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Abstract. A differential equation representing radiation solutions of the general re-
lativistic Weyl equation is derived. Their optical properties and the group of motion of the
corresponding energy-momentum tensor are studied. If there exists neutrino radiation
the Rίemann space must be algebraically special and the propagation of the neutrinos
occurs only along one of the principal null directions. Gravitational- and neutrino pp-
waves taken together, represent an exact solution of the Weyl-Einstein system of field
equations.

§ 1. Introduction

The physics of neutrinos is determined by two interactions: the
weak interaction dominating within elementary particle physics, and
the long-range gravitational interaction. The latter is most important
for some stages of stellar evolution (e.g. [1]), at the beginning of our
Universe (e.g. [2]), and in connection with a cosmic neutrino back-
ground radiation (e.g. [3]).

In the framework of General Relativity, neutrinos are commonly
treated phenomenologically as point particles moving with the speed
of light and show in this simplified model, the same properties as photons.
On the other hand, a rigorous quantum-mechanical treatment in curved
spacetime must start from the generally covariant Weyl theory of the
neutrino (§ 2). In the following, the characteristic properties of a special
case of WeyΓs theory in a 4-dimensional Riemann space shall be studied
with rigorous methods in analogy to the electromagnetic case. Several
deviations from the phenomenological description are found in this way.

We restrict ourselves to neutrino radiation fields defined in analogy
to electrodynamics and we derive the differential equation for such solu-
tions of WeyΓs equation in § 3. By means of this equation, we determine
the optical properties of the null-congruence given by the 4-vector f
of the probability-density and the group of motion of the energy-momen-
tum tensor. After this, it is possible to classify the neutrino radiation
solutions by means of some supplementary conditions in § 4. We show
in § 5 the algebraic conditions of the metric field, which must be satisfied
in order that the corresponding solution can exist. Especially, there
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results an interesting connection between the principal null directions
of the Weyl curvature tensor and the /-field. Finally, an exact solution
of the coupled Weyl-Einstein system is given in § 6. It represents a
neutrino pp-wave accompannied by a gravitational pp-wave.

§ 2. Generally Covariant Weyl Theory

Confining ourselves to the gravitational interaction, the behaviour of
neutrinos is described in the framework of a metrical theory of gravitation
by the generally covariant Weyl equation (e.g. [4, 5])

^AόψA\\a = 0, (2.1a)

where the generalized Pauli matrices σaΛB are implicitly defined by*

2σ{/
Bσβ)Λc:=gaβδ

B

c. (2.2)

The covariant derivative of a 2-spinor is given by 2

ΨA\\μ'=ΨA\μ-Γμ

B

A'φB, (2.3)

with the spinor affinities

Γμ

B

A = h σx

B6(σx

Aέίμ + σλ

Aέ Γ"μλ). (2.4)

In the following, we use the 2-sρinor calculus in Riemann space.
For example, to every tensor WQ$.'" we associate an equivalent spinor by

o AF BG jj/ocβ / ^ c ^λ
. — <7 DY ' " (7 (7a ' ' ' W - Zja

t\.Λ <X P Q ' " \ /

This may be inverted, to give

T/ξ/(xβ ' xx/AFBG _.α β RX (^ c t-̂ \

Instead of (2.5) we write
Wi$Bά~Wa

Q

p, (2.5c)

and call W^BO the spinor equivalent of Wa

ρ

β. Now the Weyl equation
becomes

? V = 0- (2 l b )
For more details about the 2-spinor calculus we refer the reader to
Pirani's article [6] (see also Penrose [7]).

1 M{aβ):= \{Maβ + Mβa), M[aβ]:= \{MΛβ — MβJ(same rule for spinor indices). Signature

of gaβ :(---+)•
2 : = -is the sign of definition; partial and covariant derivatives are denoted jα and |)α

respectively (same rule for spinor indices).
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For each Weyl field φA the corresponding null 4-vector j α of the prob-
ability density is

h++<PA<pB> ( 2 6 a )

with

JV = 0, fja = 0; (2.6 b, c)

the energy-momentum tensor is (disregarding an irrelevant factor)

T*P<-*il(P(A\\B)(C(PD)- φ(C\\D)(AΨB)] > ( 2 7 a )

with

T ^ | | / ? = 0, T[α/?] = 0, T\ = 0, Taβff = 0. (2.7 b-e)

We treat the neutrino field φA in analogy to the Maxwell field, as an
unquantized (classical) field in Riemann space3. The probability inter-
pretation is implied by the structure of/* and Taβ, which are quantum
mechanical expectation values.

§ 3. Neutrino Radiation Fields

Just as in electrodynamics, we define as neutrino radiation field any
solution of WeyΓs equation (2.1), whose energy flows for all observers
pointwise in the same direction with the velocity of light. That is 4,

p«:=Taβoβ~Aa, AaAΛ = 0 (3.1a, b)

for all oa with oaoa = 1. This implies

T«β~A«Aβ<-*aAaBaόaύ. (3.2)

Because of (2.7 a), aA must be proportional to φA, and as a consequence Aε

must be proportional to / . Physically this means that the 4-momentum
pa of the neutrino radiation is always collinear with the probability
density f. Therefore, with (3.2) we have

T«β = b(x)fjβ<-+b{x)φAφBφέφό. (3.3)

For each observer the real function b(x) can be interpreted as the quotient
of the energy density and the square of the probability density.

Equating (3.3) with (2.7 a), we obtain the following implicit system of
differential equations for φA:

( 3 4 )
3 In regard to the topology of the Riemann space, we suppose the existence of a spinor

structure [8]; this seems to be the case for all physically interesting metrics [9].
4 ~ is the sign of proportionality.
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We solve (3.4) for φA\\Bc using (2.1) and obtain the general solution (see
the Appendix)

(ΛKmέ , (3.5)

with the four additional real functions Kε(x):

Kε~KAB. (3.6)

Evidently every φA satisfying (3.5) is also a solution of WeyΓs equation (2.1).
Therefore, Eq. (3.5) is the differential equation for neutrino radiation fields.

In every special Riemann space the existence of such radiation
solutions must be proven each time by means of the integrability condi-
tions corresponding to (3.5) (see § 6). Apart from this, we consider in the
next two paragraphs necessary properties of such solutions.

§ 4. Neutrino Ray Optics and Groups of Motion
of the Energy-momentum Tensor

We analyse the kinematics of neutrino radiation by means of the
4-current/ of the probability density. One obtains with (3.5)

/ W B = Ci.f, cx:=KJ9 (4.1a, b)

and consequently f is a tangent vector to a null geodesic congruence
with non-affine parametrization. The geometry, i.e. the differential
optical mapping properties, of neutrino rays in curved space-time is
described by the three optical parameters twist ω, shear (or distortion)
|σ| and expansion Θ (Sachs [10]). In a geodesic and affinely parametrized
null congruence, they are determined by the corresponding tangent vector
Γa as follows5:

where

: = (λ'AlιxΫλ'Λ)λ'xμ'Ϋ.

= - R e ρ ,

= 2(Imρ)2,

= 2σσ;

*,
ϊ

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

establish the connection between the tensor and the spinor formulation
with

l'^λ'Aλ'B, λ'Aμ'A=\. (4.7 a, b)

5 Construction with respect to an affine parameter is denoted by a dash, σ is the complex
conjugate of σ.
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In order to evaluate (4.2), (4.3) and (4.4) in the case of neutrino radiation
fields, we change from/ to a tangent vector/α (which corresponds to ϊa)
by introducing an affine parameter Ϋ :

^ = £ Γ ί c i d r . (4.8a-c)
dr dr

The spinor equivalent of/α is given by:

φ'Λ = aφΛ, Reα=j/α , αφO. (4.9a-c)

Introducing μA and μ'̂ , which satisfy

φAμ
A = U φf

Aμ'A=U (4.10a, b)

we establish two basis in spinor space with

It follows from Eq. (4.5) and (4.6), that

ρ - aa(φAlιxΫφ
A)μxφΫ , (4.12)

σ = a3a~1(φAnxΫφ
A)φxμγ. (4.13)

Substitution of (3.5) yields the optical scalars of neutrino radiation:

1*1 = 0, (4.14)

ω = 0, (4.15)

Θ= -\aaKJ. (4.16)

In every Riemann space all radiation solutions of the Weyl equation
possess a shear-free and twist-free geodesic congruence*.

In particular, the congruence is hypersurface-orthogonal because
of (4.15):

ja = h(x)g(x)la. (4.17)

(Existence of wave fronts g = const.) By comparison, the rays of a (source-
free) electromagnetic radiation field are in general only geodesic and
shear-free (Mariot [11], Robinson [12]).

Restricting the free functions b(x) and Kε(x) of (3.5) by the supple-
mentary condition

KJ = 0, (4.18)

we obtain special radiation solutions of the Weyl equation, which are
characterized by additional physical properties going beyond (4.1a),

* Note added in proof: With a tensor method the same result is obtained recently by
Griffiths and Newing in J. Phys. A: Gen. Phys. 3, 269 (1970).



320 J. Audretsch and W. Graf:

Table Classification of the radiation solutions φA of the Weyl equation (2.1) in order of in-
creasing specialization according to supplementary conditions of their differential equation (3.5)

and corresponding physical properties, o characterizes the one-to-one correspondence

Type φA is a solution of (3.5)
with the following
supplementary conditions

φA is a solution if (3.5)
with the following properties

a) /"-congruence:
Co = |cr| = 0 twist- and shear-free
f | | ε / ~ f geodesic
hypersurface-orthogonal

planefronted wave (p-wave)

<̂> a) /-congruence:

(9 = 0 expansion-free
ja^εf = O affϊnely parametrized

b) Group of motion of Taβ\

Kε = djε with dlε~jε

planefronted wave with parallel rays (pp-wave)

o a) /-congruence:
There exists a constant tangent vector
jla=ja

e~
2δ(χ\ja^ε = O, δ = δ

(i.e. / has the form / = J β e2δ{x))
where διε = djε

KE = djε with
and blε ~ j ε

a) Wave field φA:
There exists a constant spinor φA propor-
tional to φA:
φ A = φA-e-_ΦM, φ A , , e = 0, Φ:=δ + iβ,
δ = δ, β = β
(i.e. ψA has the form φA = φA eφ{x)) where

b) Group of motion of Tα/?:
(ηa: connecting vector of the /-congruence

£T«β=£J 0

(4.14) and (4.15). According to (4.16) the expansion vanishes if and only
if Eq. (4.18) is satisfied. Furthermore, as a consequence of (2.6 b), (2.7 b),
(3.3) and (4.18), the Lie-derivative of the energy-momentum tensor
vanishes in the direction of the density-current

£Taβ= (4.19)



Neutrino Radiation 321

Because all optical parameters are equal to zero, these solutions are
planefronted waves (p-waves).
Further restrictions beyond (4.18) allow a classification of the various
types of neutrino radiation solutions by means of supplementary con-
ditions and uniquely corresponding properties. The result calculated
in the 2-spinor formalism is listed in the Table in the order of increasing
specialisation of the free functions. Especially for the type d, the form
of the solution is known and there exists a constant null bivector field
composed of φA (comp. § 5). Evidently the plane wave is of the type d
with (5 = 0.

§ 5. Propagation Direction and Principal Null Directions
of the Weyl Tensor

Applying (3.5), the Ricci identity for 2-spinors

yields necessary algebraic conditions for the metrical quantities of the
Riemann space. They must be fullfilled in order that a radiation solution
of the Weyl equation exists (integrability conditions). The spin-curvature
is determined by the Riemann tensor

τ>E 1 r>κλ _. _ EB ίc Λ\
KAμv—~2K μvσxABσλ W Z i

With the aid of the spinor equivalents of Weyl tensor and trace-free
Ricci tensor6

ty<xβγδ<Γ^* ABCD£EF ^GH + ( 3 )

Ψ ~ Ψ(ABCD)

ΦABCD = Φ(AB){CD) = ΦABCD , (5.4b)

we change to the equivalent spinor form of (5.1). We break this equation
up into invariant parts according to the symmetry properties of its
spinor indices:

ΨD\\H(X\\W)H = ΦDEWXΨE , ( 5 5 )

Ψ(c\\ B\\A)P— Ψ Ψ

The vanishing divergence of the energy-momentum tensor yields,
for radiation solutions

Xy)φxφΫ = 0, (5.8)

(A ... E) denotes complete symmetry in all indices A ... E.
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whence we may write

(bιXy + bKXΫ)φx = c2φΫ (5.9)

for some function c2(x). Now applying this equation and (3.5), the Ricci
identities (5.5-5.7) for radiation solutions become

ic2φFφγφA-±KA{EKY)EφE

ic2φAφEφx + φ(AK/mF = ΨAEXDφD, (5.11)

J - 3φEKAY[l

AΫ - iφEKAYK
AΫ = RφE . (5.12)

(5.11) represents a relation between the radiation solution φA and
the Petrov classification of the Weyl tensor [13] in its spinor form
(Penrose [7]). First we have

φBφcφD = Q (5.13)

Therefore:

For all radiation solutions of the Weyl equation the 4-current of the
probability density is collinear with one of the principal null directions of the
Weyl tensor.

With exception of conformally flat spaces, at every point there exist,
at most, 4 different null directions determined uniquely by the Weyl tensor
in which the neutrino radiation can propagate.

Furthermore, from (5.12) we have

2Km]A)

Ϋ + 3εEAKYB{f
Ϋ + iεEAKBYK

BΫ + εEAR = 2φAπE, (5.14)

for some spinor πE. Substituting the symmetrical part of (5.14),

KΫ{A\\E)Y = Ψ(AπE)^ (5 1 5 )

into (5.11), we find

^2φAφEψx- φ{AφEπX)=ΨAEXΏφΏ\ (5Λ^)

so that

ΨAEXDφDφEφx = 0. (5.17)

Therefore the Weyl tensor cannot be of Petrov type I.

Radiation solutions of the Weyl equation can exist only in Riemann
spaces with algebraically special Weyl tensors.

In the case of special radiation solutions (comp. table) it is possible
to derive further results from the Ricci identities. For example assuming
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a pp-wave (type c of the Table) as an exact solution of the coupled Weyl-
Einstein system

Raβ=-λTaβ (5.18)

{R = 0) with (2.1) and (2.7), then upon substituting

(5.19a, b)
and

Kβ~j«jβ (5-20)

into (5.10) and (5.14) results in

c2 = 0, πA = 0. (5.21a, b)

Moreover, use of (5.9) gives

&|ε~Λ. (5-22)

Therefore, according to (5.16), the Weyl tensor of the corresponding
metric gΛβ is of Weyl type N or 0 and the wave equation φA satisfies the
conditions of type d of the table.

§ 6. Exact Solution of Weyl-Einstein's Equations

Finally we want to deduce an exact solution of the coupled system
of Weyl-Einstein's equation for neutrino pp-waves. Let φA be the spinor
part of the solution, then according to (5.22) it is of type d (Table):

φΛ = φΛe
Φ, φAUμ = 0, Φ:=δ + iβ (6.1-c)

with real functions δ and β. Hence a constant complex null bivector
field exists

Naβ<->y2 £ABΦCΦD•> ^aβ\\ε~^ (6.2a,b)

which is connected by

with the constant vector field

f:=fe-2*9 Jα | | ε = 0 . (6.4a, b)

According to the theorem of Ehlers and Kundt [14], a Riemann space
admits a constant null bivector if and only if its line element is that of
a gravitational pp-wave [15]:

ds2 =-dx2-dy2 + 2dudv + 2H (x, y, u) du2 , (6.5)
with

L = u\a (6-6)
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In accordance with (5.21) the related Weyl tensor is of type N or 0
with the unique principal null direction j Λ . Furthermore the Ricci tensor is

βi \yyJβ, (6.7)

and using (2.7), Einstein's Equation (5.18) reduces to

. (6.8)

Since the derivatives of d, fc, δ and β are proportional to j a (comp.
table), these four founctions depend only on the null coordinate u.
The general solution of the homogeneous part of the differential equation
(6.8) is

Ho = Re/(z, u), z\=x + iy (6.9 a, b)

for any analytic function / of z.

Hs(x, y, M) = i A b(w) e4<3(M)(x2 + y2) (6.10)

represents one special solution of the inhomogeneous differential
equation (6.8). The general solution is given by H = H0 + Hs.

We are left to prove the existence of the assumed radiation solution (6.1)
in a Riemann space with metric (6.5). Using (2.2), (5.1) and the differential
equation (3.5), the general integrability condition

φAl[μv] = 0 (6.11)

takes, in the case of type d, the special form:

_R_

12

where ΦABGj is the spinor equivalent of the Ricci tensor (6.7) with

ΦABGJ~ΦAΦBΦGΦJ- (6-13)

The spinor equivalent ΨABCD corresponding to the Weyl tensor is given by

ΨABCD~ΦAΦBΦCΦD (6.14)

For that reason the integrability conditions are satisfied if and only if

ΨA ~ ΦA

This completes the proof that the metric gΛβ of the line element (6.5)
and the radiation solution φA given by (6.1) are exact solutions of the
Weyl-Einstein system. A neutrino pp-wave therefore is accompanied
by a gravitational pp-wave7.

SAB8FH8GJ (6.12)

7 In connection with photons, the special properties of the line element (6.5) were
studied by Peres [16] and Bonnor [17]. Their results and interpretations can be used
immediately in the neutrino case. Recently further radiation solutions have been found
with a tensor method by Griffiths and Newing [18].
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Appendix

We solve the system (3.4)

iL<P(A\\B)(C<PD)-<P(C\\OHA<PB)]=b(x)<PA<PB<Pc<PD (AΛ)

for φA\\Bc, using the Weyl equation (2.1): first we perform at one chosen
point a spin transformation such that 8

φi=μ(x), φ2 = 0 (A.2)

with some function μ(x). Now (A.I) reduces to the following independent
equations ^

l ύ H ) 2 (A.3a)

Q> (A.3b)

0, (A.3C)

Φ2| |2 i=θ, (A.3d)

= 0. (A.3e)

Splitting the complex Eqs. (A.3 b), (A.3 d) and (A.3 e) into real and imaginary
parts, (A.3) represents 8 real functions for the 6 complex independent
components of φA\\Bc (satisfying WeyΓs equation). The solution therefore
contains 4 new real functions κ, v, ρ, τ. We obtain:

(A.4a)

(A.4b)

( A 4 C )

i =μ(v —/τ), (A.4d)

φ 2 , | 2 i - 0 , (A.4e)

Φ2| |22=0. (A.4f)

Inspection of the spinor indices shows that the free functions may be
combined into a hermitean spinor

K^-K^-Aκ, (A.5a)

K l i : = 2(v + ύ ) , (A.5b)

K2i=Ki2:=2ρ. (A.5c)

Thus the solution (A.4) becomes finally

B)c. (A.6)

The authors wish to thank Prof. H. Dehnen for critically reading the manuscript.

= denotes equality for this special choice.
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