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Abstract. In the measure space construction of a representation of the canonical
commutation relations, the strong continuity of any one parameter subgroup is proved.

All multipliers for the separable case are expressed in a constructive manner and an
irreducibility criterion for a subset of multipliers is obtained.

§ 1. Introduction

For a pair of a linear space V, and a subspace V, of its algebraic
dual V}, a representation of CCR (canonical commutation relations)
is unitary operators U(f) and V(g) for each €V, and g € V, satisfying

UMD UR)=Ufi+ 1), (L.1)
Vig) V(g2)=V(g: +92), (1.2)
U(f) V(g)=V(g U(f)e V. (L.3)

It is usually required that U (4 f) and V(lg) are strongly continuous in the
real parameter 4 for each fixed feVy and ge V.

Let p be a V,-quasi-invariant probability measure on (Vj, By),
where By is the o-algebra generated by cylinder sets. The standard
representation of CCR on H, = L,(V}, By, u) is given by U,(f) and V,(g)
defined as follows:

[U.()P1(©)=e“DP(), (1.4)
V(@) P11 (&) = [du(& + 9)/du(@]"? P(E+9g). (1.5)

Here Y e H, and e Vi [1,7].

The continuity of U,(Af) in 4 is easily proved but the continuity of
V,(Ag)in Zisnotknownin theliterature for non-separable space (cf. [9, 107).
We shall prove continuity of V,(4g) in 4 in Section 2.
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When the representation space is separable, we may restrict our
attention to those ¥, and ¥, which consists of finite linear combinations
of countable numbers of f; and g;, j=1,2,... satisfying g;(fi) =0,
(Section 3 and [6]). We shall call such V, and V, as separable.

Any representation of CCR is a direct sum of cyclic representations.
Any cyclic representation of CCR for separable V,;, and V, is on a separable
Hilbert space and is a direct sum of representations given by

U(N)=u,/e1 (1.6)
and V(g) on
H=H,®M (1.7)

where p is V,-quasi-invariant measure on V;#, H, and U,(f) are as before
and M is a separable Hilbert space.
Let us consider U(f') given by (1.6) on H of (1.7) and arbitrary V(g). Let
M, =[{U(f); fe Vs3 uBM)]", (1.8)
R,={U(f); feVys}", (1.9)
where B(M) denotes the set of all bounded linear operators on M. R, is
known to be maximal abelian in B(H,)® 1 and hence

M,=Rj}. (1.10)
Let 1(g) be the *-automorphism of M, defined by
1(PA=V.(9)®1) AV, (—9)®1). (1.11)
We set
WMg)=V(g) [V.(—g)®1]. (1.12)

Then we obtain immediately the following properties for W:
(1) W(Ag) is a unitary operator depending continuously on A due to
our result in Section 2.
(2) W(g)e Ry=M,.
() Wigy) {t(91) W(g2)} = Wlg1 +g2) -
Conversely, any operator W(g), g € V,, satisfying (1) ~ (3) defines a
representation of CCR by U(f)=U,(f)®1 and

Vig)=W(g) (V(9)®1). (1.13)

Such W(g) is called a multiplier.

We shall give a constructive formula which exhausts all multipliers
in Section 3. Our method is taken from the work of Garding and Wight-
man [5]. We shall obtain some irreducibility criterion for some class
of multipliers in Section 4.

We shall call a representation of CCR ¢-cyclic if R, has a cyclic
vector. This is the case if and only if M has a dimension 1. This is due to
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the fact that R}, contains mutually non-commuting elements 1® A4,
AeB(M) if dimM >1 and hence is not maximal abelian, while R,
must be maximal abelian if it has a cyclic vector. Our result shows the
existence of irreducible representations with dim M > 1.

In Section 5, we shall prove that any R"-quasi-invariant measure
on a product space R" x Y is equivalent to the product of the Lebesgue
measure on R" and the restriction of the given measure to the cylinder
sets with the base on Y, as a simple corollary of our continuity theorem.

§ 2. Proof of the Continuity

Lemma 2.1. Let (Y, B,) be a Borel space, (R, B,) be the real line with
the o-field of Borel sets, (Z, B) be the product Borel space (R, B;) X (Y, B;)
and p be a probability measure on (Z, B), which is quasi-invariant under the
R-translation:

(x,m))=>(x+x,n), xeR, neY.

Let H=L,(Z,B,n),M =L _(Z,B), M, = L (Y, B,) as a subalgebra of M,
and U(s) be the multiplication operator of €'** on W(x,n)e H. Here L.,
denotes the set of all bounded Borel functions as multiplication operators.
Let Q be a vector with Q(x, n) =1 and F %0 be a projection operator in M,.

Then U (s) is strongly continuous in s and the finite measure vy defined by

(Q, U(s) FQ)= [ e dvp(p) (2.1)

is equivalent to the Lebesgue measure.

Proof. First we give the proof of the continuity of U(s): Let

A, ={x,meZ; k=Z|x|]<k+1}eB. (2.2)
Since the union of 4, for k=0,1,... is Z, we have ) p, =|¥|? for
k=0
= 1P 0x,m) dplx, ) (2.3)
Ax

where ¥ € H. Given ¢ such that 4| ¥|| > &> 0, there exists a k such that
Y. uj<e/4. For this k, take 6 <k™*2sin™*(¢/4(|¥|)). Then
LU —1]1¥] <e (2.4)

ji=k

for |t <&, which proves the continuity of U(s) at s=0. Since U(s) is

a one parameter group of unitaries, it is strongly continuous at arbitrary s.
Next we prove the quasi-invariance of v, which then implies that it is

equivalent to the Lebesgue measure ([3], § 1, No.9, Proposition 11).
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Since F is a projection in M, there exists a Borel set S in Y such that F
corresponds to the characteristic function of S. Let v; be the measure on
(R, By) induced by vip(4)=u(4xS), 4€B,. For any f(x)e L (R, B,),
we have (Q, f FQ) = [ f(x) dvi(x) by the Fubini theorem. Since the Fourier
transform determines the probability measure, vy, =v%. By the quasi-
invariance of u, vy is also quasi-invariant and so is vp. Q.E.D.

Lemma 2.2. Let H, M, M, U(s) and Q be asin Lemma 2.1. Let {E;} = &
be a finite partition of 1 by orthogonal projections in M;. (E;E, =0 for
j#kand 3 E;=1.) Then there exists a one parameter family of operators
Ve(t), t € R satisfying the following properties:

(1) [E;, V()] =0 for all E;e &.

(2) Let P(&) be the orthogonal projection on the closure of NyQ where
N, is the von Neumann algebra generated by & and {U(s);s€ R}. Then

Ve(t) Ve(t)* = Vs ()* V(1) = P(&) = V5(0) . (2.5)
(3) Canonical commutation relation with U(s):
Ve(t) U(s)= Ul(s) Vg(t) . (2.6)

(4) Ve(t) is strongly continuous in t.
(5) For any unitary operator V(t) in My satisfying the CCR V(t) U(s)
= U(s) V(¢t) ', it satisfies

(2, A* A V(t) Q)| <(Q, A* A V(1) Q) (2.7
for any A in N,, where the right hand side is non-negative.
Proof. We have P(€)H= P E;P(6)H and {U(s);se R}"=N, has a

J
cyclic vector E;Q on E; P(6) H. Let vy of Lemma 2.1 for F = E; be denoted
as v;. Then E;P(&)H can be identified with L,(R, By, v)), E;Q with the
constant function 1 and U(s) with the multiplication operator ¢'**, x € R.
(Note that E; 40 implies E; Q24 0 because Q is cyclic for M =M and
hence separating for M)
Let Vg;(t) be defined on E;P(6)H by

[Ve(00P] (x)=[dv;(x + )/dv;(x)]'* P (x + 1) .
Let Vy(t) = D Vi (0).

J
The properties (1) ~ (4) are immediate from the definition. We shall
prove (2.7). Since E; commutes with A4, V(t), and V,(t), and since it is a
partition of 1, we may check (2.7) for each E;Q instead of Q. (2.7) will
then result by addition and the triangle inequality for the absolute value.
Let W(t)=V(t) Vg(t)*. (t will be fixed in the entire discussion.) Let
Y, =V, (t)Q. Since V(t) P(&)= W(t) Ve(t), we have &, =V(t)Q= W ()P,
Let P(&) W(t) P(6)= W,. We have W, e Ny, [P(&), W,]=0and |W| < L
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Since W, leaves each E;P(6)H invariant and Ny E;P(&)= N, E;P(&)
is maximal abelian there, its restriction to this space can be represented
by a Borel function W,(x) with |W,(x)| < 1. Hence |[E; @] (x)| = [[E; % ](X)I.
Since [E;¥,] (x)=[dv;(x +1)/dv;(x)]'/* 2 0, we obtain
(E;Q, A* A V() E; Q) < [ 14,001 |[E; @] ()] dv(x)

= 14,001 [E; ¥ (x) dvi(x) = (E;Q, A* A V(1) E; Q)
where 4 € N is represented by A;(x) on E;P(§)H. (A=) E;4;, A;e N,.)
Q.E.D.

Lemma 2.3. Let H, U(s) and Q be as in Lemma 2.1. Let V(t) be a one

parameter family of operators defined by
V() YT (x, n) = [du(e + x, n)/dulx, )] 2 ¥ x +1,1). (2.8)

It is unitary, satisfies V(t;) V(t,) = V(t, +t,) and V(t) U(s)= U(s) V() &'
and is continuous in t.

Jj°

Proof. The unitarity and the commutation relations are an immediate
consequence of the definition. We now prove the continuity.

We order the family of all finite partitions of 1 by projections in M,
by £ CF if each F, e # satisfies E;F, = F, for some E;e &. For a finite
family &,,1=1, ..., n, of finite partitions, let & be the finite partition

n

consisting of all nonzero [] E{, E’ € &,. Then & > &, for all |. We now
=1

consider the net V() for each fixed ¢t and proves lfgr%q Ve(t)=V(0).

We first note that projections in M, generates M; and hence
(U Ng’>” =M

&
Let V'ne()| U Vg(t)}“‘” where —w denotes the weak closure. By
& le>e
the weak compactness of the unit ball of B(H) for any H, there exists

at least one V'(t). It has the following properties.

Volst, (2.9)

V'(t)e M;, (2.10)

Vi) [V(e)* Uls) V()]=U(s) V'(1), (2.11)
0<(QA*AV(Q)S(Q, A*AV'(1)Q), (2.12)

where A+0, AeM.

Here (2:11) is shared by all V,(t) and hence holds for V’(t). Since
[Ve(t), E]=0 for any projection E in M, if &> & > E, we have (2.10).
The first inequality of (2.12) follows from the definition of V(t) and
du(x+t,n)/du(x, n)>0 for u-almost all (x,y) by the quasi-invariance.
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The second inequality holds for A € N,. for all V,(t), & D& and hence
holds for V'(¢), for such A. Since (U N,)” = M, it holds for arbitrary A € M.

Let W =V'(t) V(t)*(tfixed). From(2.10)and (2.11), wehave We M' = M.
Hence it is represented by a multiplication of a Borel function W(x, n).

Let[V(t) Q] (x, )= W, (x,n)and [V'(t) Q] (x, n) = P, (x, ). From (2.12),
we have 0 < ¥, (x, 1) < ¥,(x, n) for u-almost all (x, ). Since W ¥, = ¥,,
we have W(x, n)=Y,(x, n)/¥(x,n)=1. From (2.9), we also have
[W(x,n)| < 1. Hence W(x,n)=1 for u-almost all (x, ). Therefore W =1
and V(t)= V'(t), which means w — lg;n Ve(t)= V(t). [Since V(¢) is unitary,

ITV(D = Ve(@] P12 S20|P)1* —2Re(V() P, Ve(1) )
and hence lgp Ve(t)=V(t) strongly.]
We now have, from (2.7) and the positivity of (Q, A* 4 V(1) Q),
(Q,A*AV()Q)= iréxpf (Q, A*AV,(1)Q) (2.13)

for all AeM and teR. Since (2, A* AV, ()Q) is continuous in ¢,
(Q, 4* A V(1) Q) is upper semi-continuous, and hence measurable. Any
C e M can be written as

C=AFA, — Af Ay +i(AS Ay — A* A4 )

(the decomposition of a Borel function in L (Z, B)) and since  is cyclic
for M, we have the weak measurability of V() Q.
Since
VR)UE)AQ=e " U(s) AV ()R (2.14)

for A e M; and {U(s) A Q} is total in H, we obtain the weak measurability
of V(t).
We now, have, from the group property,

Qs (0)* P, V(1) D)= (¥, Qs (1) P) (2.15)
where fis a continuous L, function on R and

0,t)=JV(s) f(s—1)ds. (2.16)

Since
(@, V()P =@l |P]| and A =sup|®[~"[P]~ (@, AP,

we obtain

10;(6) = @, = [1fs—0)— fls =) ds. (2.17)
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Givene>0,and ¢ € R, we choose K such that | |f(s)| ds <¢/4. We then
|s|>K

choose 0<d<1 such that |f(t—s)—f(t' —s) <[4K+2|t'|+2)] e

for all |s|] < K +t'| + 1 and |t — /| <. We then have ||Q (t)— Q,(¢)]| <&

for |t —t'| <0 from (2.17) and Q,(t) is norm continuous in t.

From (2.15), we now see that (X, V(t)®) is continuous in ¢ for all
®eH and X =0Q,0)*¥Y, YeH. Since |V()P| <|P| is uniformly
bounded, it remains to show that X is total in H.

Let X, be the specific X with f,(s)=exp—s* and ¥ =0Q. Let
F,()=(Q, A*AV(t)Q)and 4, = {t; F,(¢) < 1/n}. Due to the first inequality
of (2.12), (4, =R. Since each 4, is Borel, at least one of them has a

Lebesgue measure non zero. Hence § F,(t) fo(t) dt >0 for every A=0.
This implies that X(x,#)>0 for p-almost all (x,#), and hence X, is
a cyclic vector of M.

Since 4; U(s) X, = Q,(0)* A, U(s)Q with f(1)=e~ "¢~ ", it is another
X and hence X is total. Q.E.D.

Theorem 2.4. Let V; be the algebraic dual of V, B, be the o-field
generated by cylinder sets of V;* and u be a probability measure on (V, B).
Let V,CV}* and assume that p is V,-quasi-invariant. Then U,(f) and
V,(g) defined on H,= L,(V§, By, u) by (1.4) and (1.5) have the property
that U(t f) and V(tg) are continuous int for each fe Vyand ge V.

Proof. The proof of the continuity of U(t f) in t is exactly the same
as the proof of the continuity of U(s) in Lemma 2.1. For given 0+geV,,
there exists an f, € V; such that g(f,)=1. (Since V,CV}, g(f)=0 for
all feVymeans g=0.) Let Vy,={f—g(f)f,; f€V,}, Y=(V, )", B, be
the o-field generated by cylinder sets of V5. Then (V}, By)=(R, B,)
x (Y, B,). By Lemma 2.3, V(tg) is continuous in t. Q.E.D.

§ 3. Multipliers

We first give a motivation for our choice of V and V.

We consider a representation of CCR on a separable Hilbert space H.
The set of all unitary operators is then second countable in its strong
operator topology. Choosing one U(f) from each neighbourhood in
the countable basis for the strong operator topology of unitaries, if that
neighbourhood contains at least one U(f), we obtain a countable subset
V) ={f";je N} of V, such that {U(f); feV,°} is dense in % ={U(f);
feV,}.Similarly we choose V) = {g9;je N} in V,such that {V'(g); g € V}
is dense in ¥ ={V(g);g€V,}.

Assume that ¥, and V, are separating each other. If g(f) =0 for all

e V0, then U(f) commutes with all ¥(g), g€ V;° and hence with all
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V(9g), g € V,, a contradiction with the assumption. Hence V,? separates Ve
and V) separates V.
We define f}' and g3, j € N, inductively to satisfy the following prop-
erties: (1) g}(fy) =0 (2) fi' is a non-zero element with the smallest k
j—1
among f) — Y gi(f) i 3) gi =g7(f}) " g7 and g7 is an element with
=1
j—1

the smallest k among g{ — Y g7(f/')g! satisfying gi(f;') 0. We start
1=1

with fi'=f and this procedure determines f;' and g; uniquely for
=12, ...

Let V; and V; be finite linear spans of {f}';je N} and {g};je N}.
From the construction, they are subsets of ¥V, and V, such that
{U(f); fe V;} and {V(g); ge V}} are dense in % and 7.

This discussion motivates our choice of ¥, and V,:

V¢={Z ijfj;/ljeR,neN}, (3.1)
Jj=1
Vn:{z A;g;; A€ R, neN}, (3.2)
j=1
gj(fk) = 5jk . (3.3)

Lemma 3.1. Let V,,= {Z ljfj;ijeR} and V,,= { Y Ajgj;/ljeR}
Jj=1 j=1

Let U(f), Vio(g) and U(f), V(g), f€V,,, geV,, be two representations
of CCR with the common U on the same space. Then there exists a unitary
operator D commuting with U(f), feV,, such that V(g)=DV,(g) D*.

Proof. It is known [8] that any representation of CCR for V¥, and
V., is a direct sum of irreducible representations, all irreducible re-
presentations are mutually unitarily equivalent and {U(f); feV,,}"
is cyclic in each irreducible representation. Hence the multiplicity of the
unique irreducible representation is the same as the multiplicity of
{U(f); f€V,,}" (which must be uniform) and hence is common for
U(f) Vo(g) and U(f) V(g). Hence the two representations are unitarily
equivalent and there exists a unitary D such that DU(f)D*=U(f),
feV,and DVy(g) D*=V(9),geV,,. QED.

Theorem 3.2. Let U(f), feV, and Vy(g), g€V, be a representation
of CCR where Vy and V, are given by (4.1) and (4.2). Suppose that U(f)
and V(g) = W(g) V,(g) are also a representation of CCR on the same space.
Let Ry, denote the von Neumann algebra generated by U(f), fe€V, and
Vo(4;9), j=1,...,n, where n=0,1, ..., and R, is written as R,. Let
t(g) A= Vy(9) AVy(g)* for A € R}y. Then there exists aunitary C, € Ry, _),
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n=1,2, ..., such that
W( y zjgj) =(C,...C,) 1(2 zjgj) (C* ... CH). (3.4)
j=1 j=1

Conversely, any such W(g) gives rise to a representation U(f) and V(g)
=Wilg) Vo(9) of CCR.
Proof. If C;, j€ N is given, then W defined by (3.4) is consistent

n+m

(namely W( Y ljgj> = W(Z ngj) fhpr = - = Apym = 0). Since
j=1 i=1

Vg =W(g) Vog)=C, ... C, Vo(9) C ... CF for geV,,

andU(f)=Cy,...,C,U(f)Ck, ..., C¥, U(f), V(g) are unitarily equivalent
to U(f), Vo(g) if f, g are restricted to V,, and V,,. Since n is arbitrary,
U(f), V(g) are a representation of CCR.

Now assume that V(g) is given. By Lemma 3.1, we have unitary D,
for each n=1,2, ... such that D, e Ry and V(g)= D, V,(g) Dy for

g= ) Ag;. Let C,=D}_ | D, with Dy=1. Then we have (3.4). Since

i=1 n—1

C,eR) and C, commutes with Vy(g), g= ) 4g;, as is seen from
i=1
C,Volg) Ck=D}_ V(g) D,_y =Vo(g9), C, belongs to Rj,_;. Q.E.D.

Remark 3.3. Let us call a sequence of unitary operators C, € Ry, _,
as M-sequence. Consider the transformation e, (A4) of M-sequence defined
by (e.(4) C),=C, if nkk, k+1, (e(A) C). = C, A%, (e(A) Cls1 = ACy 4y
where A is a unitary operator in Rj,. We equip C, with the product
topology of strong operator topology of unitaries. Let E(C) be the smallest
closed set containing C and stable under every e,(4). We then call CV
and C? equivalent if C'V e E(C'®). It can easily be shown that this is
an equivalence relation and W corresponding to C) and C® coincides
if and only if CV ~ C®.

We say that two multipliers are equivalent if the corresponding
U(f), V(g) are unitarily equivalent for a common U and V,,. The set of
all M-sequences yielding multipliers equivalent to a given M-sequence
is the smallest closed set containing that M-sequence which is stable
under e, (4,) for all unitary 4,€Rj},, ke N and the transformation
C,— AC, for all unitary 4 € R},.

§ 4. Irreducibility Criterion

We consider the following situation. Vs and V, are given by (3.1) ~ (3.3).
V4 is then identified with a countably infinite topological product of R.
Let p;, j€ N be a probability measure on R equivalent to the Lebesgue

2 Commun. math. Phys., Vol. 20
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measure and u be the product measure of {u;;je N}. Then u is V-
quasi-invariant and H = L,(Vj, By, ) can be identified with the in-
complete infinite tensor product (X)(H;, Q) where H;=L,(R, y1;) and
JjenN
Q;(x)=1. We shall denote the multiplication by x on H; by q;. We
define[Vy;(4) ¥] (x) = (dp;(x + A)/dp;(x))' > ¥(x + Hfor ¥ eH anddenote
Voj(l)—e‘“’l The corresponding operators on H, are denoted by ¢;
andrn;:¢;=q;® <® lk),n =p; (@1 ) Wlththesenotatlons we have

k#j k+j

U(f)= ﬂ et for f= Z A; f; and V(g H et for g= Z 2;9;.
Jj=
The total Hilbert space H is taken to be H,® M. dimM < .
We also restrict multipliers by assuming

C,e[1®B(M)U{U(Af); AeR}] . (4.1)

In this case we may introduce a B(M)-valued Borel function C,(1)
of A € R for each n e N such that [C, V], = C,(4(f,)) P for P e H, P e M,
teVE Wewirte C, as C,(¢,) on H and C,(q,) on H;@M.

{U(f) Vo(g)} is irreducible on H, due to B(H,) = {U[ H)®(O lk)” .
k*
Hence p is ergodic under V, translation. ’
Ifan operator Sisin the commutantof R = {U(f) V(g); fe V,,g€ V,}",
then we have S e R}, and

S,=C¥...C¥SC, ...C,eR}, (4.2)

where R, = {R(,,u {B (@ H j) ® 1” . This condition is necessary and
j=1

sufficient due to V(9)=C; ... C, Vo(g9) C¥ ... C¥

For S e R}, we define trSe R, by (trS),=trS; where (S¥).=S;¥;
for YeH, Y.eM and S.eB(M). Let §'=S—(tr1)”! (trS)1. Then
tr§’=0. We also have trS,=trSeR}, for all n. Hence trSeR},,
Since R,NRy,, is trivial (u is V, ergodic), trS is a multiple of identity.
Since §’ cannot be a multiple of identity due to trS’ =0 unless §' =0,
the irreducibility is equivalent to the statement that all S satisfying (4.2)
and trS =0 vanishes.

Lemma 4.1. Let K, be the Hilbert space (of dimension n*) obtained
by introducing the inner product (A, A,y =tr A} A, in B(M). Let a(U)
be the unitary representation on K, of the group of unitaries on M by
a(U)yA=UAU*.

Then a(U) is irreducible on the orthogonal complement of 1, consisting
of traceless A.
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Proof. 1t is enough to show that an arbitrary 4 & c1 together with 1
are cyclic under a(U). There exists a unit vector e € M such that (e, Ae) 0.
We integrate a(U) A over all U leaving e invariant relative to the Haar
measure. We then obtain (e, Ae) E — ¢(1 — E) where E is a projection on e
and c(tr1) — c = (e, Ae). By subtracting ¢ - 1, we have a one-dimensional
projection from which all 4 can be generated. Q.E.D.

We denote a(U) for U = C¥(4) by o,(4) and set

oty = (2, 0,(q) Q) = § 0,(A) dpa, (4) . (4.3)
Lemma 4.2. U(f), V(g) are irreducible if
}Lxga"+k...akA=O, k=1,2,... 4.9

for every A € Kyimu, trA=0.

0

Proof. Let ¥ and @ be product unit vectors in H, with (X) Q; as a

j=k
factor for some k. Consider each (S));e B(M) as a vector in Kgima-
From (4.2), we have

Si—1 = (@) . oy, (D)™ Sy i 4.5)

By taking (¥, X ®) in the sense that (¥, X®)e B(M), (p, (¥, X ?)¢)
=Yy, X[P®¢]) for p, ¢ € M, we obtain

(P, S 1 D)=of ... o (2, S,,::9Q). 4.6)
Taking inner product with any 4 with tr 4 =0, we have
CA, (P, 8,1 D)) =<0y yg--- o A, (2,8,1:92). 4.7)
By (4.4), we have
(A, (¥, S;-19))=0 4.8)

for every A e B(M) with tr4=0. Note that (2, S,,,Q) is bounded by
the unitarity. Hence, iftr S = 0, thentr S, _, = 0and we have (¥, S, _, #)=0.
Since product vectors of the specified kind is total in H,, we have S, _; =0.
Since C; are unitary, §=0.

For arbitrary S, we decompose S =5+ (tr 1) (trS)1 with trS'=0.
We then have §’=0 from the present argument. We have already seen
(immediately before Lemma 4.1) that trS is a constant and hence S is
a multiple of the identity operator. Q.E.D.

Lemma 4.3. If o, ... o, A does not tend to 0 as n—oo for one ke N
and one A € B(M) with tt A =0, then U(f), V(g) is not irreducible.

2%
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Proof. Suppose &, . ... % A does not tend to 0 as n— oo for 4 € B(M)
with tr4 =0. Since «;(q;) is unitary, its average o, satisfies

llogll = sup o (M) =1.

Hence there exists a subsequence n(l), [=1,2, ... such that

A0=llimocn(,)+k...ockA#0. 4.9
We also have trA,=<1,A,>=0. Let
Am =0y (d)l)* am(d)m)*AO (410)
Since ||A,|| = || Aoll, there exists a subsequence m(j) of k + n(l) such that
Ay, =w—1lim A4, . 4.11)
jo
From (4.10) and (4.11), it follows that
Cr...CFA,Cy...C,eRy,. 4.12)
Hence A, € R'.
From (4.10), we have
Iéleo(kgl)EC,’("_.l...C;“/élooCl...Ck_1 .13)
=w }Hg (D)™ -+ %y (D)™ Ao -
Hence for Q=Q,e H,,
(@2, A -1, Q) = limogf ... oh; Ap . 4.14)
j— oo
Since my(j) is taken to be a subsequence of k + n(l), we have
(A, (2, Ay - 1)Q2)> = lim oty - e A, Ag)
Joeo (4.15)

=<{Ap, 49> >0.

Hence A, 4-;,*0. Therefore 4,=C;...C,_; A 4-1)Ci-1 ... C¥ 0
because C; are unitary.

Due to trA,=0, we have tr4,,=0. Hence tr 4, =0. Therefore A
is not a multiple of identity. [tr 4 € B(H,) is defined by

dim M

(V. [rA]d)= } (Y®a; A[P®a)])

Jj=1

foran orthonormalbasisa;in M and ¥,® € H,. Hence tr A = Ois preserved
by the weak limit.] Q.E.D.

Theorem 4.4. U(f), V(g) are irreducible if and only if
nlil’l%(x,,+k e OCkA = 0

for every ke N and A € K 4ipn s = B(M), tr A =0.
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Remark 4.5. o, is an average of unitary o, (g,) and hence has a norm
smaller than 1 in general. The norm approaches to 1 if either y, becomes
concentrated to a single point or if o, (1) becomes independent of A.

Example4.6. Wetakedim M = 2. Let g,, 0,, 65 be Pauli matrices on M.
Let Cs,4 j(A)=expilo;, j=1,2,3. We have

3
(cos2A)o, + (sin2d) ). eV o, (k=*j),
g i = (4.16)
O-j (k =J) s

where 7% =1 for even permutation of (12 3), —1 for odd permutation
and O otherwise.

We take du;(l)=n"*"2e”*dJ. Then, relative to the orthonormal
system {g;} in K, ©1, we have

(%304 1 = Sule ™ +(1— 6"1)5,‘1«] .
Hence
A3n+3%3,+2%3,+1 =e_2 .
Therefore (4.4) holds and we have the irreducibility.
Example 4.7. Any incomplete infinite tensor product of a countably
infinite number of copies of Example 4.6 gives an example where U(f),
V(g) are irreducible and dim M = co.

§ 5. Miscellaneous Discussions

Our Theorem 3.2 and the following lemma, contained in [7], yield
a rather complete structure theory for the representation of CCR when
Vs and V, are separable.

Lemma S.1. Any representation of CCR, for V, and V, given by
(3.1)~(3.3), is a direct sum of representations, each of which has a form
U,(f)®1 and V(g) on L,(Vj, By, 1) @ M where V is the algebraic dual
of V,, By is the o-algebra generated by cylinder sets, j is a V -quasi-
invariant probability measure on (V5, B), M is a Hilbert space, and U,(f)
is a multiplication of €V, £ e V.

Proof. Any representation is a direct sum of cyclic representation,
each of which is separable due to (3.1), (3.2), and the continuity of U(t f)
and V(tg) in t. Let

Ry={U(): fe V). (5.1)

By the multiplicity theorem (for example, see [4], Proposition 2, p. 252),
there exists a partition {E,;x€ Nu{oo}} of 1 by central projections of
R, such that R, has a uniform multiplicity « on E, H. {E,} is a unitary
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invariant of R,, namely, every unitary W satisfying WR,W*=R,
commutes with all E,. Hence each E,H is an invariant subspace of the
representation.

E,H can be identified with H,® M, and U(f)|E,H with U(f),® 1,
where dim M, =« and (R,), = {U(f),; fe V,}" has a cyclic vector in H,.
H, can be identified with L,(V§, B, u,) for some probability measure y,.
(See, for example, [1] Appendix.) It remains to show the quasi-invariance
of u,. Let Q)= 1€ L,(V, By, p,).

From the commutation relation, we have

Vg IFQ® 1] V(g =F(c+9®1 (5.2)

when F(&)=e""Y, feV,. Here F(£) denotes the operator multiplying
F(¢) on ¥ (£). The following series of approximations by sequential
pointwise limits of uniformly bounded functions and algebraic operations
prove the validity of (5.2) for any bounded Borel function on (V}, B).

A periodic function by uniform limit of finite linear combinations
of ¢!, t=¢&(f). A continuous function f(t) with a compact support by

lim Y f(t + nk). The characteristic function of a bounded open interval
n keZ

(a, b) by monotonously increasing continuous functions. The character-
istic function of any open rectangle in &(f;) ... &(f,) by multiplication.
The characteristic function of any Borel set in V§ by finite addition,
multiplication, subtraction from 1 and limit of monotone sequences,
starting from cylinder sets whose bases are open rectangles. Any Borel
function by limit of monotonously increasing simple functions.

Let X,(&) be the characteristic function of a Borel set A. Then

V(g)* X,() V(g) = X4(& — g9) = X, 1 ,(£). Hence
A +9)=(Q X1, =V, X, V(9)Q). (5.3)

Since R, has a uniform multiplicity on E,H, u(4)=0 implies X,=0
as an operator and hence u(4+¢g)=0 from (5.3). Therefore u is V-
quasi-invariant. Q.E.D.

As an application of Theorem 2.4, we have the following measure
theoretic consequence. Conversely, any other (possibly measure theoretic)
proof of the following Lemma gives an alternative proof of Theorem 2.4,
as is readily seen.

Lemma 5.2. Let X =R" and Y be a Borel space. Let u be R"-quasi-
invariant probability measure on Z =R"x Y. Let u, be the measure in-
duced on Y by p,(A4) = u(R" x A). Then p is equivalent to the product of the
Lebesgue measure and i, .

Proof. First consider the case n=1. Let H,= L,(Z, p), Q(x,n)=1,
[U(s) ¥ (x, ) = e ¥(x, ) and [V() V] (x,n) = [du(x+ &, n)/dp(t, n)]'?
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- ¥ (x +t,u). Let M, be the von Neumann algebra of all bounded Borel
functions of 5 € Y independent of x e R".

By the proof of Lemmas 2.1 and 2.3, U(s) and V(t) are a representation
of CCR, continuous in s and t. Therefore R = {U(s) V(t); se R, teR}"
is a type I factor [8].

We can identify H, with H,®H, and R with B(H,)®1. Since
M ={M, UM,}" is maximal abelian in H, where M,={U(s); se R}",
M, is maximal abelian in B(H,).

Let the standard diagonal expansion ([2], Definition 2.1) of Q be

eo]

Q=Y 1,@;®9), 4z0, (5.4)

ji=1

where Q] and Q7 are orthonormal in H, and H,. With the restriction
4;>0, the sum must be countable. Since Q is separating M, AQ7 =0

for all j implies A =0 for Ae M.
j 1
Let Q?=E; Q% where E; is a projection on {U M, Qf} . Let
k=1

@*=3 27707 Then AQ*>=0 implies A=0 for A€M,. Since M,
ji=1

is maximal abelian, the separating vector Q% of M, =M, is cyclic for

M,. M, has always a cyclic vector, which we may take to be

Q=) 27701 Q' ® Q% is obviously cyclic for M, and hence is separating
j=1
for M=M".
For a Borel set 4CZ, let X, be the characteristic function of 4.
Then X, e M and X, =0 if and only if u(4)=0. We define

()= (Q'®Q% X,[Q'®0%]).

v is a probability measure on Z and is a product measure of the Lebesgue
measure on R and v,, the restriction of v to R" x 4,.

Since Q' ® Q? is separating for M, v(4) =0 is equivalent to X, = X
- X,=0 and hence is equivalent to u(4)=0. Hence v is equivalent to
u and v, is equivalent to u,. This proves the case n=1.

Since R"=R"~! x R, the general case n>1 can be proved by trivial
inductive argument. Q.E.D.

In connection with the notation C,(¢,), we have the following
generalization (see Definition 5.5).

Lemma 5.3. Let H=L,(Y,B,))QM, R,=L (Y, B)®1 where (Y, B)
is a standard Borel space, L, (Y, B) is the set of bounded Borel functions
and dim H =N,. Let W(Z) be a family of unitary operators in R!,, weakly
Borel in 4 € R". Then there exists a B(M)-valued weakly Borel function
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W(A), of (A, n)€ R"x Y such that
(W Yl,=wH),?, (5.5)

for almost all (4,n) relative to dA x . Here ¥ € H is represented by ¥, e M,
ney.

Proof .Consider# = K® H,K = L,(R", dA).Let ¥ € # berepresented

Y()eH, (V,P)=[(PY(4), P(1) dA Let W be defined by [WP] (1)

= W(/I)di(/l) Let R¢—L R"xY)®1 in (KQH,)®M=#. Then
We R’

Smce L, (R"xY) is maximal abelian on K® H, = L,(R" x Y) every
Ae R’ can be represented by weakly Borel B(M }-valued function
A4, 77) If A is unitary, A(4, ) is unitary for almost all (4, ). Redefining A
at (4,7n) for which A(A,n) A4, n)*=+1 or AQA,n)* A, n)=*+1, A4, n)
can be made unitary for all (4, 7). Let W(4), = W(4, ). From

W), ¥, f)=(W®)(4,n)=[WA) Y], f(2)
for =f@¥PecK®H, we have (5.5) for almost all (4,%). Q.E.D.

Lemma 5.4. Let (Y, B) be a standard Borel space, p be a probability
measure on (Y,B), H=H,®M, H,=L,(Y,B,u) and Ry= L, (Y, B)®1.
Assume that H is separable. Let A;, j=1,...,n be self-adjoint operators
corresponding to multiplication of real-valued Borel functions A;(n),ne Y.
Let W(4) be a family of unitary operators in R}, weakly Borel in A€ R".
Then there exists a family of unitary operators in Ry, weakly Borel in A
such that

VA ¥], =W+ Am), ¥, (5.6)

for almost all (4, n) relative to (d 1, p), where W(1), is taken from Lemma 5.3.
Two such V(1) can differ at most for A in a Null set.

Proof. Since (4, n)— (4 + A(n), n) is an invertible Borel map of R"x Y,
W (A + A(n)), is weakly Borel and hence V(1) defined by (5.6) is weakly
Borel where A(y) denotes {4;(n)} € R". Since W(A+ A(n)), is unitary,
V(4) is unitary for all 1. Any two such V(1) can obviously differ only at 4
in a Null set for a fixed V. Since H is separable, they differ as an operator
only at A in a Null set. Q.E.D.

Definition 5.5. The operator V() in Lemma 5.4 is denoted by W (A + A).
It is defined up to a Null-set of J.

Example 5.6. We take Y = R", 1 equivalent to the Lebesgue measure,
W(A)=D1(2)D*, (v(A)A),=A,,,(yeY) and D is a unitary operator
commuting with L_(Y, B). Let D, € B(M) be such that (D¥),=D, ¥,



Canonical Commutation Relations 25

yeY, ¥, e M. Let ¢; be the multiplication of y;. We then have

Wi —¢)=DDi®1) (5.7)

for almost all A. This shows that the dependence of W(4 — ¢) on 1 need
not be continuous even if W(J1) is continuous.
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