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Abstract. Recent work of Davies and Lewis has shown how partially ordered vector
spaces provide a setting in which the operational approach to statistical physical systems
may be studied. In this paper, certain physically relevant classes of operations are iden-
tified in the abstract framework, some of their properties are derived and applications to
the Von Neumann algebra model for quantum theory are discussed.

§ 1. Introduction

In a previous paper [7], the operational approach to the theory of
statistical physical systems,originally suggested by Haagand Kastler [13]
and recently formulated in terms of partially ordered vector spaces by
Davies and Lewis [4], was discussed in some detail.

Briefly, the abstract formulation may be described as follows. Regard-
ing states as (equivalence classes of) statistical ensembles of the physical
system under examination, the set of states may be represented by a
generating cone K for a real vector space V, where addition of elements
of K represents a process in which the corresponding states are mixed
and where multiplication by positive scalars represents the proportional
increase in the number of copies of the system in the corresponding
state. The element 0 of K represents the state in which there are no
systems. A state f may be thought of as a beam of systems emerging
from some conditioning apparatus at a constant rate e(f). Then, e ex-
tends to a strictly positive linear functional, called the strength func-
tional, on ¥ and the set B of states f such that e(f)=1 forms a base for
the cone K. B is said to be the set of normalized states of the system.
The Minkowski functional on the convex hull of Bu(— B) defines a
semi-norm on V which coincides with e on K. The assumption that
countable mixtures of states may be formed leads to the conclusion that
this semi-norm is, in fact, a norm with respect to which V is complete
[8]. In general, K need not be closed for the norm topology although
a result of Ellis [11] shows that if K, B are the completions of K, B
respectively, then K is a cone in V with base B and that the associated
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semi-norm coincides with the norm on V. Therefore, there is little loss
of generality in supposing that K is closed in V. An operation on the
system may be regarded as some kind of filtering process on the states
and may be described by an affine mapping j from K to itself satisfying
j0)=0,e(i(f)Ze(f), Vfe K. Each such mapping has a unique exten-
sion to a positive, norm non-increasing linear operator on ¥ and hence,
the set £ of operations may be identified with the positive part of the
unit ball in the space £(V) of bounded linear operators on V. The dual
space V* of V possesses a dual cone K* containing e as an order unit
and the ordering of V* by K* is Archimedean. Associated with each
operation j, there is an element T'(j)e V* such that 0 < T'(j) < e, defined
by T() (f)=e(i(f)), Y fe K. T(j) is said to be the simple observable cor-
responding to the operation j and the order interval [0, e]=2 is said
to be the set of simple observables of the system. It is easily verified that
the mapping j—T(j) sends £ onto 2. For fe K, T(j)(f)/e(f) is the
transmission probability for the state f under the operation j. It follows
that, if only experiments which count systems are allowed, 2 forms the
set of all measurable quantities. A restriction of the physical system may
be regarded physically as some process which reduces the number of
states of the system in a particular way. The set of states of the restricted
system forms a subset H of K. Simple physical considerations lead to
the conclusion that H is an extremal set of K satisfying a certain extension
property for bounded positive affine functionals on H. The former stems
from the obvious properties of mixed states whilst the latter is suggested
by the requirement that the set of simple observables of the restricted
system is precisely the set of simple observables of the whole system
where two are identified when they have equal probabilities on the set
of restricted states. The possibility that complementary restrictions exist
suggests that the annihilator H° of H in V* be positively generated and
the Heisenberg-Schrodinger duality between sets of simple observables
and sets of states suggests that H is norm closed in K.

An example of the situation described above is obtained by choosing
K to be the set of positive normal linear functionals on a Von Neumann
algebra B acting on a Hilbert space X and having identity e. Then, V
is the space of hermitean elements in the pre-dual B, of B, B is the set
of normal states of B, V* is the space of self-adjoint elements of B and
K* is the set of positive elements of B. The set 2 of simple observables
in this case reduces to the set of positive operators 4 in B such that
A Ze. 2is an ultraweakly compact convex subset of V* and by the Krein-
Milman theorem is the ultraweak closure of the convex hull of its set
E(2) of extreme points. E(2) is the set of projections in B [16]. A par-
ticular case of this example is obtained by choosing B to be the Von Neu-
mann envelope of an abstract C*-algebra 2. This leads to the approach
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to quantum theory suggested by Segal [19], Haag and Kastler [13].
The set of restrictions in the Von Neumann algebra model is in one-one
correspondence with the set of central projections in B. In fact, for each
central projection E in B, the set of states of the corresponding restricted
system is the set of positive normal linear functionals on the Von Neu-
mann algebra EBE acting on EX, whilst the set of simple observables
of the restricted system is the set of positive elements 4 of EBE such
that 4 < E. In the particular case in which B is the Von Neumann
envelope of the C*-algebra A, the set of restrictions is also in one-one
correspondence with the set of quasi-equivalence classes of representa-
tions of 2.

The main object of this paper is to investigate the properties of
various physically relevant subsets of 2 and £ in the abstract formulation
and attempt to identify them in the Von Neumann algebra model. It
should be remarked that £ is usually an extremely large set even in the
simplest examples and it would, therefore, be unreasonable to expect
that a characterization of all elements of 2 to be possible [20]. In § 3,
the structure of 2 and then of & is examined. It is shown that the set
E(2) of extreme points of 2 plays quite an important role in measurement
theory (Prop. 3.1) and it is shown that the set of operations, which
satisfy conditions similar to those imposed by Von Neumann [21] in
his measurement theory, lead to simple observables in E(2) (Prop. 3.6).
A still more restrictive class of operations is defined and it is shown that
the effect of such operations is to produce sets of states of restrictions
of the system (Prop. 3.12). In this connection, Prop. 3.11 owes much
to Alfsen [1] and Gerzon [12]. Several of the classes of operations
defined in § 3 stem from the work of Davies and Lewis [4].

In §4, the results of § 3 are applied to the Von Neumann algebra
model for quantum mechanics. It is shown that the various classes of
operations can be described by means of projections in the Von Neumann
algebra. In § 5, application is made to two particular classes of operations
which are important in algebraic quantum theory but which have not
been discussed in the abstract framework. It is not claimed that the results
in §§ 4, 5 are the strongest possible, for the Von Neumann algebra 8 con-
sidered is arbitrary. Clearly, more powerful results may be obtained by
choosing B to be a Von Neumann algebra or factor of fixed type.

§ 2. Preliminaries

For the most part the definitions and notation of [7] are maintained.
A non-empty subset K of a real vector space V is said to be a cone if
K+ KCK,aKCK,x=0and Kn(— K)={0}. The cone defines a partial
ordering on elements of V if f =g is defined to mean that f —ge K. If
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K—-K=V,K is said to be a generating cone. A subset H of K is said
to be an extremal set (support) of K if H+ HCH, o HCH, Yo =0 and
if feH, f=tfi+0—101f5fi,f,€K, te(0,1) implies f,f,€H. The
union H' of all extremal sets G in K such that HnG = {0} is said to be
the complementary set of H. If H' is an extremal set and every element f
of K has a unique decomposition f=g+h, ge H, he H', following
Alfsen and Anderson [1], H is said to be a split extremal set. A non-
empty convex subset B of K is said to be a base for K if, for each fe K,
f %0, there exist uniquely g € B, « >0 such that f =ag. A linear func-
tional e on V is said to be strictly positive if e(f)=0,V fe K and fe K,
e(f)=0 implies f =0. K possesses a base B if and only if there exists
a strictly positive linear functional e on V and in this case B may be
written as {f: fe K,e(f)=1}. If, for feV,

| flg=1inf{A=0: f € A conv(Bu(— B))}

where conv(BuU(— B)) is the convex hull of Bu(— B), then, providing
that K generates V, | .| 5 is a semi-norm on V' and

[ flp=1inf{e(f1)+e(f2): f = fi— f2. 1. /2€K}.

|. |5 is @ norm on V if and only if conv(Bu(— B)) is linearly bounded in
which case (V, B) is said to be a base norm space [10].

If S is any convex subset of a real vector space, a non-empty convex
subset F of S is said to be a face of S if, feF, f=tfi+(1 =0 f; fi./2
e S,te(0,1) implies f, f, € F. If F is a face of S, the union F’ of all faces
of S disjoint from F is said to be the complementary set of F. If F' is a
face and every f € S has a unique decomposition f =tg+(1—t)h, g€ F,
he F',t€[0, 1], F is said to be a split face [1]. If { f} CSisaface of S, f is
said to be an extreme point of S and the set of extreme points of S is
denoted by E(S).

Let (V, B) be a complete base norm space with norm closed cone K.
Then, there exists a bijection H—F between the set of extremal sets H
of K and the set of faces F of Bdefinedby F=HNB,H={o f:00 =0, fe F}.
H is norm closed in K if and only if F is norm closed in B. Let V* be the
dual of V and let K¥={T:TeV* T(f)=20,VfeK}. Then K* is a
o(V*, V) closed generating cone for V* and if B={f:fe K, e(f)=1},
ee K* and for TeV, there exists A=>0 such that —le< T <le. K* is
said to be the cone dual to K and e is said to be an order unit for the
ordering of V* by K*. In fact, if Te V*, T <aT’, some T' € K*, Vo >0,
T < 0 and in this case the ordering of V* by K* is said to be Archimedean.
Moreover, if for Te V*,

IT|,=inf{i=0, —le<T < Ae},
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II.ll. is @a norm on V* and (V*, e) is said to be an Archimedean ordered
order unit space. In fact the norm | .|, coincides with the Banach space
norm and the order interval [ — e, e] is the unit ball in (VV'*, e). The cones
K, K* are compatible in the sense that K={f": fe V, T(f)=0,YTe K*}.

For each subset L of V or J of V*, let I°, J, be the annihilators of L
in V* and J in V respectively. L°, J, are subspaces which are a(V*, V)
and norm closed respectively. If LC LN K — LN K, in which case L is
said to be positively generated, I° N K* is an extremal set in K* and if J
is positively generated, J,N K is an extremal set in K.

If S, S’ are convex subsets of real vector spaces a mapping ¢ : S— S’
is said to be gffine if and only if ¢p(tf +(1—1)g)=td(f)+ (1 —1) d(g),
Vf,geS,te[0,1]. When ¢ maps S one-one onto S, ¢ is said to be an
affine isomorphism. When S’ is a convex subset of the real line R, an
affine mapping is said to be an affine functional. If K, K' are cones in
real vector spaces a mapping ¢ : K— K’ is said to be affine if ¢(f +g)
=¢(f)+ P, plaf)=ad(f), Vf,ge K, =0, and if K'CR, ¢ is said to
be an affine functional. If (V, B) is a complete base norm space with norm
closed cone K, VV* may be identified with the space of all bounded affine
functionals on B or K and for Te V*,

ITll.=sup{|T(f):fe B} =sup{|T(f)l/e(f):feK}.

A Borel space (¥, #) is a space & together with a set # of subsets
of & closed under the formation of countable unions, countable inter-
sections and complements and contains & as an element. If V is a real
topological space and K is a cone in V, a mapping u: # — K such that
for any family {M,} of mutually disjoint elements of 4,

I (@1 Mn) = niu(Mn)

where the sum converges in the topology of V, is said to be a K-valued
measure on (&, 4). If the range of p lies in some subset K’ of K, u is said
to be a K'-valued measure.

§ 3. Operations and Simple Observables

Using [4], the following list of postulates were proposed in [7] for
the description of statistical physical systems.

1. The set of states of the system is represented by a norm closed cone
K in a complete base norm space (V, B).

2. The set of operations on the system is represented by the set 2 of
positive elements in the unit ball in the space (V) of bounded linear
operators on V.
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3. The set of simple observables of the system is represented by the
set 2 of elements A in the dual space (V*,e) of (V, B) satisfying 0<A<e
where the ordering is defined by the dual cone K* of K.

4. The set of instruments on the system is represented by the set of
P-valued measures & on Borel spaces (¥, B) such that e(&(¥) f)=e(f),
VfeKk.

5. The set of observables of the system is represented by the set of
9-valued measures o/ on Borel spaces (&, %) such that o/ (F)=e.

6. The set of states of a restriction of the system is represented by
a norm closed extremal set H of K satisfying,

() If L=H—H,F=HnB,(L, F)is a complete base norm space with
norm closed generating cone H.

(ii) If A is an affine functional on H such that 0< A(f) < e(f),V f € H,
there exists an affine functional A on K such that 0< A (f)<e(f),VfeK
and A(f)=A(f),VfeH.

(iii) HO is positively generated.

The first part of this section is devoted to a discussion of the general
properties of 2 and 2 and the mapping j— T'(j) from £ onto 2 defined by

TG (f)=e(j(f). VSeK. (3.1)

2 is the intersection of the a(V*, V) compact unit ball in (V'*, e) with
the o(V*, V) closed cone K* in V* and is therefore o(V*, V) compact.
Let E(2) be the set of extreme points of 2. Elements of E(2) are said to
be extreme simple observables. Clearly, 0, e € E(2), A € E(2), A #+ 0 implies
that |A| =1 and 4 € E(2) if and only if e — 4 € E(2). The Krein-Milman
theorem shows that for A€ 2, feK,e>0, there exist {A4;} CE(2),
i=1,2,..n{t;}C[0,1],i=1,2,... n such that

n
Y L=1,
i=1

A(f)= Y tA(N)] <e.
i=1
Let Z denote the set of integers and for i e Z, define
oA ()=tA4;,, 0<iZn,
=0, i=0,i<—n,i>n,

=t_(e—A_), —n<i<0.

-1
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For ACZ, let A, ={i:ieA,i=0}, A_={itied, i<0} and define
'Mf,s(/l) = z Mf,s(i)

ied
= ) LA+ ) tle—A4)
ied+ ied_

n n 3.2)
= '21 LA+ _Zl tile—A)

=e.

Hence, &7, ,(A) € 2 and if {A4,,} is a countable family of disjoint subsets
of Z,

'g{f,ﬁ( U Am) = Z Af,e(Am) (33)
m=1 m=1

Further, &/, (Z)=e and hence &/, , is an observable defined on Z.
Finally,

A, (Z.)= Y tA, A (L )=e— ) t;A;. 3.4
i=1 =1

13

Following [4], an observable is said to be discrete if it is defined on
a discrete space and finite if it is defined on a finite space. A discrete
observable .27 based on & is said to be extreme if o/ (s)e E(2), Vse <.
A restatement of the Krein-Milman theorem in these terms follows from
the discussion above.

Proposition 3.1. For each A€ 2, fe K, ¢>0, there exists a finite ex-
treme observable o/ ; . defined on a subset & of Z such that

lA() =, (LI <e,  |le—A)(f)— L (F)|<e.

It follows that the set E(2) fulfils quite an important role in measure-
ment theory since every simple observable can be approximated by finite
extreme observables.

Let A ={j:je &(V),j(K)CK}. Then,  is a strongly closed cone in
2(V), not, in general, generating [11], and £ is the intersection of "
with the unit ball in (V). It follows that £ is a uniformly closed convex
set in (V). Let 2* denote the set of all a(V*, V) continuous linear
mappings from V* to itself which are norm non-increasing and map K*
into K*. Then, if j* denotes the adjoint of je £, it is clear that j* € 2*
and that the mapping ji—;* is an affine isomorphism between £ and 2*.
It follows that any study of £ is automatically bound up with a study
of 2*.

For je 2, T(j)e 2 is defined by T()(f)=e(i(f)), Ve K, and it is
clear that j— T'(j) is an affine mapping from £ into 2. Further, for 4 € 2,
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if je 2 is defined by

If)=A(f)g. geBVfeK, 3.5

then T(j)=A and hence the mapping j—T(j) sends £ onto 2. For
Ae 2, T 1(A) is said to be an isotony class of operations corresponding
to the the simple observable A, and two operations in the same isotony
class are said to be isotonic.

Notice that, for je 2,

Il = sup {1j (N)s/IflIs:f €V} 2 sup{e(i(f))/e(f):fe K}
=sup{T()(f):fe B} =TI

and therefore the mapping j— T (j) is norm non-increasing. However,
this result does not give any information about continuity properties as
far as the relativised topologies of £ and 2 are concerned, since it is
not linear. However, for j;,j, € 2, fi, [, € K,

ITGy) (fr = f2) = TG2) (fs = f2)
= le(j; (f1) — eG2 (SO + le(ir (f2) — e(2(f))]
S i (f1) =i+ 17 () =72 ()l
< lji =iz le(f1) +e(f2)) -

It follows that, for fe V,

TGN =TG)NDN= M =20 1/ 1ls 3.7)

and hence that ji— T (j) is continuous for the relativised uniform topology
of 2 and the relativised norm topology of 2. Hence, every isotony class
is a uniformly closed convex subset of £. Further, since ji— T'(j) is affine
and maps onto 2, A € E(2) if and only if T !(4) is a face of 2.

For j,,j, €%, jij, is said to be the composition of j, and j, and cor-
responds to a physical process in which j, follows j,. For fe K,

T(1j2) (/) =elivj2 () = e(i2()) = T() ()

and hence, T'(,j,) = T(j,).

For the ordering of (V) defined by A, j;,j, € % j; <j, if and only
if A((;, —j,) (/) 20,V f e K, A€ 2and hence, if and only if T(jj,) = T (jj),
Vie?.

Finally, notice that, for j € 2, T(j)=j*(e). The properties of 2, % and
j—=T(j) are listed below.

(3.6)

Proposition 3.2. j— T'(j) is an affine mapping from the uniformly closed
convex set 2 in L(V') onto the a(V*, V) compact set 2 in V* continuous

3 Commun. math. Phys., Vol 20
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for the relativised uniform topology of & and the relativised norm topology
of 2 and satisfying,
(i) T(G)=j*(e), Vje 2.
(ii) For ji,j,€? T(j) =T () and jy<j, if and only if T(j,)
=T(j,) Vie 2.
(iii) For A€ 2, T*(A) is a uniformly closed convex subset of P and
is a face of 2 if and only if A€ E(2).

The properties of operations which are likely to be of physical interest
fall into two categories, namely those which are shared by all members
of an isotony class and those which are not. Physically, the difference
between the two categories of properties is that the existence of the
former type of property can be determined by experiments which merely
count the systems in any state, whilst the latter type of property requires
more sophisticated experiments to determine its existence. An example
of the former is “under an operation all copies of the system in every
state are transmitted”, and an example of the latter is “under an opera-
tion all copies of the system in every state are transmitted and the beam
of systems is rotated through some angle”. By merely counting trans-
mitted systems the two patently different properties are indistinguishable.

For A € 2, define

K,={A}onK. H,={e—A},nK. (3.8)

Forje T™(A), Ky={f:feK.e((/) =0}, Hy={ f:fe K.e(i( /) =e(f)}.
K,, H, are said to be the sets of non-transmitted and transmitted states,
respectively, under the operation j. Since {4}, {e— A} are positively
generated sets in V*, K,, H, are norm closed extremal sets in K. Asso-
ciated with each simple observable A, there is a unique complementary
simple observable e — A and for je T™(A), 7;=T '(e— A) is said to be
the isotony class of operations complementary to j. Since 4 € E(2) if and
only if e — A € E(2), it follows that 7 is a face of 2 if and only T (j) € E(2).

Clearly, forAe 2,K,_,=H,H,_,=K,andfor 4,,4,€ 2,4, <4,
implies that K,, C K, ,H, CH,, Some discussion of such properties
was given by Davies and Lewis [4] in their remarks on material implica-
tion. They defined a notion of material implication for simple observables
as follows: A;=A, if and only if H, CH,,. As they pointed out, this
definition is most reasonable from a physical point of view, although it
is weaker in general than that of Mackey [17] whose axioms for quantum
mechanics would lead to the definition: A, =4, if and only if 4; £ 4,,
in this case.

For j,j € 2, since T(jj) < T(j') it follows that

Krjy CKrgjy Hr(jy CHry -
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Itjeg;
TG (NH=THGN=(e—TG)G ()
=(T{)-T{@*)(f), VfeK
and hence,
TGj)=TG)— TG, TG )=TG—T{).

The following result lists the properties of complementation.

Proposition 3.3. (i) For Ae 2, K,, H, are norm closed extremal sets
in K.
(i) For A;,A,€e 2,te[0, 1],
Kigyra-0a, =Ky, 0Ky Hig 4 1 -ya, = Hay 0 Hy, -
(i) For Ae 2,K,_,=H,, H, ,=K, and for te(0,1),

K1A+(1 —te—A) = H (1-0)(e—4) = {0} .
(iv) Forje 2,7 ;is a uniformly closed convex subset of 2 and is a face
of 2 if and only if T(j)e E(2).
(v) Forje Z,j e 7,

TG)=TG¢)~ TG, TGH=TG—T}?).

An operation j is said to be a transmission if and only if Hp;, =K.
Physically, j is a transmission if and only if the number of copies of the
system in every state is unchanged when operated upon by j. Let £,
denote the set of transmissions in #. Clearly je #; if and only if T'(j)=e
and if and only if j*(e) = e. Since e € E(2) it follows that £} is a uniformly
closed face of #. The properties of transmissions are listed below.

Proposition 3.4. () The set Py of transmissions is a uniformly closed
face of 2.

(ii) The following conditions on je P are equivalent: je Pr; Ky
= {0}; j maps V one-one into V; j*(e)=e; j'j € Py some j € P.

(iii) Forj,j €2,

(@) j,j € Pr implies jj' € Pr, (b) je Py implies T(jj)=T('), (c) j€ Py,
j=j implies j' € Pr.

Two operations j,j'e€ # are said to be weakly commuting when
T(jjy=T('j) or alternatively when j*j*(e)=j*j*(e). For je £, let

L= e T{)=0}, R;={:je? T(jj)=0}

Z;, R;, U; are said to be the sets of operations, nullifying j, nullified by j,
and disjoint from j respectively. &;, Z;, U; are uniformly closed faces of

3%
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2 and, for j e &}, j, € T~ (T(})),
T () () =TG) G =TG) G)=TG)j)(f)=

VfeK and hence j, € ;. It follows that T ! (T(j ))C ;. Prop. 3.3 (v)
shows that j'e 7,0, if and only if T(j)=T(*) and j € 7;n %, if and
only if T(j")= T(]'z) From this remark it follows that .7; m,? + ﬂ if and
only if T(j)= T(] ) and in this case J;C.%; and T;N R, =i= /] 1f and only
if there exists j € 7 such that T'(j") = (]’z)and in this case T-YT()C ;.
fTnZ;+0, T(])— T(*) and, ¥ f e K, j(f)€ Hy;, and hence if j +0,

W= TG = sup{T()(f)e(f):feK}=1.

It follows that |T(j)| = |j|| = 1. Hence, the following important result
has been proved.

Proposition 3.5. (i) &;, #;, U; are uniformly closed faces of 2.

(ii) j'€ &; implies T~ (T(/))C &

(i) PL;CL;, R, P CR;, PU;CU, U P CU; and if jy Sj, € L) R
orU;, j, € L;, R or U; respectively.

(iv) Forje?,T,n%;+0 if and only if T(j)=T(j*) and in this case
T,C%; and if]#O Hr; #={0} il =1ITO)I =1, 7,0 =|:ﬂ if and only
lfthere existsj € 7 such that T(j') = T(j'*) and in thls case T"YT())C &},
and if %1, Ky # {0}, ] = Tl = 1. 7300+ if and only if
T(]) T(]2 and there exists j' € 7 ; such that T(;) T(j’z) and in this case

T, CL Ty C Ly and if j40 or 1, Hygy+ {0}, Ky {0} 1l = 1]
= II T(/)II = lI T(' )II =1

The set of operations j such that ;1 %;+ ¢ form an important class.
Following Davies and Lewis [4], such operatlons are said to be repeat-
able and the set of all such operations is denoted by Z. It follows from
Propn. 3.5 (iv) that j € 2, if and only if there exists j' € 2 such that

@) TG+ T{)=e,

(i) T()=TG), T()=TG"),
and (ii) can alternatively be replaced by

@) TG=TG)=
The symmetric nature of the definition shows that je & if and only if
j € Pg. In future, j' will be said to be a repeatable operation complemen-
tary to je Pg. Physically, repeatable operations are those for which a
second application yields the same transmission probabilities on all
states as did the first and which possesses a complementary operation
with the same property. Two points now arise. First, as was pointed
out in [4], it may be thought that repeatable operations are those which
produce states according to Von Neumann’s measurement theory [21].
Secondly, since, for je P, j+0, | T(j)|| = 1 and it might be thought that
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repeatable operations give rise to extreme simple observables. The next
result shows that this is the case if a further condition is imposed.

Proposition 3.6. Let je Py and let j/ be a complementary repeatable
operation. If one of the following equivalent conditions holds, then
T(j)e E(2):

(@) For j € 2, T(j,j)=T()), T(jj) =0 implies T(j,) = T()).

(b) For j, €2, T(j,j)=0, T(j,j) = T(') implies T(j;)=T().

Proof. First, conditions (a) and (b) are shown to be equivalent.
Suppose (a) holds and let j, € £ satisfy T'(j,j)=0, T(j,j') = T(j') Then, if
T()=e—T(>),

TG) () =(e=T(2) G(N)=(TG) — TG2/) ()= TG) ()

VfeK, and hence, T(j;j)=T(j). Similarly T(j;j)=0 and therefore,
T(G)=T(), T(j;)=e—T(j)=T(') and (b) holds. A similar argument
shows that (b) implies (a).

Let A;,4,€2,te(0, 1) and suppose that for je Py,

T(H)=tA +1—-14,.
e(i(N=TGH N =t4,()+ 1 —1) 4,(f).VfeK,
and therefore, replacing f by j'(f), j(f) respectively,
0="TG)(f)=e(f (NN=tA{U)+A-0)A((). (B9

TG (=TGP (N =e((f)=tA{(f)+1 -1 4,((f), (3.10)
¥ fe K. It follows from (3.9) that 4;(j'(f))=0,i=1,2,Vfe K, and, since
AG(N)=e((NN=TH(), i=1,2, YfeK, from (3.10) that A(i(f)
=T@H(f), i=1,2, Vfe K. If (a) holds, choosing j;,j, €2 such that
T(j)=A;,i=1,2, it follows that A, = T(j), i = 1, 2. Therefore, T (j) € E(2).
This completes the proof.

Suppose that j e #; has complementary repeatable operation j' and
let j; € 2 satisfy T'(j,j) = T(j), T(j,j) = 0. Then, physically, a measurement
of the simple observable defined by j; on the states obtained by operating
with j,j’ produces an effect indistinguishable from that obtained by a
second measurement of j and j'. In a sense, therefore conditions (a) or
(b) of Prop. 3.6 can be interpreted as a physical condition preventing
the existence of superselection rules for measurements of 7(j) and T(j’).

Notice that conditions (a), (b) of Prop. 3.6 appear to differ from
condition SR 3 of [4]. For j € #; with complementary repeatable opera-
tion j, this condition may be stated,

(c) For Ae2,A(i(f))=A('(f) =0, Yfe K, implies A=0. The fol-
lowing result shows that conditions (a) and (b) imply that a slightly
weakened version of (c) is true.

Then,
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Proposition 3.7. Let j € #r have complementary repeatable operation j'
and let j, j' satisfy condition (a) or (b) of Prop. 3.6. Then, j, j' satisfy the
following condition.

(d) For Ae 2, AST(), A((f)=A(G'(f)=0, V[feK, implies A=0.

Proof. Suppose, j, j satisfy condition (a) of Prop. 3.6 and let A€ 2
be such that A Z T(j), A(i(f)=A({(f)=0, VfeK. Let j, € P satisfy
T(j;)=T(j)— A. Then,

TG ) (N =(TO)=A(N=TG N)=THO(f)VfeK,
TGN N =(TH=-AG)=TG) (=0,  V/eK

and therefore T'(j,;) = T(j), A = 0. Therefore (d) above holds and since (a)
and (b) are equivalent (b) also implies (d).

In the following, a repeatable operation j with complementary repeat-
able operation j' satisfying conditions (a) and (b) or (c) is said to be (a) or
(c)-repeatable respectively.

The properties of operations which have so far been discussed have
been such that their existence may be determined by a consideration of
transmission probabilities alone. Next, an examination is made of a wider
class of properties of operations. For example, j, j' are said to commute
strongly if jj' =j'j.

Recall that the set #; of transmissions coincides with the set of
operations mapping K one-one into itself. A transmission j such that
J(K)=K is said to be a symmetry of the system. Clearly, the set Z5 of
symmetries forms a group with identity 1.

At this stage it is convenient to introduce a further set of states
associated with any operation. For je £, let

Gi={f:feK,j(/)=/}.

Then, G; is said to be the set of unchanged states under the operation j.
G; is clearly a uniformly closed convex subset of Hr(;, and G;= K if and
only if j = 1. Before proceeding to a discussion of the class of operations
for which G; has the greatest importance, the properties of symmetries
are listed.

Proposition 3.8. () & is a group with identity 1.

(i) Forje%s,j e,

Koty =" (Krp) Gj-1j=i "1 (Gy)

and in particular, for j € Pp,j " 'jje Py.

At the other extreme from the group of symmetries of the system is
the set of operations which act only as filters. An operation j is said to
be a filtering if and only if G;= Hy ;. Physically, any state which is
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unaltered numerically under j is unchanged. Let #; denote the set of
filterings in £. Clearly Py is convex and if j,, j, € Pr, j1j, € Pr.

Let je P, j '€ 7;. Then, Prop. 3.3 (v) shows that T(j'j)= T(j)— T(j*)
and fe KT(’z') if and only. if j(f) € Hy(;, = G;. It follows that fe Ky ; if
and only if j*(f)=j(f). Similarly, forjeg’,j/efjm@hfe Ky if and
only if j(f)=j(f). Using Prop 3.5 (iv) it follows that for je %,
T;n%;+ 0 if and only if j=j* and for]eﬂ TN R;nPp+ 0 if and only
if there exists j' € ;N Py such that j/ =

The properties of Pp are summarlsed in

Proposition 3.9. (i) 2 is a convex subset of P such that, for j,j € Py,
Ji'€ Py.

(i) j€ Pp, j € T implies that Ky, ={f:f€K, (f)=j(f)},j€ P,
J '€ T;n Py implies that Kr;;,={f:f€ K, j*(f)=j(f)}.

(i) PpPr= {1}, and j~ Ppj C Py, Vj € Ps.

(iv) Forje Py, T;n L% 0 if and only if j=j?, for je P, T,nR;N Py
£ 0 if and only if there exists j' € J NPy such that j =j'* and for j€ Py,
T; m% NPy +0if and only if j=j* and there exists j' € ;N Py such that
J=j?

Following [4], an (a) or (c)-repeatable operation j with complemen-
tary repeatable operation j' is said to be strongly (a) or (c)-repeatable
if and only if j,j' € . The sets of all such operations will be denoted
by Pgra and Pgp, respectively. Summarising, j € P, or Pp, if and only
if there exists j' € £ such that

) TH+T({)=e,

(i) T(G)=TG), T()="T("),

(i) T() (f)=e(f) implies j(f)= f, T(') (f)=e(f), implies j'(f) = f,

(iv) (a) if j; € & satisfies T'(j,j)= T(j), T(j,j') =0, then T'(j;)= T(j), or
equivalently,

(b) if j; € 2 satisfies T(jj)=0, T(j,j)= T(j'), then T(j,)= T(), or,

(c) if Ae2 satisfies A(j(f)=A('(f)=0, VfeK, then A=0, re-
spectively.

Immediate consequences of the definition are that jj' =jj=0, j=j* and
j=i

For je #,1—j is a bounded though not necessarily positive element
of (V). When, relative to the ordering of (V) by #,j<1,j is said to
be a reflection. In this case, it is clear that 1 —je 2 and that T(1—))
= e — T(j), which implies that 1 —je 7. Let 2, denote the set of reflec-
tions in &. Physically, an operation j produces a new state j(f) from a
state f and any complementary operation j* produces a new state j'(f)
from f, in such a way that the total number of systems in f is preserved.
Reflections j are distinguished among all operations in that there exists
a unique complementary operation 1 —j such that the mixture of the two
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states obtained by operating with j and 1—j on f is f itself. j may be
thought of as producing a transmitted state j(f) and a reflected state
S =ilf)-

Clearly 2, is a uniformly closed convex subset of 2 and the mapping
j—1—j is a uniformly continuous affine automorphism of Z,. For
j€ Py, suppose fe Hp(;,. Then, e((1—j)f)=0 which implies that j(f)
= f, f€G;. It follows that je Z. For je %, Propn. 3.9 (iv) shows that
T;nZ;+0 if and only if j=j* and hence, if and only if j(1—j)=0 or
(1—j)j=0. Let j, € Z satisfy T(j,j)=T(), T(j;(1—))=0. Then clearly
T(j;)=T() and similarly if Ae2 satisfies A(j(f))=A(1—))f)=0,
V fe K, then A =0. The properties of 2, are listed below.

Proposition 3.10. (i) 2, is a uniformly closed convex subset of # and
the mapping ji—>1 —j is a uniformly continuous affine automorphism of Py,.

(i) Py C Pp.

(iii) The following conditions on je€ Py are equivalent: T,n%; % @;
TiNU+0;j=j>

(iv) If je Py, j=J* then j€ Psp,O Psp..

(V) j.j € Py implies jj' € Py, j ' Pyj C Py, Vj€ Ps.

An operation j in Py, satisfying j = j* is said to be a strongly repeatable
reflection and the set of all such operations is denoted by Zgg,y. Such
operations are clearly of a very special nature. It should be remarked
that elements of Py are “L-projections” in the sense of [2] and have
also been studied by Gerzon [12].

It is not proposed to make a complete study of the structure of Pz
here. However, certain remarks are required for the successive sections.

Forje Psrw, f€ K,

f=iN+a=)nf (3.11)
is a decomposition into elements j(f) € Hy, = G;, (1 —j) (f) € Kr(;. Sup-
pose f = f, + f, is a further such decomposition. Then,

JN=jf)= 1, A=DN)=fi+ = fi=1a

and hence the decomposition (3.11) is unique. Suppose H is an extremal
set in K such that H " Hy; = {0}. Then, for fe H

f=iN)+A=)f, j(f)eHpy, A=) (f)e Ky .

Since H is extremal, j(f), (1 —j) (f) € H and hence, j(f) € H Hy; which
implies that j(f)=0 and H C Kr;. It follows that the complementary
set H' of H is contained in K ;. However, Ky is an extremal set in K
such that Ky, nHy = {0} and therefore K, C H'. Hence H'= K
and H is a split extremal set.
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Conversely, suppose j € Z and every f € K has a decomposition
f=n+fs, fieHp;=G;f,eKpg. (3.12)
Then, j(f)= f, and f—j(f)= f, € K. Therefore je %, and
PN =if)=1fi=if)

which implies that j = and j € Zsgy, . It follows then that Hy; is a split
extremal set with complementary set Kr;, and that the decomposition
(3.12) is unique.

Next suppose that H is any split extremal set in K and for fe K,
define j( /) = f; where f = f; + f, is the unique decomposition of f into
elements of H, H' respectively. Then, clearly, j is an affine mapping from
K into H and hence extends to a positive linear mapping on V. For fe K,

e(j(f)=e(fr)=e(f)

and therefore je 2. Further, f —j(f)e K,V fe K which implies that
j€ Py Clearly, j=j? and hence j € Psgyy. Finally,

HT(j):sz{f:fEKaj(f):f}CH

andif fe Hy, [ = fi+ f2. fieH, fie H, f,e H', j(f)= fimplies f, =0.
It follows that Hy(; = H and therefore the mapping ji— Hr ;) sends Pspy
onto the set of all split extremal sets in K, and the uniqueness of the
decomposition (3.11) shows that the mapping is one-one.

Proposition 3.11. (i) There exists a one-one correspondence ji—Hr
between the set Pspw and the set of all split extremal sets in K.

(i) If j e Pr satisfies the condition that every element f € K has a de-
composition f = fi + f,, f1 € Hy, f> € Ky then j € Pspy.

It is obvious from the proof of Prop. 3.11 that the mapping j+Hr;
has far more properties than have been stated above. A list of some of
the properties is given below. The proofs which are not obvious can be
found in [1, 2, 12].

(i) For each split extremal set H, H' is a split extremal set and if
H=Hyy, H'=Hrq -

(ii) Every split extremal set is norm closed.

(iii) For split extremal sets H,, H,, H, " H,, conv(H; U H,) are split
extremal sets and if H; = Hy;,), H, = Hy(;,;, HHOHy = Hy(j, )= Hy(j, j,
conv(H; UH,)=Hr, +j,-j, j,- Hence, for ji, j, € Psrw. jijz =Jajr1>jr +z
—J1j2 € Psrw-

It was remarked above, that Pgg, forms a very limited class of
operations. The following result gives some idea how limited it is.
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Proposition 3.12. For j € Py, Hy ;) is the set of states of a restriction
of the system.

Proof. For convenience, let H=Hy;, H' =Ky, F=HnB, F'=H’
NB,L={f:feV,j(f)=f}, L={f:feV,j(f)=0}. Then clearly H— H
C L and conversely, suppose fe L, f = f, — f,, fi,f2» € K. Then, f =j(f)
=j(f1)—j(f,)e H—H. Hence, H— H=L and similarly H' —H'=L. It
follows that (L, F) is a base norm space with cone H and clearly, L, H
and F are all norm closed in V. The base norm |. |y on L is defined by

[ flr=inf{e(f)+e(f2):f=fi— fo.fi.freH}, VfeL
and the base norm in (V, B) is defined by

I/ Ip=inf{e(f))+e(f2):f = fi = fo. /1. /€K},  VfeV.
For fi,f, € K, there exist uniquely f;,, f>; € H, f1,, f2, € H such that
fi=Tu+fas fa=fut fo-
Iff=fi—foel,
Ju—fa=iN=f=fu+fuo—fu—Ff»
and hence f;, = f,,. Therefore,

e(fy)+e(fi)=e(fi1)+e(fr1)+2e(f25)
fi1>» fon€H, fyeH', f=f1—f5. It follows that

| fllp=inf{e(g,) +e(g,) +2e(9): f=91—92.91-9.€ H,ge H'}
= fllg-

Therefore, (L, F) is a complete base norm space with norm closed cone H
and base norm identical to the norm as a closed subspace of (V, B).
Hence condition (i) of Postulate 6 holds. Notice that similar remarks
apply to (L, F').

Let A be an affine functional on H such that 0 S A(f)<e(f),VfeH
and define 4 on K by A(f)= A(j(f)). Then, clearly 4 is an affine func-
tional on K such that 0 < A(f)<e(f),Vfe K and A(f)=A(f), Vfe H.
This proves (ii) of Postulate 6.

The dual space (L'*,ep) of (L, F’) is a complete order unit space
Archimedean ordered by H'* and as a Banach space L * may be identified
with V*/L'° by means of the identification

(Y (f)=T(f), VTeV* VfeL,

where ¢ : V¥ V*/L° is the canonical mapping. If ¢(K*)= K*/L° is the
quotient cone in V*/L°, since K* generates V*, K*/L'° generates V*/L°.



Operations in Quantum Theory 43

For ¢(T)e K*/L°, ¢(T)(f)=0, Vfe H and hence ¢(T)e H'*. Con-
versely, for Te H'* define T on V by T(f)= T(—j)f), VfeV. Then,
Te K* ¢(T)=T and hence H'* = K*/L°.

In order to show that H? is positively generated, let Te V*, T(f)
=0,V feL and T'= T|L. Then, from the result above, since K*/L°
generates V*/L'°, there exists T, € K* such that ¢(T;)= T’ or equiv-
alently T (f)=T'(f)=T(f), VfeH. Define T, eV* by T,(f)
=T (1—j)f),VfeV. Then T, e K¥*nH®, and for fe K,

LN —-TN)=T(A=)f)=T(f)
=T({A-)f)-TA-)f)
since T(f)=0,VYfeH,
=T({(A=)f)-T'(A1-)f)=0.

Hence T, — Te K¥*nH®, T=T,—(T,— T)e K*nH® — K*nH° which
implies that H? is positively generated. This completes the proof.

Hence, the effect of any element of %, is to produce the set of
states of a restriction of the system. A class of operations likely to be of
some physical significance is the set of elements j € 2 such that for each
split extremal set H of K, j(H)C H. Such operations will be said to be
strong operations. The following result shows how they may be char-
acterized.

Proposition 3.13. For je 2, jj' =j'j,Vj € Psgw if and only if for each
split extremal set H in K, j(H)C H.

Proof. Suppose je 2 satisfies jj'=j'j, Vj' € Psrw. Let H be a split
extremal set in K and let j'€ Py be such that H= Hy ;. For fe H,
letj(f)=fi+ f2.fi€e H, f,€ H'. Then,

Ji=7iN =i (N=iNH= S+ 1>

which implies that f, =0,j(f)e H.

Conversely, suppose j € £, satisfies j(H) C H for each split extremal
set H in K. Let j'€ Psgy and let H=Hy;,. For fe K, let f = f; + f,
fieH, f,eH' Then, j(f;)eH, j(f,)e H and

JitH=i(f)=ii(f).

Therefore jj’ =j'j and the proof is complete.

As was remarked above, the set of split extremal sets in K define
a subset of the set of restrictions of the corresponding physical system
and for each restriction corresponding to a split extremal set H a com-
plementary restriction is defined by the complementary split extremal
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set H'. As was pointed out in [7], this is a desirable property for restric-
tions to possess. In the following sections, restrictions corresponding to
split extremal sets are called strong restrictions.

§ 4. The Von Neumann Algebra Model

For details of the theory of Von Neumann algebras the reader is
referred to [5, 6,9, 18]. Let B be a Von Neumann algebra acting on the
Hilbert space X and let e, the identity in B, be also the identity in the
algebra £(X) of bounded linear operators on X. Let B,, be the pre-dual
of B, V() the space of hermitean elements of B, K(B) the cone of
positive elements of V' (B) and B(*B) the subset of K(B) consisting of
elements w such that w(e) = 1. K(B) is the cone of positive normal linear
functionals on B and B(B) is the set of normal states of B. For w € K(B),
there exists {x,} C X such that

loll=wle)=Y lx,|? (4.1)

and ":1
o)=Y o, (T), VTeB 4.2)

n=1
where for x e X, w,(T)={Tx, x), VT e B. Then, (V(B), B(B)) is a com-
plete base norm space with norm closed cone K(‘B) and hence provides
a suitable model for a statistical physical system. This is said to be the
Von Neumann algebra model for quantum theory. The dual (V*(B), e) of
(V(B), B(B)) is a complete order unit space, Archimedean ordered by
the cone K*(B). V*(B) and K*(*B) may be identified with the sets of
self-adjoint and positive elements of B respectively, and e with the identity
in B. Hence, the set 2 of simple observables may be identified with the
set of elements 4 of B such that 0 < A4 < e. The set E(2) of extreme points
of 2 may be identified, therefore, with the set of projections in B [16].
It was shown in [7] that there is a one-one correspondence between
restrictions of the system and central projections in B. In fact, for any
central projection 4, the set of states of the corresponding restriction is
the set {w:we K(B), o(T)=w(ATA),YTe B} whilst the set of simple

observables in the restriction is the set {T: TeB,0< T < 4}.

It is clear from the results of § 3 that the norm closed extremal sets
in K(*B) play an important role in the theory. The following result, most
of which is well known, summarizes their properties. For completeness
a proof is given. First, some notation is established. Forwe B,, 4, A’ € B,
let Aw,wA’, AwA’ be defined respectively by

(Aw)(T)=w(AT), (wA) (T)=w(TA"),(AwA) (T)=w(ATA),YTeB
and for any subset £ of B,, ALA' = {AwA :we L}.
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Proposition 4.1.There exists a bijection H+ Ey between the set I1(B)
of all norm closed extremal sets in K(B) and the set E(2) of projections
in ‘B, defined by,

Ey = minimal projection in B such that o =EzwEy, Yo e H,

ExX={x:xeX,w, e H},
H=EuK(B)Eg={w:we K(B), v(e— Ey)=0}.
HCH' if and only if Eqg < Ey and, if Ey, Ey. are orthogonal, HNH' = {0}.
The mapping sends the set I'(B) of all split extremal sets onto the set of
central projections in B and for HeI(B) with complementary set
H,Ey+Eyg =e If HeII(B), and H' is the smallest element of I'(B) con-
taining H, Ey. is the central support of Eg.

Proof.For HeII1(B),let Xy ={x:xe X,w, € H}.Forx,ye Xg,aeC,
Wyiyt o, =20,+2w,eH, 4.3)
Wy =lof* 0, eH. 4.4)

Since H is extremal, (4.3) shows that x+ ye X, and (4.4) shows that
ax € Xy. Hence, X is a subspace of X. If {x,} C Xg,x€ X and | x,— x|| -0
a simple limit argument shows that [|w, — .|| —0 which implies, since
H is norm closed that X is closed. Let Ep be the corresponding projec-
tion onto Xy, For U unitary in B’, w, = wy,, Yx € X and hence, x € Xy
implies Uxe Xy, VU unitary in B'. It follows that UE;=ELU,VU
unitary in B’ and, since B’ is generated by its unitary elements, that
EpeB"=B. For we H, let {x,} C X be such that (4.1), (4.2) hold. Then,
since H is extremal, o, € H, Vn, which implies that x, € E; X, Vn. Since
forAe &(X),xe X,w,, = A*w,A,itfollows thatw, = wg,, , = Egw, Eg.
A simple limit argument now shows that w = EgzwEy. Suppose P is
a further projection in B such that w = PwP,Vw € H. Then, for x € Xy,
w, = wp, which implies that {x, x> = (Px, x> and hence that Px=x. It
follows that Ey < P. Therefore the mapping H Ej sends II(B) into
E(2).

Let Pe E(2) and let H=K(B)n{e— P},. Then H is a norm closed
extremal set and

EqxX={xxeX,wo,eH}={x:xe X,Px=x}=PX.

Therefore Ey =P and H+— Ey maps onto E(2). Let H, H' € II(B) and let
Ey=Ey.. Suppose w e H is given by (4.2). Then, w, € H,Vn and there-
fore, since EyX = Ey X, w, € H',Vn. Since H' is norm closed, we H’
and therefore H C H'. Similarly, H' C H and therefore H+ Ey is a bijec-
tion. Let G=E{K(B) E4. Then, for we G, EywEy, = which implies
that w(Ey) = w(e) and hence that we H. Therefore GCH and con-
versely, for we H, w = EzwEy € G. It follows that G=H and the first
part of the proof is complete.
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Let H,H € I[1(B) and let H C H'. Then, clearly Xy C Xy and there-
fore Eg<Ey. Conversely, if Ez<Ey,0(Eg)Sw(Ey), Yoe K(B). If
we H,w(e— Ey) =0 and hence,

0<w(e—Ey)<wle—Eg)=0

which implies that w e H'. Hence HC H'.
Suppose H,H' € I1(B), E4Ey =0, we HNH'. Then,

w=EqwEy=Ep EqwE E, =0.
Next, suppose that E is central and let w € K(*B). Then,
w=EqwEy+(e— Ep) w(e— Ey) 4.5)

where EgwEy € H, (e — Ey)w(e— Eg)e H = (e — E) K(B) (e — E) e I1(B).
Suppose, alternatively that w = w; + w,, w; € H, w, € H. Then,

Eyo,Eqy=w,(e—Eg) w,(e—Ep)=w,,
and
EqwEy=EyowEy+ Eqw, Ey=Eqw Eq= ;.

Similarly, (e — Ey) w(e — Eg) = w, and the decomposition (4.5) is unique.
Suppose GeII(B), HNG={0}. Then, since E4E;=EgEy, it follows
that E4E; is the projection onto Xy;nXg;. If EfE;+0, there exists
x € XynXg, x+0and therefore w, € H N G giving a contradiction. There-
fore, Ey, Eg are orthogonal projections and E; < e — E. It follows that
G C H, and therefore that the complementary set H' of H is contained
in H. However, H ell(B), H nH = {0} and therefore H C H'. Hence,
H=H'and H is a split extremal set. Conversely, let H be a split extremal
set. Then, it follows from Prop. 3.12 and Theorem 6.1 of [7] that Ey
is central. Hence, H— Ey is a bijection between I'(B) and the set of
central projections in B.

Finally, let H € II(B) and let G be the smallest element of I'(B) con-
taining H. Then, E4 < E; and, if E;- is any central projection such that
Ey < E4-, H C G"which implies that G C G, E; < E;-. Therefore Eg is the
central support of Ey. The converse assertion is proved by reversing this
argument. This completes the proof.

It is now possible to characterize certain of the classes of operations
discussed in § 3. For 4 € 2, recall that the sets H,, K, of transmitted
and non-transmitted states respectively, are norm closed extremal sets
in K(B) and hence there exist unique projections P, = Ey,, Q,= Eg, in
B such that H,=P,K(B)P,, K,=Q,K(B)Q,. Prop. 4.1 shows that
xe P, X if and only if w (e — A) =0 and therefore if and only if x lies in
the null space of e — A. It follows that P, is the projection onto the null
space of e — 4 and therefore that e — P, is the support of e — A. Similarly,
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e — Q, is the support of 4. Further, for xe Q,X, Ax=0and (e— 4) x=x
which implies that x lies in the range of e — A. The range projection of
e— A is precisely the support of e — A and hence Q,<e— P, and Q,, P,
are orthogonal projections.

In particular, for A€ E(2), P,= A4, Q,=e— A. Conversely, if P, + Q,
= ¢, the range projection of e — A coincides with the null projection of
A and therefore A(e— A)x=0,Vxe X, A= A? and A € E(92). The prop-
erties of simple observables in the Von Neumann algebra model are
given below.

Proposition 4.2. The set 2 of simple observables is the set of positive
elements A of B satisfying A<e and the set E(2) of extreme simple
observables is the set of projections in B. For A € 2, there exist uniquely,
orthogonal projections P, Q, in B such that

HA:PAK(%)PA’ KAzQAK(%) 04

and e—P,, e —Q, are the supports of e— A, A respectively. P, +Q, =¢e
if and only if A€ E(2) in which case Py=A, Q,=e— A.

Notice that the Davies-Lewis definition of material implication, dis-
cussed in § 3, leads to the conclusion in this example that, for 4;, 4, € 2,
A=A, ifand only P, < P,,, where e— P, , e — P, are the range projec-
tions of e — 4, e — A,. For elements of E(2) this definition coincides with
Mackey’s definition, namely that 4, = A, if and only if 4, < A4,.

Let 2 be the set of operations on the system. Then, j € 2 is a positive
linear mapping from V(B) to itself such that ||j|| <1 and clearly extends
to a positive linear mapping from B, =V (B)+iV(B) to itself. The
adjoint j* of j is an ultraweakly continuous positive linear mapping from
B to itself. Lemma 5.1 of [20] shows that there exists a minimal projec-
tion E; in B such that j*(T)=j*(E;,TE;), VT e B and E;TE;~j*(E;TE))
is faithful. It follows that E; is the minimal projection in B such that
E,0E; =, Vo € j(K(B)). Hence, N; = E;K(B) E; is the smallest element
of I1(B) containing j(K(B)).

Recall that the mapping j—T(j) from £ onto 2 is defined by
o(T(j))=j(w) (e), Yw € K(B) or alternatively by T(j)=j*(e). Generally,
there are many elements j of 2 such that T(j)= A [20]. It was shown
in § 3 that, for v e B(*B),

jlwy=w(A)v, VYweK(B) (4.6)
is such an operation and clearly
jlw)=A*wA*, VYweK(B) 4.7

is a further example.
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For je 2, let j e &;. Then, j(w)(T()=0, Vwe K(B) and hence
J(K(B)) C Ky which implies that N;C Kr;, and therefore, using Prop.
4.1, that E;<Qy). Conversely, if E;<Qr), N;C Ky, and j(K(B))
C Ky, which implies that j' € ;.

Suppose 7;n %;+@. Then, using Prop. 3.5 (iv), 7;C%; and hence
for j € 7}, E; < Qry=Qc-1(j) = Pr(j- Conversely, if E;<Pr;=Qr;y
then, from above j' € &;. Summarizing,

Proposition 4.3. (i) For je 2,j € &, if and only if E;<Qr, and j, ]
are disjoint if and only if E; < Qr v, Ei < Qr;).

(i) For je 2, 7;n%;+0 if and only if E;< Py and T,0nU+0 if
and only if E; < Pr; and there exists j' € 7 such that E; < Pr ;.

It follows from Prop. 4.3 that j € 2 is repeatable if and only if there
exists j' € # such that,

@) TH+T({)=e.

(i) E;= Pr, Ep = Prj)

Since Pr(;), Pr(yy are orthogonal, it follows from (ii) that E;, E; are
orthogonal. Further, j is (a) or (c)-repeatable according as,

(@) A€ 2,E;<P,, E;, <P,_, implies A= T(j),

() Ae2,E;=<Q4 E;, =Q, implies 4 =0,
respectively.

Suppose first that j is (a)-repeatable with complementary repeatable
operation j'. Then, E;+ E; <e, and applying (a) above with 4= E; and
A=e—E; respectively gives E;= T(j), e— E; = T(j). Hence E;+ E; =e.

Conversely, suppose j is repeatable with complementary repeatable
operation j' such that E;+ E; =e. Let A€ 2 satisfy E; <P, E; <P,_,.
Then, e=E;+E;<P,+P,_,=P,+Q, Therefore P,+Q,=e and
Prop. 4.2 shows that P,=4, Q,=e— A. It follows then that E;< 4,
e—E;<P,_,=e—A and hence E;= A, E;, =e— A. In particular, this
holds when 4 =T()). It follows that E;=T(j), E, = T(j') and j is (a)-
repeatable.

Next, suppose that j is (c)-repeatable with complementary repeatable
operation j'. Then, E;+ E; <e and applying (c) above with 4 =e—E;
—E;, gives E;+ E; =e.

Conversely, let j be repeatable with complementary repeatable opera-
tion j' such that E; + E; = e. Then, as before E;= T(j), E; = T(j'), and if
A€ 2 satisfies E; < Q 4, E; < Q, since E;, E; are orthogonal, e=E; + E;
<0Q,. It follows that Q , =e and therefore A =0.

The following result has been proved.

Proposition 4.4. (i) j € 2 is repeatable with complementary repeatable
operation j' if and only if E; < Pr;), E; < Pr(j).
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(ii) The following conditions on a repeatable operation j with com-
plementary repeatable operation j' are equivalent,

(a) jis (a)-repeatable,

(b) E;+E; =e,

(c) jis (c)-repeatable,
and if any of these conditions hold E;= T(j), E; = T(j).

Forje Z, G;={w:we K(B), j(w) = w} isanorm closed convex subset
of K(B) such that G;Cj(K(B)). Let M; be the smallest element of I1(B)
containing G; and let F;=E, . Then, M;CN;, F;<E; and F; is the
minimal projection in B such that

j(FjoF)=F,0F;, YweK(B).

j is a filtering if and only if G; = Hr;, and hence, j € Z; implies F; = Py ;.
Let j be a repeatable operation with complementary repeatable
operation j/, Then,

G;Cj(K(B))CHyy, Gy Cj(K(B)CHr,
M;CN;CHyyy, M;CNyCHyyy, F=Ej=Prg, FysEysPr
and if j,j' € Py,

Gi=M;=j(K(B)=N;=Hry, Gp=M;=j(K(®B)=N;=Hpy.
Fi=E;=Pr;, Fp=Ep=Pr;.
It follows that j is strongly (a)-repeatable if and only if F; + F; =e.

Proposition 4.5. Let j € 2 be repeatable with complementary repeatable
operation j' and let j,j'€ Pp. Then j is strongly (a) or (c)-repeatable if
and only if F;+F,=e.

It follows from Prop. 3.11 and Prop. 4.1 that the set of strongly
repeatable reflections can be characterized as follows.

Proposition 4.6. There exists a one-one correspondence between ele-
ments j of Pspw and central projections T (j) in B defined by

jw)=T(loT(G), VYweK(B).

It follows from Prop. 3.12 that every strong restriction of the system
is also a restriction. An immediate corollary of Prop. 4.6 is the following.

Proposition 4.7. In the Von Neumann algebra model, every restriction
is a strong restriction.

4 Commun. math. Phys., Vol. 20
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§ 5. “Pure” Operations in the Von Neumann Algebra Model

As was remarked above, for A € 2, there are two obvious types of

operation j such that T'(j)= A, defined by
I jl@=w(A)v, veB(®B), YweK(B),

I jw)=A4A*wA*, VYoweK(B).

This second class can be widened considerably, for if U is a bounded
linear or anti-linear operator on X such that,

(i) U*U=4,

(i) U*BU CB,
then, if

j@)=U*wU, VYweK(B),
je?, T(j)=A.

It is shown in [3] that when X is separable and B = 2(X), every
operation mapping the set & of extremal sets in K(B) of the form
{av:ve B(B),a =0} into itself is of one of the kinds described above.
Further discussion of these kinds of operation has been given by Haag
and Kastler [13] and Hellwig and Kraus [14, 15]. In both cases such
operations were said to be “pure” operations. For an arbitrary Von Neu-
mann algebra B, operations of the first kind map & into & providing v
is chosen to be an extreme point of B(B) though the same is not neces-
sarily true for operations of the second kind. It is, of course, true when
B = £(X). All that can be said about operations of the second kind is
that they map vector states into vector states and clearly every extreme
point of B(*B) is a vector state. The most that can be said about opera-
tions of the first kind is that they map & into & provided that v € E(B(B)).

The structure of & is intimately associated with the Type of B and
it may be that & contains very few elements. However, when B is the
Von Neumann envelope of a C*-algebra U, 2 is isomorphic to the set
of pure states of A and B(B) is the closed convex hull of its set of
extreme points.

Let

P ={j:jeP,IAe 2,ve B(B),j(w)=w(d)v,YVwe K(B)},
P'={j:je2IUe LX), |U| =1, U*BUCB,j(w)=U*wU,
Ywe K(B)}.
The properties of these classes of operations are now discussed in
the light of § 3, 4.
Let je 2" be defined by

jlw)=w(d)v,Ae2,A+0,ve B(B),Ywe K(B). (5.1)

Then N; is the smallest element of I1(B) containing v and therefore,
E;=E,, the support of v. In particular, if v is an extreme point of B(B),
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that is, a pure normal state, then N;= {av:a=0}. Further,
Gi={w:weK(B),w(4)v=w}

and if G;# {0}, N;=M;, E;=F, Notice that G;+ {0} provided that
v(4) # 0, for in this case v/v(4) € G;.

j€ P if and only if j(w) =w(e) v, Vo € K(B) and j e % if and only if
K(B)={av:a =0} and therefore, if and only if B=C.

Let j' € 2" be defined by

Jw)=w()v, A'e2, A+0,veB(B),Voe K(B). (5.2

Then, jj' (w) = w(v'(4) A’) v and it follows that jj' € 2" and T (jj)) = v'(4) A'.
Therefore, j,j’ commute weakly if and only if v/(4)A'=v(4') A and
commute strongly if and only if in addition, v=1v'". In particular, j,j’ are
disjoint if and only if v'(4)=v(4’)=0. Clearly,

J(w)y=w(e—A)Vv, v eB(B), Voe K(B), (5.3)

defines an element of ' .7 and every element of #'n .7 is of this form.
It follows that j is repeatable with complementary repeatable operation
J' given (5.3) if and only if v'(4) =0, v(4) = 1, or, equivalently, if and only
if E,<P,, E,<P,_,. Further, it follows from Prop. 4.4 that j is (a)
(or (c))-repeatable if and only if E, = 4, E,. = ¢ — A, in which case 4, e — 4
are the supports of v, V' respectively.

Next, suppose that j, defined by (5.1), is an element of £, such that
G;+{0}. Then, Hy;=G;C{av:a=0} and hence, Hy=G;={av:a=0}.
Since v e G, it follows that v(4)=1 and that v is a pure normal state
with support E, = P,. Conversely, suppose that v is a pure normal state
with support P,. It follows that H, = {av:a =0} and since v e H,, that
v(4) = 1. Therefore ve G; and H, = {av:a =0} CG;. But G;C H, and so
it follows that H, = G, # {0}.

It follows from the two results above that j, defined by (5.1) is strongly
(a) (or (c))-repeatable with complementary repeatable operation j’ defined
by (5.3) if and only if v, V' are pure normal states with supports 4,e— A4
respectively.

Suppose j, defined by (5.1) is a strong operation. Then, Prop. 4.6
shows that for each central projection P in B,

(PwP)(4)v=j(PwP)=Pj(w)P =w(4) PyP, VYweK(B)
and, replacing w by PwP, that w(PAP)=w(PAP)v(P), Vwe K(B).
Therefore, either PAP=0 or v(P)=1. f PAP =0, A=(e— P) A(e— P).
Since e—P is a central projection it follows that v(e— P)=1,
v(P)=0. If v(P)=1, then v(e— P)=0 and so (e—P) A(e—P)=0,
A=PAP. Therefore, for each central projection P, either PAP =0,
v(P)=0, or PAP=A, v(P)=1. Let C, be the central support of 4 and

4%
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suppose P is a central projection such that P< C,, P+ C,. Then,PAP+ A
and therefore, P AP =0 which implies that P = PC, =0. Therefore C, is
a minimal central projection in B such that v(C,)=1.

Conversely, let C, be a minimal central projection in B such that
v(C,) =1, and let P be any central projection in®B. Then, either PC, = C,P
=0 or PC,=C,P=C, and either, PAP=PC,AC,P=0 or PAP
=PC,AC,P=C,AC, = A. In the first case,

V(P)=v(C4P) +v((e— Co) P) S vle— C,)=0
and v(P)=0. In the second case,
ve—P)=v(Csle— P))+v((e— Cp)(e— P) S v(e—C,)=0
and v(P)=1. If PAP =0 and v(P) =0,
j(PoP)=w(PAP)y=0, Pj(w)P=w(4)PyP=0, VYweK(B),
since v(P)=0 and using Prop.4.1. f PAP= A and v(P)=1.
jlPoP)=w(A4)v, Pjw)P=w(4)PvP=w(d)v, VweK(B),

since v(e— P)=0 and using Prop. 4.1. Therefore, for each central pro-
jection P in B, Pj(w) P=j(Pw P) and Prop. 4.6 shows that j is a strong
operation.

The properties of 2! are listed below.

Proposition 5.1. Let j, j' € 2" be defined by (5.1), (5.3) respectively. Then,
(i) E;=E, the support of v and if G;+ {0}, E;=F;.
(i) je Ps if and only if A=e and B=C.
(iii) j € P with complementary repeatable operation j if and only if
EV§PA’ Evf éPe—A‘
(iv) je Py is (a) (or (c))-repeatable with complementary repeatable
operationj if and only if E,= A, E, =e— A.
(v) j€ P, G;% {0}, if and only if v is a pure normal state with
support P,.
(vi) j€ Psralor Psg,) with complementary repeatable operation j' if
and only if v, v' are pure normal states with supports A, e — A respectively.
(vii) j is a strong operation if and only if the central support C, of A
is a minimal central projection such that v(C,) = 1.

Let j € 2" be defined by
(@)= U*oU,Ue@X), |U| <1, U*BUCB, YoecK(®B), (54)

and let A= T(j)= U*U. Then, if Sy, Sy« are the supports of U, U* respec-
tively then Sy, Sy« are the range projections of U*, U respectively and
if UeB, U*, Sy, Sy« B. Since Q, is the null projection of U*U, it
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follows that Q,=e — Sy. A e E(2) if and only if U is a partial isometry
with initial projection A = U* U = Sy, and in this case the final projection
of Uis UU*=Sy. For x€ X, j(w,)= wy, and it follows that E; is the
minimal projectionin B such that Sy < E;. Inparticular, for Ue®, Sy = E;.

je Prif and only if U* U = e and therefore if and only if U is a partial
isometry with initial projection e. je %5 if and only if in addition
j(K(B))= K(B) and hence, if and only if U is unitary.

Let j'e 2" be defined by

J)=U*oU, UeX) U =1, U*BU' CB, YVoeK(B), (5.5

and if A'=T()=U*U', suppose A'#+0. If j is defined by (5.4), and
A+0, then
J(@y=(U U*w(U'U), Yo e K(B) (5.6)

and jj'e 2", T(jj') = (U’ U)* (U’ U). It follows that j,j are disjoint if and
only if U'U=UU'=0 or equivalently, if and only if

Spp=e—Sy =04, Syn=e—Sy=0,. (5.7
Clearly,
J'(@)=(e— A} wle—A)*, Voe K(B),

defines an element of 2" "7, which is therefore non-empty.

Let j be defined by (5.4) and let j be defined by (5.5), with A’ =e — A.
Then, it follows from (5.7) that j is repeatable with complementary
repeatable operation j' if and only if

Svs SPL Sy SP,_ 4. (5.8)

Now suppose that j is (a) (or (c))-repeatable. Then, E;= A4, E; =e— A
from Prop. 4.4, and U, U’ are partial isometries with initial projections
A,e—A and final projections Sy.=UU¥*, Sy..=UU* respectively.
From (5.8), it follows that

Sy <A, Sy<e—A. (5.9)

Conversely, let j,j’ be defined by (5.4), (5.5) respectively with A'=e— A4,
U, U’ partial isometries and suppose E;+ E;=e, UU*<A4,U'U*<e
— A. Then, from above j is repeatable with complementary repeatable
operation j' and, in addition, Prop. 4.4 shows that j is (a) (and (c))-
repeatable. h

When U, U’ € B, and j is (a) (or (c))-repeatable with complementary
repeatable operation j', using the fact that Sy. = E;, Sy« = E;, it follows
that

UU*=Spu=E=A=U*U, U U*=8Sy.=E=e—A=U*U".
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Conversely, when UU’ € B, are partial isometries such that
U*U=U0U*xU*U'=U0U*U*U+U*U =e,

(5.4) defines an (a) (and (c))-repeatable operation j with complementary
repeatable operation j' defined by (5.5).

Let j,j’ be defined by (5.4), (5.5) and suppose that j is strongly (a)
(or (c))-repeatable with complementary repeatable operation j'. It follows
from (5.9) that the ranges of U, U’ are contained in AX, (e — A) X respec-
tively and hence that

AU=U,(e— AU =U", (5.10)

U*A=U*U*e—A)=U"*. (5.11)
For w € K(B),

w=AwA+(e—A)wA+ Aw(e— A)+(e— A) w(e— A)
and therefore, since AwAe Hy;=G;,(e—A)w(e—A)e K4,
jw)=AwA+j(le— A)wA+ Aw(e— A))
=AwA+ U*e—A)wAU+ U*Aw(e—A) U
where j is extended to B, by linearity,
=AwA+(U*-U*A)wAU + U*Aw(U — AU)
=AwA, ‘
using (5.10), (5.11). Similarly,
J(@)=(e—A)wle—4).
Conversely, suppose that j,j' are defined by (5.4), (5.5) and
jlw)=AwA,j(w)y=A'wA’, Yo e K(B)
where A'=e— A. Then,
o(U*U)?)=o(U*U), o(U*U')?)=w(U'*U"), Yo e K(B),

and therefore, U* U, U'*U'are projections. j(w)= w, if and only if w € H,
and hence je Zp and similarly j'e #;. Clearly, jj'=jj=0 and E;+ E;
=A+ A =e. It follows that j is strongly (a) (and (c))-repeatable with
complementary repeatable operation j'.

Finally, notice that j e 2" is always a strong operation when U € B
or B’ and in particular, every strongly (a) (or (c))-repeatable operation
is a strong operation. The properties of 2" discussed above are listed
below.
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Proposition 5.2. Let j, j' € 2" be defined by (5.4), (5,5) and let Sy, Sy
be the supports of U, U* respectively, Then,

(@) Qu=e—Syand if UeB, E;= Sy..

(i) je P if and only if U is unitary.

(iil) j € Py with complementary repeatable operation j' if and only if
Spe=P. Sy~ =S P,_4.

(iv) jis (a) (or (c))-repeatable with complementary repeatable operation
j if and only if U, U’ are partial isometries such that U*U + U* U =e,
UU*sU*U, UU*SU*U E;+ E;=e.

(v) If U, U’ € B, jis(a) (or (c))-repeatable with complementary repeat-
able operation j' if and only if U, U’ are partial isometries such that
UxU=U0U*U*U'=UU*U¥U+U*U =e.

(vi) j is strongly (a) (or (c))-repeatable with complementary repeatable
operation j' if and only if

J@)=AwA,j(w)y=AwA, Yoe K(B)

where A'=e— A.

(vii) jis a strong operation if U € B or B'.

Clearly, the most important result of Prop. 5.2 is (vi) which char-
acterizes the set of strongly (a) (or (c))-repeatable operations in 2" as
those of the form

jlw)=AwA, Yo e K(B)

where A is a projection in B. These are the operations suggested by
Von Neumann’s measurement theory [21].
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