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Abstract. In the measure space construction of a representation of the canonical
commutation relations, the strong continuity of any one parameter subgroup is proved.

All multipliers for the separable case are expressed in a constructive manner and an
irreducibility criterion for a subset of multipliers is obtained.

§ 1. Introduction

For a pair of a linear space Vφ and a subspace Vκ of its algebraic
dual V£9 a representation of CCR (canonical commutation relations)
is unitary operators U(f) and V(g) for each feVφ and g e Vπ satisfying

(i.i)
(1.2)

(1.3)

It is usually required that U(λf) and V(λg) are strongly continuous in the
real parameter λ for each fixed feVφ and g e Vπ.

Let μ be a Fπ-quasi-invariant probability measure on (V£9Bφ)9

where Bφ is the σ-algebra generated by cylinder sets. The standard
representation of CCR on Hμ = L2(V£, Bφ, μ) is given by Uμ(f) and Vμ(g)
defined as follows:

(1.4)

(1.5)

Here Ψ e Hμ and ξ e V$ [1, 7].
The continuity of Uμ(λf) in λ is easily proved but the continuity of

Vμ(λg) in λ is not known in the literature for non-separable space (cf. [9,10]).
We shall prove continuity of Vμ(λg) in λ in Section 2.
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When the representation space is separable, we may restrict our
attention to those Vφ and Vn which consists of finite linear combinations
of countable numbers of fj and gj9 7 = 1,2,... satisfying 9j(fk} = δjk

(Section 3 and [6]). We shall call such Vφ and Vπ as separable.
Any representation of CCR is a direct sum of cyclic representations.

Any cyclic representation of CCR for separable Vφ and Fπ is on a separable
Hubert space and is a direct sum of representations given by

U ( f ) = U μ ( f ) ® ί (1.6)

and V(g) on

(1.7)

where μ is j^-quasi-invariant measure on V£, Hπ and Uμ(f) are as before
and M is a separable Hubert space.

Let us consider U(f) given by (1.6) on H of (1.7) and arbitrary V(g). Let

(1.8)

Rφ = { V ( f ) ' 9 f e V φ } ' ' , (1.9)

where B(M) denotes the set of all bounded linear operators on M. Rφ is
known to be maximal abelian in B(Hμ)®l and hence

M0 = R'Φ. (1.10)

Let τ(g) be the ^-automorphism of M0 defined by

τ{g)A = (Vμ(g)®l)A(Vμ(-g)®ί). (1.11)

We set
(1.12)

Then we obtain immediately the following properties for W:
(1) W(λg) is a unitary operator depending continuously on λ due to

our result in Section 2.
(2) W(g)εR'φ = M0.
(3) W(g1){τ(g1)W(g2)}^W(g1+g2).

Conversely, any operator W(g), ge Fπ, satisfying (1) — (3) defines a
representation of CCR by [/(/) = U μ ( f ) ® ί and

(1.13)

Such W(g) is called a multiplier.
We shall give a constructive formula which exhausts all multipliers

in Section 3. Our method is taken from the work of Garding and Wight-
man [5]. We shall obtain some irreducibility criterion for some class
of multipliers in Section 4.

We shall call a representation of CCR φ-cyclic if Rφ has a cyclic
vector. This is the case if and only if M has a dimension 1. This is due to
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the fact that R'φ contains mutually non-commuting elements
AεB(M) if dimM>l and hence is not maximal abelian, while Rφ

must be maximal abelian if it has a cyclic vector. Our result shows the
existence of irreducible representations with dimM> 1.

In Section 5, we shall prove that any ^"-quasi-invariant measure
on a product space Rn x Y is equivalent to the product of the Lebesgue
measure on Rn and the restriction of the given measure to the cylinder
sets with the base on 7, as a simple corollary of our continuity theorem.

§ 2. Proof of the Continuity

Lemma 2.1. Let (7, B2) be a Borel space, (R, B^ be the real line with
the σ- field of Borel sets, (Z, B) be the product Borel space (R, B1)x(Y, B2)
and μ be a probability measure on (Z, B), which is quasi-invariant under the
R-translation :

(x,η)-+(x + x'9η)9 xeR, ηeY.

Let H = L2(Z, B, μ\ M = L^Z, B\ M1 = L^Y, B2) as a subalgebra of M,
and U(s) be the multiplication operator of eίsx on Ψ(x, η) e H. Here L^
denotes the set of all bounded Borel functions as multiplication operators.
Let Ω be a vector with Ω(x, η)=l and F Φ 0 be a projection operator in Ml.

Then U(s) is strongly continuous in s and the finite measure VF defined by

(Ω,U(s)FΩ)=$eίsι>dvF(p) (2.1)

is equivalent to the Lebesgue measure.

Proof. First we give the proof of the continuity of U(s): Let

Ak = {(x9η)eZ; k^\x\<k+ 1} e B . (2.2)

00

Since the union of Ak for fc = 0, 1, ... is Z, we have Σ μk= \\Ψ\\2 for
k = 0

μk= \\Ψ(x,η)\2dμ(x,η} (2.3)
Δh

where Ψ e H. Given ε such that 4 1 | Ψ\\ > ε > 0, there exists a fc such that
00

X μ7 <ε/4. For this fe, take δ<k~1 2siιr1(ε/4 ||!P||). Then

-l]y| |<ε (2.4)

for \t\<δ, which proves the continuity of U(s) at s = 0. Since U(s) is
a one parameter group of unitaries, it is strongly continuous at arbitrary s.

Next we prove the quasi-in variance of VF, which then implies that it is
equivalent to the Lebesgue measure ([3], §1, No. 9, Proposition 11).
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Since F is a projection in M1 , there exists a Borel set S in 7 such that F
corresponds to the characteristic function of S. Let v'F be the measure on
(#,#!) induced by v'F(Δ) = μ(Δ x S), Je^. For any f(x)eL^(R,B^\
we have (Ω, /FΩ) = J /(x) dv'F(x) by the Fubini theorem. Since the Fourier
transform determines the probability measure, VF = V'F. By the quasi-
invariance of μ, VF is also quasi-invariant and so is VF. Q.E.D.

Lemma 2.2. Let H, M, M1 , U(s) and Ω be as in Lemma 2.1. Let {E3} = $
be a finite partition of 1 by orthogonal projections in M1. (EjEk = 0 for

j Φ k and ΣEj = L) Then there exists a one parameter family of operators
Vs(t\ teR satisfying the following properties:

(1) ίEj,Vf(tJ]=QforanEJef.
(2) Let P(S) be the orthogonal projection on the closure of NSΩ where

Ns is the von Neumann algebra generated by $ and {U(s);seR}. Then

V*(t) Vf(t)* = V,(t)* VM = P(£] = K,(0) . (2.5)

(3) Canonical commutation relation with U(s):

V s ( f ) U ( s ) = U ( s ) V s ( t ) e i s t . (2.6)

(4) ys(t) is strongly continuous in t.
(5) For any unitary operator V(f) in M[ satisfying the CCR V(t) U(s)

= U(s) V(t) eis\ it satisfies

|(Ω, A* A V(t) Ω)\ ̂  (Ω, A* A Vδ(t) Ω) (2.7)

for any A in Nff9 where the right hand side is non-negative.

Proof. We have P(«?)H = ® EjP(δ)H and {LΓ(s); s e R}" = ̂  has a
j

cyclic vector EjΩ on EjPffiH. Let VF of Lemma 2.1 for F = Ej be denoted
as V j . Then E^P(S}H can be identified with L2(R,B^vj), Eft with the
constant function 1 and U(s) with the multiplication operator eisx, xeR.
(Note that £ y φ O implies £; Ω Φ O because Ω is cyclic for M = Mf and
hence separating for M.)

Let Vgj(t) be defined on EjP(£)H by

J (x) = [dv/x + t)/dvj(x)^2 Ψ(x + ί) .

j
The properties (1) ~ (4) are immediate from the definition. We shall

prove (2.7). Since Ej commutes with A, V(t\ and Vs(t\ and since it is a
partition of 1, we may check (2.7) for each EjΩ instead of Ω. (2.7) will
then result by addition and the triangle inequality for the absolute value.

Let W(t)= V(t) Vg(ίf. (t will be fixed in the entire discussion.) Let
Ψt = Vg(t)Ω. Since V(t) P(δ) = W(t) Vs(t\ we have Φf = V(t)Ω = W(t) Ψt.
Let P(g) W(t] P(ff) = Wt. We have Wt e Λζ, [P(<ί), FFJ - 0 and || Wt\\ ^ 1.
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Since Wt leaves each EjP($)H invariant and Nsι
is maximal abelian there, its restriction to this space can be represented
by a Borel function Wt(x) with \Wt(x)\ ^ 1. Hence ![£_,-Φf] (x)| ̂  IPE/ΪΉMI.
Since [£,. Ψt~\ (x) - [dv/x + OAfy(x)]1/2 ^ 0, we obtain

\(EjΩ, A* A V(t)EjΩ)\ ^ J \Aj(x)\2 |[£ Ĵ (x)| dv/x)

^ J |4,.(x)|2 [£7 f j (x) dv7.(x) = (EjΩ, A* A Vs(t] EjΩ)

where A G Λ/^ is represented by Aj(x) on EjP($)H. (A = Σ E j A j , A} G Λ^.)
Q.E.D.

Lemma 2.3. Let H, U(s) and Ω be as in Lemma 2.1. Let 7(0 be a one
parameter family of operators defined by

[7(0 Ψ~\ (x, η) = [dμ(t + x, η)/dμ(x, η)~]1/2 Ψ(x + t,η). (2.8)

It is unitary, satisfies 7(ίJ 7(ί2) = 7(ίx + ί2) and 7(0 ί/(s) = t/(s) 7(0 eίst

and is continuous in t.

Proof. The unitarity and the commutation relations are an immediate
consequence of the definition. We now prove the continuity.

We order the family of all finite partitions of 1 by projections in Mί

by $ C 2P if each Fk e 3F satisfies EjFk = Fk for some Ej e $. For a finite
family < f ί 9 / = 1, ...,n, of finite partitions, let 3F be the finite partition

n

consisting of all nonzero f] Ej[\ Eff e ̂ . Then ^ o f f t for all /. We now
1=1

consider the net 7^(0 for each fixed t and proves lim 7^(0 — 7(0-

We first note that projections in M1 generates M{ and hence

Let 7'(0 e Π U ^?(θ] w where - w denotes the weak closure. By

the weak compactness of the unit ball of B(H) for any H, there exists
at least one 7'(f). It has the following properties.

IIΠOII ^1, (2.9)
ΠίjGMί, (2.10)

7'(0 [7(0* t/(s) 7(0] - U(s] V'(t), (2.11)

0< (Ω, v4*/L 7(0Ω) ̂  (Ω, y4*X 7'(OΩ)» (2 12)

where ^4 φ 0, yl G M.
Here (2.11) is shared by all 7^(0 and hence holds for 7'(0 Since

[7^(0, £]=0 for any projection E in M1 ftg^ff^E, we have (2.10).
The first inequality of (2.12) follows from the definition of 7(0 and
dμ(x + ί, η)/dμ(x, η)>Q for μ-almost all (x, y) by the quasi-invariance.
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The second inequality holds for AεNs> for all Vs(t\ $3$" and hence
holds for V'(t\ for such A. Since (u Ns)" = M, it holds for arbitrary A e M.

LetW = V'(t) F(ί)*(ίfixed).From(2.10)and(2.11),wehavePy6M/ = M.
Hence it is represented by a multiplication of a Borel function W(x9 η).

Let [V(t) Ω] (x, ij) - ΪΊ (x, 17) and [F(t) β] (x, η) - <F2(x, 17). From (2.12),
we have 0 < ^(x, //) ̂  <F2(x, 77) for μ-almost all (x, η). Since WΨ1 = Ψ2,
we have P^(x, ^) = ^2(

x> ^)/^ι(x> */) ̂  l From (2.9), we also have
\W(x, η)\^L Hence W(x, η) = 1 for μ-almost all (x, η). Therefore W= 1
and V(t) = 7'(ί), which means w - lim V#(t) = V(f). [Since 7(ί) is unitary,

$ t

||[F(t) - Vt(t) \ Ψ\\2 Z 2 1| P||2 - 2Re(K(ί) ̂  V,(t) «P)

and hence lim Vs(t) = V(t) strongly.]
<^t

We now have, from (2.7) and the positivity of (Ω, 4M V(t)Ω)9

(Ω, A* A V(t)Ω) = inf(Ω, ^* A 7^(ί)Ω) (2.13)

for all AeM and ίeR. Since (Q,A* AV$(i)Q} is continuous in ί,
(Ω, v4*yl F(ί)Ω) is upper semi-continuous, and hence measurable. Any
C E M can be written as

(the decomposition of a Borel function in L00(Z, B)) and since Ω is cyclic
for M, we have the weak measurability of V(t)Ω.

Since

V(t) U(s)AΩ = e~ίst U(s)AV(t)Ω (2.14)

for AeMί and { U ( s ) A Ω} is total in H, we obtain the weak measurability
of V(t).

We now, have, from the group property,

(Qf(o)*Ψ9V(t)Φ) = (Ψ,Qf(t)Φ) (2.15)

where /is a continuous L1 function on R and

Qf(t) = !V(s)f(s-t)ds. (2.16)

Since

||(Φ,7(s)!P)||^||Φ||||!P|| and \\A\\ = supUΦΓ 1 I^H^KΦ^^I ,

we obtain

ί ι/(s - o - f(s - oι ^^ - (2.17)
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Given ε > 0, and t' e R, we choose K such that j \f(s)\ ds < e/4. We then
\s\>K

choose 0<(5<1 such that \f(t-s)-f(t' -s)| < [4(K + 2|ί'| + 2)]~1ε
for all |s| < K + \t'\ + 1 and \t - ί'| < δ. We then have \\Qf(t) - Qf(t')\\ < ε
for |ί — ί'| < <5 from (2.17) and Qf(t) is norm continuous in ί.

From (2.15), we now see that (X, F(ί)Φ) is continuous in t for all
ΦeH and X = β/(0)*Ψ, Ψ e H . Since \\V(t)Φ\\ ^ \\Φ\\ is uniformly
bounded, it remains to show that X is total in H.

Let X0 be the specific X with /0(s)= exp — s2 and Ψ = Ω. Let
F^ί) = (Ω, A* A V(f) Ω) and Δn = {t F^ί) < 1/n}. Due to the first inequality
of (2.12), (J ̂  = jR. Since each Δn is Borel, at least one of them has a

n

Lebesgue measure non zero. Hence $ FA(t)f0(t)dt>Q for every 4ΦO.
This implies that X0(x9 η)>0 for μ-almost all (x, η)9 and hence X0 is
a cyclic vector of M.

Since ̂  t/(s)X0 = 6/(°)* ^i C/(s)Ω with /(ί) = έΓίsί έΓ'2, it is another
X and hence X is total. Q.E.D.

Theorem 2.4. Let V£ be the algebraic dual of VΦ9 Bφ be the σ- field
generated by cylinder sets of Vφ and μbea probability measure on (V$9 Bφ).
Let VπCV£ and assume that μ is Vπ-quasi-invariant. Then Uμ(f) and
Vμ(g) defined on Hμ = L2(V£, Bφ9 μ) by (1.4) and (1.5) have the property
that U(tf) and V(tg) are continuous in t for each /e Vφ and g e Vπ.

Proof. The proof of the continuity of U(tf) in t is exactly the same
as the proof of the continuity of U(s) in Lemma 2.1. For given 0 Φ g e Vπ9

there exists an fge Vφ such that g(fg)=L (Since VπcV£, g(f) = 0 for

the σ-field generated by cylinder sets of V$g. Then ( V f 9 B φ ) =
x (7, B2). By Lemma 2.3, V(tg) is continuous in t. Q.E.D.

§ 3. Multipliers

We first give a motivation for our choice of Vφ and Vπ.
We consider a representation of CCR on a separable Hubert space H.

The set of all unitary operators is then second countable in its strong
operator topology. Choosing one l/(/) from each neighbourhood in
the countable basis for the strong operator topology of unitaries, if that
neighbourhood contains at least one U(f)9 we obtain a countable subset
V$ = { / / I j e N ] of Vφ such that {[/(/); /e Vφ°} is dense in V = {[/(/);
/e Vφ}. Similarly we choose Fπ° = {g? J 6 N} in Vπ such that {V(g)\ g E V$]
is dense in i^={V(g); g e FJ.

Assume that F ,̂ and Vπ are separating each other. If g(f) = Q for all
g e T °̂, then C/(/) commutes with all V(g\ g e Fπ° and hence with all
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V(g\ g e Fπ, a contradiction with the assumption. Hence Fπ° separates Fφ

and Vφ separates Vn.
We define // and g],je N, inductively to satisfy the following prop-

erties: (1) gj(fk) = δjk (2) // is a non-zero element with the smallest k

among fk° - 'f g \ ( f £ } f t . (3) g] = g](f^g] and ̂  is an element with
1=1

7-1

the smallest fe among 0£ - £ Qk(fι)g\ satisfying #£(//) ΦO. We start

with // = f® and this procedure determines // and gj uniquely for
7 = 1,2,....

Let Vφ and V% be finite linear spans of { f l jeN} and {g];j<EN}.
From the construction, they are subsets of Vφ and Vπ such that
{£/(/); /G 1/φ1} and (7(0); ge Fπ

x} are dense in W and TT.
This discussion motivates our choice of K/. and K,:

(3.3)

Lemma 3.1. Let Vφn=\Σ λjfpλj^R\ and Vπn = \ Σ λjθj'>λj£
U=ι J U=ι

Lei £/(/), F0(0) and U(f), V(g), /e Fφπ, ge Fππ be ίwo representations
of CCR with the common U on the same space. Then there exists a unitary
operator D commuting with U(f\ fεVφn such that V(g) = DV0(g)D*.

Proof. It is known [8] that any representation of CCR for Vφn and
Vπn is a direct sum of irreducible representations, all irreducible re-
presentations are mutually unitarily equivalent and {[/(/);/E Vφn}"
is cyclic in each irreducible representation. Hence the multiplicity of the
unique irreducible representation is the same as the multiplicity of
{U(f)l /E Vφn}" (which must be uniform) and hence is common for
U(f) F0(0) and (/(/) V(g). Hence the two representations are unitarily
equivalent and there exists a unitary D such that DU(f)D* = U(f),
/E Vφn and DV0(g) D* = V(g\ g E Vπn. Q.E.D.

Theorem 3.2. Let U(f\ fεVφ and VQ(g\ g e Vπ be a representation
of CCR where Vφ and Vπ are given by (4.1) and (4.2). Suppose that U(f)
and V(g) = W(g) V0(g) are also a representation of CCR on the same space.
Let Rφn denote the von Neumann algebra generated by V(f\ fεVφ and
V0(λjgj), j = 1,..., n, where n = 0,1,..., and Rφ0 is written as Rφ. Let
τ(g)A= V0(g)A V0(g)* for AzRφ. Then there exists a unitary Cn e R'φ(n-l},
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n= 1,2,..., such that

w (Σ ̂  ) = (cι - - Q τ (Σ ̂  ) (c? - c*) (3 4)

Conversely^ any such W(g) gives rise to a representation U(f) and V(g)
= W(g) K0to) of CCR.

Proof. If Cj, j E N is given, then W defined by (3.4) is consistent

(namely W^λ^^wl^λ^ ifλn+1 = ••• - λn+m = OJ. Since

and £/(/) = d,..., CB [/(/) C*,..., Cf, [/(/), Kfe) are unitarily equivalent
to [/(/), K0to) if /, # are restricted to Vφn and Kπn. Since n is arbitrary,
£/(/), Kto) are a representation of CCR.

Now assume that Kto) is given. By Lemma 3.1, we have unitary Dn

for each w = 1, 2, ... such that DnεR'φ and K(0) = A» K0to)D* for

g=Σλigί. Let CΠ = D*_1DΠ with D0 = 1. Then we have (3.4). Since

CneR'φ and Cn commutes with K0to), g= Σ Λ &J as is seen from
ί = l

CΠ Koto) C* = D^! K(0) A,-ι = Koto), Cn belongs to ^(n_1}. Q.E.D.

Remark 3.3. Let us call a sequence of unitary operators Cn e ^ ( f j_i)
as M-sequence. Consider the transformation ek(A) of M-sequence defined
by (ek(A) C\ = Cn if n φ k, k + 1, (ek(A)C)k = Ck^4*9 (ek(A)C)k + 1 = ̂ 4Ck + 1

where A is a unitary operator in R'φk. We equip CΠ with the product
topology of strong operator topology of unitaries. Let E(C) be the smallest
closed set containing C and stable under every ek(A). We then call C(1)

and C{2) equivalent if C(1)e£(C(2)). It can easily be shown that this is
an equivalence relation and W corresponding to C(1) and C(2) coincides
if and only if C(1) - C(2).

We say that two multipliers are equivalent if the corresponding
£/(/), Kto) are unitarily equivalent for a common U and K0. The set of
all M-sequences yielding multipliers equivalent to a given M-sequence
is the smallest closed set containing that M-sequence which is stable
under ek(Ak) for all unitary AkeR'φk, keN and the transformation
C1-^AC1 for all unitary A E Rφ.

§ 4. Irreducibility Criterion

We consider the following situation. Vφ and Vn are given by (3.1) ~ (3.3).
Fφ* is then identified with a countably infinite topological product of R.
Let μ j5 j e N be a probability measure on R equivalent to the Lebesgue

2 Commun. math. Phys., Vol. 20
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measure and μ be the product measure of {μ^ j e Λ Γ } . Then μ is Vπ-
quasi-invariant and H ~ L2(V£,Bφ,μ) can be identified with the in-
complete infinite tensor product (X) (///, Ώ7) where Hj — L2(R,μJ) and

JeN

Ω j ( x ) = l . We shall denote the multiplication by x on Hj by qjf We
define [F0j(A) <F] (x) - (dμ^x + /l)/Wμ/x))1/2 !F(x + A)for <F 6 ̂ and denote
V0j(λ) = elλpj. The corresponding operators on Hμ are denoted by ̂
and Tij : <^ = q^ ® / (X) 1 λ , π^ = p (x) / (5<) 1 k] . With these notations, we have

U(f)= Π eiλ>+* for /= A,./;- and F(^)= [ '̂̂ ^ for 0=

The total Hubert space H is taken to be Hμ®M, dimM <oo.
We also restrict multipliers by assuming

Cne[l®B(M)v{U(λfJ\ λeRft". (4.1)

In this case we may introduce a B(M)-valued Borel function Cn(λ)
of λ e R for each n e N such that [Cn Ψ~]ξ = Cn(ξ(fn)) Ψξ for ΨeH,ΨξeM,
ξeV£. We wirte Cn as Cn(φn) on H and Cn(qn) on Hj®M.

Ό(flf)} is irreducible on Hμ due to B(/y = j(J f^(fl/)®f ® I*)]!"'

Hence μ is ergodic under Vπ translation.
If an operator -Sis in the commutant of # = {[/(/) V(g);fe Vφ,g<E Vπ}",

then we have S e R'φ and

Sπ = C*. . .C?SC 1 . . .C I I eR; ι I (4.2)

ί Γ / " \ ]]/;

where Rφn= \Rφ^ \B l(g) f/,- ® 1 [ This condition is necessary and
I L V/ = l / JJ

sufficient due to V(g) = C1 ... Cπ K0fef) C* ... Cf.
For Se#;, we define trSeK 0 by (trS)ξ = tιSξ where (5^ = 5^?^

for Ψ e H , Ψ ξ eM and 5ξe5(M). Let S' -^-(trl)"1 (trS)l. Then
trS' = 0. We also have trSn = trSe^n for all n. Hence trSeR^.
Since Rφr\R'φ(X) is trivial (μ is Vπ ergodic), trS is a multiple of identity.
Since S" cannot be a multiple of identity due to trS; = 0 unless S'=0,
the irreducibility is equivalent to the statement that all S satisfying (4.2)
and trS = 0 vanishes.

Lemma 4.1. Let Kn be the Hubert space (of dimension n2) obtained
by introducing the inner product (A1,A2y = tΐAfA2 in B(M). Let a(U)
be the unitary representation on Kn of the group of unitaries on M by
a(U)A=UAU*.

Then a(U) is irreducible on the orthogonal complement of ί , consisting
of traceless A.
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Proof. It is enough to show that an arbitrary A^cl together with 1
are cyclic under α(t/). There exists a unit vector e e M such that (e, A e) Φ 0.
We integrate a(U)A over all U leaving e invariant relative to the Haar
measure. We then obtain (e, Ae)E — c(l — E) where £ is a projection on e
and c(tr 1) — c = (e,Ae). By subtracting c 1, we have a one-dimensional
projection from which all A can be generated. Q.E.D.

We denote α(t7) for U = C*(λ) by an(λ) and set

απ = (Ωn9 an(qn)Ωn) = J απ(λ) dμn(λ) . (4.3)

Lemma 4.2. U(f), V(g) are irreducible if

limocn + k...akA = Q , fc=l,2, ... (4.4)
n ~* oo

for every A e KdimM, trA = 0.
OO

Proof. Let !F and Φ be product unit vectors in Hμ with (X) Ω7 as a
j = k

factor for some /c. Consider each (St)ξeB(M) as a vector in KdimM.
From (4.2), we have

Sk-ι=*k(φk)*...*n + k(φn+k)*Sn+k (4.5)

By taking (Ψ,XΦ) in the sense that (Ψ,XΦ)eB(M), (ψ,(Ψ,XΦ)φ)
for ψ9 φeM, we obtain

(!P, Sk_! Φ) = α? .. . α*+k(0, 5n + feΩ) . (4.6)

Taking inner product with any A with tr^4 = 0, we have

<A,(y,Sk_^)> = <an + f c...a f c4, (ί2,5n+fcΩ)>. (4.7)

By (4.4), we have

0 (4.8)

for every >leβ(M) with tτA = Q. Note that (Ω,Sπ+kΩ) is bounded by
the unitarity . Hence, if tr S = 0, then tr Sk _ 1 = 0 and we have (Ψ9Sk.1Φ) = 0.
Since product vectors of the specified kind is total in Hμ, we have Sk_1=Q.
Since Cj are unitary, 5 = 0.

For arbitrary S, we decompose S = S/ + (trl)~1(trS)l with trS' = 0.
We then have S' = 0 from the present argument. We have already seen
(immediately before Lemma 4.1) that trS is a constant and hence S is
a multiple of the identity operator. Q.E.D.

Lemma 4.3. If an + k ... αfc A does not tend to 0 as n— >oo for one k e TV
and one A e β(M) with trA = 0, ί/iew C/(/), F(#) is not irreducible.
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Proof. Suppose an + k ... ockA does not tend to 0 as n->oo for AeB(M)
with trA = 0. Since α^ ) is unitary, its average αw satisfies

Hence there exists a subsequence n(l\ 1=1,2, ... such that

. . .MΦO. (4.9)
ί-> oo

We also have tr A0 = <1, A0> = 0. Let

Since \\An\\ = \\A0\\, there exists a subsequence m(j) of k + n(l) such that

4^ = ™- lim^m(j). (4.11)

From (4.10) and (4.11), it follows that

C*...CΪAaΰC1...CnεR'φn. (4.12)
Hence A^ εR'.

From (4.10), we have

^oo(k-l) — ̂ k-l ^l^oo^l ^k-1 (4 1 Tϊ

= w Jim ock(φk)* ... αm(j) (0m(j))* ̂ 0 -

Hence for Ω = Ωj e Hμ,

°° J^QQ m ^

Since m(/) is taken to be a subsequence of fc + «(/), we have

, (Ω, /l^^-
-7'-*00 (4.15)

Hence ^^-^ΦO. Therefore ^^ = Q ... Q^^^C*^ ... Cf ΦO
because C7 are unitary.

Due to tr^o^O, we have tr^w = 0. Hence tr^ =0. Therefore A^
is not a multiple of identity. [iΐA e B(//μ) is defined by

dimM

(Ψ9[KA]Φ)= Σ (^Oα^^CΦ®^])
J = l

for an orthonormal basis aj in M and Ψ,Φe Hμ. Hence tr A = 0 is preserved
by the weak limit.] Q.E.D.

Theorem 4.4. £/(/), 7(0) are irreducible if and only if

limαn + fc ... ukA = Q
H-> 00

/or έwry fc 6 N and A ε KdίmM = B(M\ tr A = 0.
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Remark 4.5. ock is an average of unitary ak(qk) and hence has a norm
smaller than 1 in general. The norm approaches to 1 if either μk becomes
concentrated to a single point or if ock(λ) becomes independent of λ.

Example 4.6. We take dim M = 2. Let σl9σ2, cτ3 be Pauli matrices on M.
Let C3n+j(λ) = expiλσj9j= 1, 2, 3. We have

Γ 3

(cos 2 λ) σk + (sin 2λ) £ εu/c ̂  (fc Φ;) ,
i = 1 (4.16)

where είjfc = 1 for even permutation of (1 2 3), — 1 for odd permutation
and 0 otherwise.

We take dμj(λ) = π~ll2e~λ2dλ. Then, relative to the orthonormal
system {σ7 } in K2Ql, we have

Hence
α3n + 3 α 3n+2 α 3n + l ~ e

Therefore (4.4) holds and we have the irreducibility.
Example 4.7. Any incomplete infinite tensor product of a countably

infinite number of copies of Example 4.6 gives an example where U(f),
V(g) are irreducible and dimM = oo.

§ 5. Miscellaneous Discussions

Our Theorem 3.2 and the following lemma, contained in [7], yield
a rather complete structure theory for the representation of CCR when
Vφ and Fπ are separable.

Lemma 5.1. Any representation of CCR, for Vφ and Vπ given by
(3.1)~(3.3), is a direct sum of representations, each of which has a form
t/μ(/)<g)l and V(g) on L2(V£, Bφ,μ)®M where V£ is the algebraic dual
of Vψ, Bφ is the σ-algebra generated by cylinder sets, μ is a Vπ-quasi-
invariant probability measure on (V£, B), M is a Hubert space, and Uμ(f)
is a multiplication of elξ(f\ ξe Vφ.

Proof. Any representation is a direct sum of cyclic representation,
each of which is separable due to (3.1), (3.2), and the continuity of U(tf)
and V(tg) in t. Let

Rφ = {U(f)ιfεVφ}". (5.1)

By the multiplicity theorem (for example, see [4], Proposition 2, p. 252),
there exists a partition {£α; αe]Vu{oo}} of 1 by central projections of
Rφ such that Rφ has a uniform multiplicity α on EnH. {Ea} is a unitary



22 RAraki:

invariant of Rφ, namely, every unitary W satisfying WRΦW* = RΦ

commutes with all Ea. Hence each E^H is an invariant subspace of the
representation.

EaH can be identified with HΛ®MΛ and U(f)\EnH with l/(/)π<g>l,
where dimMα = α and (Rφ)n = {U(f)n; fe Vφ}" has a cyclic vector in HΛ.
Ha can be identified with L2(V£, Bφ, μα) for some probability measure μα.
(See, for example, [1] Appendix.) It remains to show the quasi-in variance
ofμΛ.LetΩ(ξ)=leL2(Vf,Bφ,μJ.

From the commutation relation, we have

V(g) lF(ξ) ® 1] V(g)* = F(ξ + g)®l (5.2)

when F(ξ) = eiξ{J\ /e Vφ. Here F(ξ) denotes the operator multiplying
F(ξ) on Ψ(ξ). The following series of approximations by sequential
pointwise limits of uniformly bounded functions and algebraic operations
prove the validity of (5.2) for any bounded Borel function on (V£, B).

A periodic function by uniform limit of finite linear combinations
of elt,t = ξ(f). A continuous function f(t) with a compact support by
lim £ /(ί + π/c). The characteristic function of a bounded open interval

n kεZ

(a, b) by monotonously increasing continuous functions. The character-
istic function of any open rectangle in ξ(fί) ... ξ(fn) by multiplication.
The characteristic function of any Borel set in Vf by finite addition,
multiplication, subtraction from 1 and limit of monotone sequences,
starting from cylinder sets whose bases are open rectangles. Any Borel
function by limit of monotonously increasing simple functions.

Let XΔ(ξ) be the characteristic function of a Borel set A. Then
V(g)*XΔ(ξ) V(g) = XA(ξ-g) = XA + g(ξ). Hence

μ(Δ + g) = (Ω, XΔ+gΩ) = (V(g)Ω, XΔ V(g)Ω) . (5.3)

Since Rφ has a uniform multiplicity on EaH, μ(A) = 0 implies XΔ = 0
as an operator and hence μ(A +g) = Q from (5.3). Therefore μ is Vπ-
quasi-invariant. Q.E.D.

As an application of Theorem 2.4, we have the following measure
theoretic consequence. Conversely, any other (possibly measure theoretic)
proof of the following Lemma gives an alternative proof of Theorem 2.4,
as is readily seen.

Lemma 5.2. Let X = Rn and Y be a Borel space. Let μ be Rn-quasi-
invariant probability measure on Z = Rn x Y. Let μ2 be the measure in-
duced on Y by μ2(Δ) = μ(Rn x A). Then μ is equivalent to the product of the
Lebesgue measure and μ2 .

Proof. First consider the case n=ί. Let Hμ = L2(Z,μ\ Ω(x,η)=l,
[t/(s) !P] (x, η) = eisx Ψ(x9 η) and [V(f) ψ\ (x, η) = [_dμ(x + ί, η)/dμ(t, η}~]1'2
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• Ψ(x + t, η). Let ML be the von Neumann algebra of all bounded Borel
functions of η e Y independent of x e K".

By the proof of Lemmas 2.1 and 2.3, ί/(s) and V(t) are a representation
of CCR, continuous in s and ί. Therefore Λ = {C7(s) K(ί); sεR, teR}"
is a type I factor [8].

We can identify Hμ with H1®H2 and R with ^(J^)®!. Since
M^MiUMφ}" is maximal abelian in Hμ where M0 = {U(s); sejR}",
ML is maximal abelian in B(H2).

Let the standard diagonal expansion ([2], Definition 2.1) of Ω be

OO

β = ΣΛ/ΩJ®Ω 2 ) , A^O, (5.4)
j = ι

where Ω) and Ω2 are orthonormal in H1 and H2. With the restriction
Λ,j>0, the sum must be countable. Since Ω is separating M, ;4Ω2 = 0
for all 7 implies A = 0 for /I e Mt .

Let Ωj=Ej_ίΩ* where £_. is a projection on ^ (J M^2> . Let
U = 1 J

Ω 2 = £ 2~ jQ?. Then /1Ω2 = 0 implies ,4 = 0 for AeM^ Since Ml

j = ι
is maximal abelian, the separating vector Ω2 of Mί = M/ is cyclic for
M!. MO has always a cyclic vector, which we may take to be

00

Ω1 = £ 2 ~ 7 Ωj. Ω1®^2 is obviously cyclic for M, and hence is separating

for M = Mr.
For a Borel set zJ CZ, let XΔ be the characteristic function of Δ.

Then Jζ, e M and XΔ = 0 if and only if μ(A) = 0. We define

v is a probability measure on Z and is a product measure of the Lebesgue
measure on R and v2, the restriction of v to Rn x z!2.

Since Ω1 ® Ω2 is separating for M, v(Δ) = 0 is equivalent to XΔ = X$
XΔ = Q and hence is equivalent to μ(Δ) = 0. Hence v is equivalent to

μ and v2 is equivalent to μ2. This proves the case n=l.
Since Rn = Rn~[ xR, the general case n> 1 can be proved by trivial

inductive argument. Q.E.D.
In connection with the notation Cn(φn), we have the following

generalization (see Definition 5.5).

Lemma 5.3. Let H = L2(Y, B, μ)® M, Rφ = L^Y, B)® 1 where (7, B)
is α standard Borel space, L^(Y, B) is the set of bounded Borel functions
and άimH = K0. Let W(λ) be a family of unitary operators in R'φ, weakly
Borel in λ e Rn. Then there exists a B(M)-valued weakly Borel function



24 H. Araki:

W(λ\ of (λ, η)εRnxY such that

\_W(λ)Ψ\=W(λ\Ψη (5.5)

for almost all (λ, η) relative to dλ x μ. Here Ψ e H is represented by Ψη e M,
ηe Y.

Proof. Consider 3? = K®H,K = L2 (Rn, dλ). Let Ψ e jf be represented
by Ψ(λ)eH, (Ψ9Φ) = S(Ψ(λ),Φ(λ))dλ. Let W be defined by [FFΦ] (λ)
= W(λ)Φ(λ). Let Λφ = L 0 0 (Λ n χy)(8)l in (K®Hβ}®M = 3f. Then

Since L^^x Y) is maximal abelian on K®Hμ = L2(Rnx Y) every
A e R ' φ can be represented by weakly Borel β(M)-valued function
A(λ, η). If A is unitary, A(λ, η) is unitary for almost all (λ, η). Redefining A
at (λ,η) for which /l(λ,/y) ^l(A,?/)*φl or A(λ,η)* A(λ,η)*l9 A(λ,η)
can be made unitary for all (λ, η). Let W(λ)η = W(λ, η). From

W(λ\ Ψη f(λ) = (WΦ) (λ, η) = [W(λ) Ψ]η f(λ)

for Φ = f®ΨeK®H, we have (5.5) for almost all (λ,η). Q.E.D.

Lemma 5.4. Let ( Y, 5) fo^ α standard Borel space, μ be a probability
measure on (Y,JB), H = Hμ®M, Hμ = L2(Y,B,μ) and Rφ = L00(Y,B)®l.
Assume that H is separable. Let Aj9j=l,...,nbe self -adjoint operators
corresponding to multiplication of real-valued Borel functions A^η), η e Y.
Let W(λ] be a family of unitary operators in R'φ, weakly Borel in λe Rn.
Then there exists a family of unitary operators in Rφ, weakly Borel in λ
such that

η (5.6)

for almost all (λ, η) relative to (dλ, μ), where W(λ)η is taken from Lemma 5.3.
Two such V(λ) can differ at most for λ in a Null set.

Proof. Since (λ, η)-+(λ + A(η\ η) is an invertible Borel map of Rn x Y,
W(λ + A(η))η is weakly Borel and hence V(λ) defined by (5.6) is weakly
Borel where A(η) denotes {A^)}eRn. Since W(λ + A(η))η is unitary,
V(λ) is unitary for all λ. Any two such V(λ) can obviously differ only at λ
in a Null set for a fixed Ψ. Since H is separable, they differ as an operator
only at λ in a Null set. Q.E.D.

Definition 5.5. The operator V(λ) in Lemma 5.4 is denoted by W(λ + A).
It is defined up to a Null-set of λ.

Example 5.6. We take Y = Rn, μ equivalent to the Lebesgue measure,
W(λ) = Dτ(λ)D*, (τ(λ)A)y = Ay + λ ( y G Y ) and D is a unitary operator
commuting with L^Y.B). Let Dy<=B(M) be such that (DΨ)y = DyΨy9



Canonical Commutation Relations 25

y e 7, Ψy e M. Let φj be the multiplication of yjf We then have

W(λ-φ) = D(D*®l) (5.7)

for almost all λ. This shows that the dependence of W(λ — φ) on λ need
not be continuous even if W(λ) is continuous.
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