH,,ω(EH)^ω(EH,)9 VωeK(93). If
ω e 77, ω(e — EH) = 0 and hence,

0 ̂  ω(e - EH.) ̂  ω(e -EH) = 0

which implies that ω e H'. Hence 77 C H'.
Suppose 77,77' e 77(93), EHEH, = 0, ω e 77n77'. Then,

ω = EHωEH = EH,EHωEHEH, = 0 .

Next, suppose that EH is central and let ω e 7£(93). Then,

ω - £Hω£H + (e - EH) ω(e - EH) (4.5)

where EHωEHε 77, (e - EH}ω(e-EH}εH = (e- EH)K(<B}(e - EH)e77(93).
Suppose, alternatively that ω = ω1 + ω2, ωί e 77, ω2 e 77. Then,

H = ωl9(e- EH) ω2(e - EH) = ω2 ,
and

EHωEH = EHω±EH + EHω2EH = EHωlEH = ωί .

Similarly, (e — EH) ω(e — EH) = ω2 and the decomposition (4.5) is unique.
Suppose G E 77(93), 77nG={0}. Then, since EHEG = EGEH, it follows
that EHEG is the projection onto XHnXG. If 7?#EGΦO, there exists
x E XH n -YG, x φ 0 and therefore αλ, e 77 n G giving a contradiction. There-
fore, EH, EG are orthogonal projections and EG^e — EH.lt follows that
GcH, and therefore that the complementary set 77' of 77 is contained
in H. However, 7? e 77(93), 77n77 = {0} and therefore He H'. Hence,
H = H' and 77 is a split extremal set. Conversely, let H be a split extremal
set. Then, it follows from Prop. 3.12 and Theorem 6.1 of [7] that EH

is central. Hence, H\->EH is a bijection between Γ(33) and the set of
central projections in 93.

Finally, let 77 e 77(93) and let G be the smallest element of Γ(93) con-
taining 77. Then, EH ^ EG and, if EG* is any central projection such that
EH<,EG-,HC G" which implies that G C G\ EG ^ EG~. Therefore EG is the
central support of EH. The converse assertion is proved by reversing this
argument. This completes the proof.

It is now possible to characterize certain of the classes of operations
discussed in § 3. For A e £L, recall that the sets 77A, KA of transmitted
and non-transmitted states respectively, are norm closed extremal sets
in 7£(93) and hence there exist unique projections PA = EHA, QA = EKΛ in
93 such that HA = PAK(%) PA, KA = QAK(y>)QA. Prop. 4.1 shows that
x E PA X if and only if ωx(e - A) = 0 and therefore if and only if x lies in
the null space of e — A. It follows that PA is the projection onto the null
space of e — A and therefore that e — PA is the support of e — A. Similarly,
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e — QA is the support of A. Further, for x e QAX, Ax = 0 and (e — A) x = x
which implies that x lies in the range of e — A. The range projection of
e — A is precisely the support of e — A and hence QA ̂  e — PA and QA, PA

are orthogonal projections.
In particular, for A e E(Ά\ PA = A,QA = e-A. Conversely, if PA -f QA

= e, the range projection of e — 4 coincides with the null projection of
A and therefore A(e - A)x = 0, V x e X, A = A2 and A e E(J). The prop-
erties of simple observables in the Von Neumann algebra model are
given below.

Proposition 4.2. The set Ά of simple observables is the set of positive
elements A of 23 satisfying A^e and the set E(£) of extreme simple
observables is the set of projections in 23. For A e J, there exist uniquely,
orthogonal projections PA9 QA in 23 such that

HA = PAK(®)PA, KΛ = QAK(<B)QA

and e — PA, e — QA are the supports of e — A, A respectively. PA + QA = e

if and only if A e E(J) in which case PA = A, QA = e — A.

Notice that the Davies-Lewis definition of material implication, dis-
cussed in § 3, leads to the conclusion in this example that, for Aί9 A2 e J,
A^=>A2 if and only PAί <^ PA2, where e — PAί, e — PA2 are the range projec-
tions oΐe-Al,e-A2. For elements of £(J) this definition coincides with
Mackey's definition, namely that A±=>A2 if and only if Aί ^A2.

Let ̂  be the set of operations on the system. Then, j e & is a positive
linear mapping from ^(23) to itself such that \\j\\ rg 1 and clearly extends
to a positive linear mapping from 35^= K(S) + z'F(93) to itself. The
adjoint j* of j is an ultraweakly continuous positive linear mapping from
23 to itself. Lemma 5.1 of [20] shows that there exists a minimal projec-
tion EJ in 23 such thatj*(T)=j*(EjTEj), VTe23 and EjTEj^f(EjTEj)
is faithful. It follows that EJ is the minimal projection in 23 such that
EjCoEj^ω, Vωej(K(23)). Hence, Nj = EjK(<$)Ej is the smallest element
of 77(23) containing j(K(&)).

Recall that the mapping j\-*T(j) from ^ onto J is defined by
ω(T(])}=j(ω)(e\ VωeX(») or alternatively by T(j)=j*(e). Generally,
there are many elements j of ̂  such that T(j) = A [20]. It was shown
in § 3 that, for v e β(23),

j(ω) = ω(A)v, VωeX(S) (4.6)

is such an operation and clearly

j(ω) = A*ωA*, VωeK(23) (4.7)

is a further example.
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,̂ letj'e&j. Then, j(ω)(T(j')) = Q, VωeK(23) and hence
Kτ(jΊ which implies that Nj C Kτ(jΊ and therefore, using Prop.

4.1, that EJ^QTUΎ Conversely, if Ej^QT(jΊ9NjCKT(jΊ and j(K(23))
C £τ(/) which implies that / e J^ .

Suppose ^.nJ^ φO. Then, using Prop. 3.5 (iv), ^/CJ^ and hence
for / e yj9 Ej ^ QT(jΊ = Qe_T(j} = PT(j}. Conversely, if Ej ^ PΓϋ) - βΓ(/),
then, from above / e j^ . Summarizing,

Proposition 4.3. (i) For j e ̂ ,/ e j^ if αrcd on/j; z/ £7 ̂  βτ(/)
are disjoint if and only if Ej ̂  Qτu')> Ejr = QT(JY

(ii) Forje^,^n^Φ0 ι/ and only if E^PT(j} and ^}n^φ0 z/
cw/j; z/ Ej ̂  Pτo } α?7rf ί/zere exists]' e ̂  5i/c/z ί/zαί Er ^ PΓ(/)

It follows from Prop. 4.3 that j e ̂  is repeatable if and only if there
exists / e & such that,

(i)

Since PΓ(</ ), Pτ(n are °rth°gonal, it follows from (ii) that EJ9 Ey are
orthogonal. Further,) is (a) or (c)-repeatable according as,

(a) A e J, EJ ^ PA, Er ^Pe-A implies A = T(j\
(c) AεΆ, EJ ^ QA, EJ, ^ QA implies 4 = 0,

respectively.
Suppose first that 7 is (a)-repeatable with complementary repeatable

operation /. Then, Ej + Ej, rg e, and applying (a) above with A = Ej and
A = e — EJ, respectively gives Ej = T(j\ e — Ey = T(j). Hence Ej + Ejf = e.

Conversely, suppose j is repeatable with complementary repeatable
operation / such that Ej + Er = e. Let A e Ά satisfy Ej gj PA, Ey ^Pe-A

Then, e = Ej + Eϊ^PA + Pe_A = PA + QA. Therefore PA + QA = e and
Prop. 4.2 shows that PA = A9 QA = e-A. It follows then that E^A,
e — EJ :g Pe-A = e — A and hence Ej = A, Er = e — A. In particular, this
holds when A = T(j\ It follows that Ej = T(j\ Er = T(jf) and j is (a)-
repeatable.

Next, suppose that; is (c)-repeatable with complementary repeatable
operation /. Then, Ej + Er rg e and applying (c) above with A = e — Ej
- EJ,, gives EJ + EJ. = e.

Conversely, let j be repeatable with complementary repeatable opera-
tion / such that Ej + Er = e. Then, as before Ej = T(j\ Er = T(j'\ and if
A e Q satisfies Ej ̂  QA, Er ^ QA, since EJ9 Ey are orthogonal, e = Ej + Ey

^ QA. It follows that QA — e and therefore A = 0.
The following result has been proved.

Proposition 4.4. (i) j e £P is repeatable with complementary repeatable
operation / if and only ifEj rg PΓO> Ej' = PT(/)
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(ii) The following conditions on a repeatable operation j with com-
plementary repeatable operation f are equivalent,

(a) j is (a) -repeatable,
(b) Ej + Er = e,
(c) j is (c) -repeatable,

and if any of these conditions hold Ej = T(j\ Er — T(j'\

For; E0>,Gj={ω:ωe K(33),j(ω) = ω} is a norm closed convex subset
of K(95) such that G; Cj(K(»)). Let Mj be the smallest element of 77(33)
containing Gj and let Fj = EMj. Then, MjCNj,Fj^Ej and Fj is the
minimal projection in 93 such that

j(FjCoFj) = FjωFj, Vω e K(93) .

j is a filtering if and only if Gj = HT(j} and hence, j 6 0>F implies Fj = PT(j).
Let j be a repeatable operation with complementary repeatable

operation /, Then,

τcn ,

Z Ej ί Pτ(j) , Fj, ί Ey ^ PT(f)

Gj = Mj =j(K(Ά)) = Nj = HT(j} , Gr = My =f(K(*)) = Nj. = Hτ(n ,
FJ = EJ = pτ(j) > Fr = Er = pτ(f)

It follows that j is strongly (α)-repeatable if and only if Fj + Fjf = e.

Proposition 4.5. Letj e & be repeatable with complementary repeatable
operation f and letjJfe&F. Then j is strongly (a) or ( c) -repeatable if
and only if Fj + Fj> = e.

It follows from Prop. 3.11 and Prop. 4.1 that the set of strongly
repeatable reflections can be characterized as follows.

Proposition 4.6. There exists a one-one correspondence between ele-
ments j of 0>SRW and central projections T(j) in 93 defined by

j(ω)=T(j)ωT(j)9 VωeK(93).

It follows from Prop. 3.12 that every strong restriction of the system
is also a restriction. An immediate corollary of Prop. 4.6 is the following.

Proposition 4.7. In the Von Neumann algebra model, every restriction
is a strong restriction.

4 Commun. math. Phys., Vol. 20
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§ 5. "Pure" Operations in the Von Neumann Algebra Model

As was remarked above, for A e Ά, there are two obvious types of
operation; such that T(j) = A, defined by

I j(ω) = ω(A)v, v e£(23), VωeK(93),
II j(ω) = AίωA*, VωeK(93).

This second class can be widened considerably, for if U is a bounded
linear or anti-linear operator on X such that,

(i) U*U = A,
(ii) t/*93£/c93,

then, if
j(ω)=U*ωU , VωeK(93),

It is shown in [3] that when X is separable and 93 = fipQ, every
operation mapping the set 2 of extremal sets in 7£(23) of the form
{αv : ve£(23), α^O} into itself is of one of the kinds described above.
Further discussion of these kinds of operation has been given by Haag
and Kastler [13] and Hellwig and Kraus [14, 15]. In both cases such
operations were said to be "pure" operations. For an arbitrary Von Neu-
mann algebra 93, operations of the first kind map Q) into 3) providing v
is chosen to be an extreme point of £(33) though the same is not neces-
sarily true for operations of the second kind. It is, of course, true when
23 = &(X). All that can be said about operations of the second kind is
that they map vector states into vector states and clearly every extreme
point of £(23) is a vector state. The most that can be said about opera-
tions of the first kind is that they map^ into Q provided that v e £(£(23)).

The structure of Q) is intimately associated with the Type of 23 and
it may be that Q) contains very few elements. However, when 23 is the
Von Neumann envelope of a C*-algebra 21, <$ is isomorphic to the set
of pure states of 21 and £(23) is the closed convex hull of its set of
extreme points.

Let

0* = (/ j e 0>9 3 A e J, v e £(23)J(ω) = ω(A) v, Vω e K(23)},

^« = {j : j e.&>,lUe £(X), \\ U\\ ̂  1, [7*23 U C 93, j(ω) = U*ωU,
Vω e K(93)} .

The properties of these classes of operations are now discussed in
the light of §§3, 4.

Let j e 0>l be defined by

j(ω) = ω(A) v, A e J, A φ 0, v e £(93), Vω e K(93) . (5.1)

Then NJ is the smallest element of 77(23) containing v and therefore,
EJ = Ev, the support of v. In particular, if v is an extreme point of £(23),
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that is, a pure normal state, then Nj = {αv α^O}. Further,

Gj = {ω : ω ε £(93), ω(A) v = ω}

and if G φJO}, Nj = Mj9 Ej = Fj. Notice that Gyφ{0} provided that
v(A) φ 0, for in this case v/v(A) e Gj.

j e 0*τ if and only if ;(ω) = ω(e) v, Vω e £(93) and j e &s if and only if
£(93) = {αv : α ̂  0} and therefore, if and only if 95 - C.

Let / e ̂  be defined by

/(ω) - ω(4') v', 4' e J , X' Φ 0, v' e 5(93), Vω e £(95) . (5.2)

Then,;/(ω) = ω(V(A) A') v and it follows that;/ 6 ̂  and T(jf) = v'(
Therefore, ;',/ commute weakly if and only if v'(A) A' = v (A') A and
commute strongly if and only if in addition, v = v'. In particular, jj' are
disjoint if and only if vf(A] = v(A'} = 0. Clearly,

/ (ω) - ω(e - A] v', v' e 5(93), Vω e £(93) , (5.3)

defines an element of ̂ n^ and every element of ̂ n^ is of this form.
It follows that j is repeatable with complementary repeatable operation
/ given (5.3) if and only if v'(A) = 0, v(A) = 1, or, equivalently, if and only
if EV^PA, Ev<*Pe_A. Further, it follows from Prop. 4.4 that j is (a)
(or (c))-repeatable if and only if Ev = A, Ev, = e — A, in which case A, e — A
are the supports of v, V respectively.

Next, suppose that;, defined by (5.1), is an element of ̂ F such that
Gj Φ {0}. Then, HA = Gj C {αv : α ̂  0} and hence, HA = Gj = {αv : α ̂  0}.
Since v e Gj, it follows that v(A) = 1 and that v is a pure normal state
with support Ev = PA. Conversely, suppose that v is a pure normal state
with support PA. It follows that HA = {αv : α Ξ> 0} and since v e HA, that
v(A) = 1. Therefore v e Gj and HA = {αv : α ̂  0} C Gj. But G7 C HA and so
it follows that HA - Gj Φ {0}.

It follows from the two results above that;, defined by (5.1) is strongly
(a) (or (c))-repeatable with complementary repeatable operation/ defined
by (5.3) if and only if v, v' are pure normal states with supports A, e — A
respectively.

Suppose , defined by (5.1) is a strong operation. Then, Prop. 4.6
shows that for each central projection P in 93,

(PωP) (A) v =j(PωP)= Pj(ω)P = ω(A) PvP , Vω e £(93)

and, replacing ω by PωP, that ω(Pv4P) = ω(P,4P) v(P), Vωe£(93).
Therefore, either P.4P = 0 or v(P) = 1. If P^P = 09A = (e-P) A(e - P).
Since e — P is a central projection it follows that v(e — P) = 1,
v(P) = 0. If v(P) = 1, then v(e - P) = 0 and so (e-P)A(e-P) = 0,
A = PAP. Therefore, for each central projection P, either P^4P = 0,
v(P) = 0, or PAP = A, v(P)=l. Let CA be the central support of A and
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suppose P is a central projection such that P ̂  CA, P Φ CA. Then, P^4P Φ ̂
and therefore, PAP = 0 which implies that P = PCA = 0. Therefore CA is
a minimal central projection in 93 such that v(C^) = 1.

Conversely, let CA be a minimal central projection in 93 such that
v(CA) = 1, and let P be any central projection in 93. Then, either PCA = CAP
= 0 or PCA = CAP = CA and either, PAP = PCAACAP = Q or PAP
= PCAACAP = CAACA = A. In the first case,

v(P) = v(CAP) + v((e - CA) P) ̂  v(e - CJ = 0

and v(P) = 0. In the second case,

v(e - P) = v(CA(e - P)) + v((* - CA) (e - P)) £ v(e - CA) = 0

and v(P) - 1. If P4P = 0 and v(P) - 0,

j(PωP) = ω(PAP) v = 0 , Pj(ω)P = ω(A) PvP = 0, Vω e £(») ,

since v(P) = 0 and using Prop. 4.1. If PAP^A and v(P)= 1.

j(PωP) = ω(A) v , P (ω) P = ω(A) PvP = ω(A) v , Vω e K(B) ,

since v(e — P) = 0 and using Prop. 4.1. Therefore, for each central pro-
jection P in $,P/(ω)P=7'(PωP) and Prop. 4.6 shows that j is a strong
operation.

The properties of 3Pl are listed below.

Proposition 5.1. Let jj' e ̂  foe defined by (5.1), (5.3) respectively. Then,

(i) £,- = £v the support of v and if Gj Φ {0}, Ej = Fj.
(ii) 7 e 0>s if and only if A = e and 93 = C.

(in) j e &R with complementary repeat able operation / if and only if

(iv) j E 0>R is (a) (or (c))-repeatable with complementary repeatable
operation f if and only if Ev — A,Ev> = e — A.

(v) ye^F, GjΦ {0}, // and only if v is a pure normal state with
support PA.

(vi) j E &SRa(or ^SRC) wzί^ complementary repeatable operation / if
and only if v, v' are pure normal states with supports A,e — A respectively.

(vii) j is a strong operation if and only if the central support CA of A
is a minimal central projection such that v(CA) = 1.

Let j E 0>11 be defined by

j(ω)=U*ωU9Ue£(X), \\U\\ g 1, (7*93 L/C®, VωeK(93), (5.4)

and let A = T(j) = U* U. Then, tiSU9 Sv* are the supports of [/, U* respec-
tively then Sv, Sv* are the range projections of C/*, U respectively and
if U e 93, 1/*, Sv, Sv* E 93. Since QA is the null projection of 17*17, it
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follows that QA = e - Sv. AE E(£) if and only if U is a partial isometry
with initial projection A = U* U = Sv and in this case the final projection
of U is UU* = SV*. For xeXJ(ωx) = ωUx and it follows that Ej is the
minimal projection in 33 such that Sv* ̂  Ej. In particular, for U e 23, Sv* = Ej.

j € &τ if and only ifU*U = e and therefore if and only if U is a partial
isometry with initial projection e. je^s if and only if in addition

= X(93) and hence, if and only if U is unitary.
Let j' e ̂ π be defined by

f(ω)=U'*ωU'9 U'eSi(X), \ \ U ' \ \ £ 1 , I/^SI/'CS, VωeK(B), (5.5)

and if A' =T(j')=U'*Uf, suppose 4'ΦO. If j is defined by (5.4), and
A φ 0, then

j/(ω) - (I/' I7)*ω(l7' 17), Vω € K(») (5.6)

and j/ e ̂ π, T(//) = (C77 (7)* (V U). It follows that ;,/ are disjoint if and
only if U' U = U U' = 0 or equivalently, if and only if

S^e- Sυ, = QA<, V* ^ e - Sv = QA . (5.7)
Clearly,

/(ω) = (e- A}* ω(e - A)*, Vω e K(B) ,

defines an element of ̂ "nJ^ which is therefore non-empty.
Let j be defined by (5.4) and let/ be defined by (5.5), with A = e — A.

Then, it follows from (5.7) that j is repeatable with complementary
repeatable operation / if and only if

Su*£PA,Su'^Pe-A. (5.8)

Now suppose that j is (a) (or (c))-repeatable. Then, Ej = A, Er — e — A
from Prop. 4.4, and U, U' are partial isometrics with initial projections
A, e — A and final projections Sv* = U £/*, Sv>* =U'U'* respectively.
From (5.8), it follows that

Sv^A9Suf^e-A. (5.9)

Conversely, let j,/ be defined by (5.4), (5.5) respectively with A' = e — A,
U, Uf partial isometrics and suppose Ej + Ej, = e, UU* <.A,UfU'* <,e
— A. Then, from above j is repeatable with complementary repeatable
operation / and, in addition, Prop. 4.4 shows that j is (a) (and (c))-
repeatable.

When 17, U' e S3, and j is (a) (or (c))-repeatable with complementary
repeatable operation /, using the fact that Sv* = Ej, Sv,* = £,->, it follows
that
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Conversely, when UU' e 33, are partial isometries such that

U*U=U U*9 U'*Uf=U'Uf*,U*U+U'*U' = e,

(5.4) defines an (a) (and (c))-repeatable operation j with complementary
repeatable operation/ defined by (5.5).

Let // be defined by (5.4), (5.5) and suppose that j is strongly (a)
(or (c))-repeatable with complementary repeatable operation/. It follows
from (5.9) that the ranges of C7, Uf are contained in AX, (e — A)X respec-
tively and hence that

AU=U,(e-A)U'=U'9 (5.10)

U*A=U*,U'*(e-A)=U'*. (5.11)
For ω 6 £(93),

ω = AωA + (e — A) ωA + Aω(e — A) + (e — A] ω(e — A)

and therefore, since AωA e HA = GJ9 (e — A) ω(e — A) e KA,

j(ω) = AωA +j((e — A) ωA + Aω(e — A))

= AωA + U*(e-A)ωAU + U*Aω(e -A)U

where 7* is extended to 23^ by linearity,

= AωA + (U* - U*A)ωAU+ U*Aω(U- AU)

— AωA,

using (5.10), (5.11). Similarly,

/(ω) = (e — A) ω(e — A).

Conversely, suppose that// are defined by (5.4), (5.5) and

j(ω) = AωAJ'(ω) = A'ωA'9 VωeK(93)

where A' = e — A. Then,

ω((C7*U) 2) = ω(U*U),ω((U'*U')2) = ω(U'*U'), VωeX(93),

and therefore, 17* L7,1/'* 17'are projections. j(ω) = ω, if and only if ω e HA

and hence j e g?F and similarly / e 3PF. Clearly, j f =j'j = 0 and Ej + Ef

= A + A' = e. It follows that j is strongly (a) (and (c))-repeatable with
complementary repeatable operation/.

Finally, notice that j e ̂ π is always a strong operation when U e 23
or 93r and in particular, every strongly (a) (or (c))-repeatable operation
is a strong operation. The properties of ̂ π discussed above are listed
below.
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Proposition 5.2. Let jj e 0>n be defined by (5.4), (5,5) and let SU9 Sv*
be the supports of U, U* respectively, Then,

(ii) j E £PS if and only if U is unitary.
(iii) j e 3PR with complementary repeatable operation f if and only if

SU* = PA-> $U'* = Pe-A
(iv) j is (a) (or (c))-repeatable with complementary repeatable operation

/ if and only if 17, U' are partial isometries such that (7* U + Uf* U' = e,
UU*^U* U, V U'* £ U'* U', EJ -f Ef = e.

(v) // U, U1 € 93,7 is (a) (or (c)}-repeatable with complementary repeat-
able operation f if and only if U, U' are partial isometries such that
U*U=U [/*, [/' * [/' = V U' *, t7* ί/ + 17' * [/' = e.

(vi) j is strongly (a) (or (c))-repeatable with complementary repeatable
operation f if and only if

where A' = e~ A.
(vii) j is a strong operation if U e 23 or 33'.

Clearly, the most important result of Prop. 5.2 is (vi) which char-
acterizes the set of strongly (a) (or (c))-repeatable operations in ̂ π as
those of the form

where A is a projection in S. These are the operations suggested by
Von Neumann's measurement theory [21].
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