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Abstract. A criterion is derived for the existence of a selfadjoint and semibounded
momentum operator in a non-Fock representation of the free photon field given by a
coherent state. The representation of the translation group is constructed and it is shown
that the rotation group, hence the homogeneous Lorentz group, cannot be unitarily
implemented in the so-called infrared sectors.

1. Introduction

It has been stated many times that the theory of soft photon emission
primarily deals with non-Fock representations of the outgoing free
electromagnetic field. As is well known, the use of strange, so-called
infrared representations is necessitated by the singular behavior of the
convection current of the accelerated charged particle at the vertex of
the light cone in momentum space [1]. It has further been realized that
coherent states [2, 3], suitably generalized to account for an "infinite
photon number", not only provide a useful tool to cope with infrared
problems in quantum electrodynamics [4-7], but also arise naturally
in a study of classical external currents [8,9], the Bloch-Nordsieck [10]
and the Pauli-Fierz model [11,12]. A deeper reason for the occurrence
of coherent states may be seen in their intimate connection with the
Poisson process which governs the photon emission.

Any coherent state, considered as a functional on the quantized
radiation field, gives rise to a representation of that field and, clearly, the
existence of a momentum operator in that representation which is
inevitable for a spectral analysis of the photon emission restricts the class
of admissible states. Therefore, we aim to find a necessary and sufficient
condition for a coherent state to define a sector that is covariant with
respect to the space-time translations1. Assuming this condition to be
satisfied, it will become evident that in general the energy is not bounded
from below and, as a consequence, cannot be uniquely defined. A second
criterion then assures that a momentum operator with physical spectrum

1 We mention that our discussion will have various points of contact with the theory
of direct product representations [13], exponential Hubert spaces [14], and infinitely
divisible group representations [15], but will not draw on any results of these works.
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exists for a subclass of states. These states then give rise to the infrared
sectors that do not admit a number operator and it will be seen that not
even an angular momentum operator exists for these sectors, since the
rotation group cannot be implemented.

The degrees of freedom for the electromagnetic radiation are con-
veniently described by a vector field A(φ) = J dx φμ{x) Aμ(x). We take
the view that the potential Aμ(x) is neither unique nor observable, but the
field strengths dμAv — dvAμ2 are. Therefore and in accord with the local
nature of all measurements, we limit ourselves to test functions φμ = dvφμv,
where φμv is real, antisymmetric, has compact support and partial
derivatives of any order. Let D be the singular commutator function.
Then the convolution product

fμv = D* (dμφv - dvφμ) (1.1)

maps our test functions onto a set L of smooth solutions of the wave
equation. Relative to the usual definitions of addition and scalar multi-
plication of functions, L is a real-linear vector space.

We shall mainly work with the bounded Weyl operators W(f)
= QxpiA(φ\ written as a function of feL, on which A(φ) naturally
depends. As a substitute for the commutation relations of the fields we
find the multiplication law

W(fi) W{f2) = W(f± +f2)e-i°«»™ (1.2)

σ being a regular symplectic form on L defined 3 by

~ y) ψiuiy) (i 3)

Certain topologies on L will be of interest to us. With aid of the Fourier
transform φμ(k) = J dx φμ(x)expikx we introduce a decreasing sequence
of pairwise compatible norms | | / | | n > _ 4 on L setting4

dk

= 2«r'|-^[τ^)Σ'i
^ 0 Λ o = | * |

(1.4)

The completion of L relative to the norm | |/ | |M yields a complex Hubert
space Ln, in which the multiplication of feL by the imaginary unit is
formally effected if D in (1.1) is replaced by the acausal function

2 The notion is dμ = d/dxμ and x = {xμ} = {x0, x}. We use the inner product
kx = koxo — k • x and choose dx and dx to denote the Lebesgue measures on R3 and R4

respectively.
3 Since σ(f1J2) = i$dxfr(x)φ2μv(x)=-τίdxφllv(x)f2μΛxl it is apparent that

σ(/ 1,/ 2) does not depend on the particular choice of φί and φ2, but merely on ft and / 2 .
4 Note that \k\~ιφμ(\kl k) is bounded at k = 0, for φμ(k) is an entire function satis-

fying φβ(Q) = 0.
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Clearly, ίfφL in general if fe L. The space Ln may be identified with a
dense subspace in Lm if n < m and, with respect to the inner product in
Lo, Ln may also be identified with L'_n, the strong dual of L_n. The inner
product for Ln, as derived from (1.4), shall be denoted by (f,g)n. A
simple calculation shows that σ(f g) = Im(/, g)0 if /, g e L.

2. Weyl Systems and Coherent States

A Weyl system (§, W) over the real symplectic space (L, σ) consists
of a Hubert space § and a map f^-^W(f) of L into U(§), the set of unitary
operators on §, such that the Weyl relations (1.2) hold, W(0) = I (unit),
and such that for each fe L the map λ^->W(λf\ R-+U(ξ)/) is continuous
with respect to the weak operator topology. We note that W(f)*
— W( — / ) . A cyclic Weyl system (§, W, Ω) is a Weyl system admitting a
cyclic vector Ω e ί>. By a state (more precisely, a regular state) we shall
mean a functional E:L-*C satisfying £(0) = 1 and Y^tifjCkE(fk — /))
• expiσ(fj,fk) ^ 0, for which λt->E(f + λg\ R-+C is continuous. An ex-
treme point of the convex set of all states is called a pure state.

Given a Weyl system (§, W) and a unit vector Ω e §, then £(/)
= (Ω, W(/)Ω) defines a state. Conversely, by virtue of the GeΓfand-Segal
construction there is, for any state E, a cyclic Weyl system (<r>, FF, Ω)
such that (Ώ, W(/)Ω) = £(/). Assume £ is pure and let Φ be any unit
vector in §, then £ φ (/) = (Φ, FF(/) Φ) again defines a pure state. The set
of these states will be called the sector associated with E. For a short
account of the algebraic concepts, the reader is referred to [16]. Weyl
systems over a real symplectic space have been discussed by many
authors [17-21].

Among all states of interest, the vacuum state E0(f) = exρ{— ill/Ho)
plays a dominant part. By way of the GS construction we obtain a cyclic
Weyl system ($0,W0,Ω) with E0(f) = (Ω,W0{f)Ω). To abbreviate,
we shall refer to ( § 0 , Wo, Ω) as the Fock system. Three simple facts have
been repeatedly proved in the literature in different contexts:

(1) Eo is a pure state and, as a consequence, Wo is irreducible.
(2) f*->W0(f) is continuous with respect to the strong operator

topology for U(§0) and the Lo norm topology for L. Thus, Wo has a
unique extension to a continuous map L0->U(§0) (which we shall
again denote by Wo) and W0(ξ) W0{η) =W0(ξ + η) exp{-ϊlm(ξ, η)0} for
all ξ,ηeL0.

(3) The Fock system admits a number operator N. For, by linearity
and continuity, the map W0(f)Ω^->W0(eitf)Ω can be extended to a
unitary operator eιN\ the significance of \\f\\l being that it gives the mean
number of photons in the state induced by the vector W0(f)Ω.
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Let L be the algebraic dual of L, i.e. the set of real-linear functional
F.L-+R. Given FeL ' , the definition

EF(f) = E0(f)eiF^ (2.1)

yields what will be called a coherent state. Setting

WF(f)=W0(f)eίF^ (2.2)

we obtain a cyclic Weyl system ( § 0 , WF, Ω) for which

(Ω,WF{f)Ω) = EF{f). (2.3)

Therefore, the system ( § 0 , WF, Ω) is unitarily equivalent to the cyclic
system canonically associated with the state EF. Automorphisms of the
form (2.2) are extremely useful in order to obtain new sectors from
known ones. States are thus not characterized by specifying a vector in
§ 0 , but by specifying both the vector and the representation.

The proof of the following lemma is adapted from Manuceau [21,22].

Lemma 1. Given Fu F2 e l ' , the states EFi and EFl belong to the same
sector if and only if \FX (/) — F2(f)\ ^C\\f\\0. In this case there is a unique
vector ξ in Lo such that F1(f) — F2{f) = 2lm(ξ,f)0. Any intertwining
operator, i.e. any operator A on § 0 with AWFι(f)= WFl(f)A, is of the
formλW0(ξ\λeC.

Proof. Assume \D(f)\ S C | | / | | o for D = Fx — F2. Then D has a unique
extension to a continuous real-linear functional D: L0—>R. Obviously,
2Δ(f) = D(if) + iD(f) is complex-linear and continuous. By Riesz'
representation theorem, A(f) = (ξ,f)0 with unique ξeL0 and thus
D(f) = 21m{ξ,f)0. Further, (Φ, WFl{f)Φ) - EFί if Φ = W0(ξ)Ω, proving
that EFί and EFl belong to the same sector. Conversely, if EFί and EFl are
in the same sector, then UWFί(f) = WFl(f)Ό for some suitable unitary
operator U on § 0 and expiD{f) = (UW0{f)Ω,W0{f)UΩ). The right
hand side is continuous in / relative to the L o norm topology. Suppose
D(f) is discontinuous. Taking advantage of the linearity, one may find
a Cauchy sequence fneL such that lim | | / J 0 = 0 but ΓimD(/n) = π and
so limexpzD(/n) = — 1, contradicting the continuity of/Wexp/D(/).
Thus, the functional D, being continuous and linear, is bounded. Finally
we observe that AW0(ξ)* commutes with any W0(f)9 fsL, if A is an
intertwining operator, and hence A = λW0(ξ) by Schur's lemma, for
Wo is irreducible.

3. Translations and Cocycles

Let G be the group of space-time translations acting on L in an
obvious way: (x)fμv(y) = fμv(y-x\ Clearly, the map /h->(χ)/extends
to an unitary operator V(x) on Ln and V is a strongly continuous repre-
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senίation of G 5 . Similarly, the map W0(f)Ω\->W0((x)f)Ω by way of
linearity, can be extended to a linear isometry U0(x) defined on a dense
set in § 0 . In a second step, using continuity, U0(x) is seen to act as a
unitary operator on the whole of § 0 . Again, Uo is a strongly continuous
representation of G[21, 22].

Given FEL and xe G, the map

defines an automorphism of the Weyl system (jr>o, FFF, Ω). Since Ω is
invariant under U0(x\ it is immediate that, if F is also translationally
invariant, UQ{x) WF(f) = WF((x)f)U0(x), i.e. U0(x) implements the auto-
morphism. However, it fails to implement (3.1) in the general case. There
we have:

Proposition 1. The following statements are equivalent:
(1 a) For any xe G, the automorphism (3.1) can be unitarily implemented.

(lb) |F(/-(x)/)|^C(x)||/||0.
(lc) F(/-(x)/) = 2Im(ξ(x),/)0, ξ(x)eL0.
If U{x) WF(f) = WF((x)f) U(x) for some unitary U{x), then

= λ(x)U0(x)W0(ξ(x)) (3.2)

for some complex λ(x) of unit modulus. Moreover, the function ξ(x)
satisfies:

ξ(x + y)=V(y)*ξ(x) + ξ(y). (3.3)

Proof Setting Fx(f) = F((x)f) we get WF((x)f)= U0(x) WPχ(f) U0{x)*.
Hence, (3.1) can be unitarily implemented if and only if the states EF and
EFχ belong to the same sector. The equivalence of the statements (1 a-c)
then follows from Lemma 1. Suppose U(x) WF(f) - WF((x)f) U(x) for
some unitary U(x). Then U0{x)* U(x) WF(f) = WFχ(f) U0{x)* U(x) and
thus U0(x)* U(x) = λ(x) W0(ξ{x)) using Lemma 1. Finally,

F(f)-Fx(f) = 2lm(ξ(x)J)0

and

(Fx + y(f) - F(f)) + (F((y)f) - Fx((y)f)) + (F(f) - Fr(f)) = 0

imply

V{y)* ξ(x) + ξ(y)J)0 = 0

for feL arbitrary. Since L is dense in Lo, (3.3) follows. This completes

the proof.
5 Strictly speaking, V depends on n. We shall, however, suppress this label, since no

confusion seems to be possible.
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Adding one more condition on ξ(x), namely continuity, the function
ξ, by virtue of the defining Eq. (3.3), will be called a 1-cocycle on G
relative to the representation V of G on Lo. The set of these cocycles is a
vector space with respect to the usual definitions of addition and scalar
multiplication of functions. Following Araki [23], this space is denoted
by Z1(G,L0). Any constant vector η e Lo determines a 1-cocycle ξ by
ξ(x) = (I-V(x)*)η9 called a 1-coboundary. The set B1(G9L0) of these
coboundaries is thus a linear subspace of Z 1 (G, Lo).

If we planned to study a free Bose field of non-vanishing mass, every
1-cocycle would be a 1-coboundary due to the different spectral properties
of the representation V of G. However, this is no longer true in the case
of mass-zero fields, a complication which is responsible for the occurrence
of so-called infrared representations. In any case, the main question is,
whether it is possible to characterize the quotient space

At this point of the discussion one realizes the significance of the
spaces Ln defined in the Introduction. Note that

1 i 1,2

Λ2 — .
v ' — ϊ>U]J 2 I *• — ^ l/cn = \k I

is finite for any x e G and | | ( J - F ( x ) * ) / | | w ^ X(x) | | / | | π + 2 . Hence,

(I-V(x)*)Ln + 2cLn (3.4)

holds for any x e G. In particular, the function ξ(x) = (/ — V(x)*)η is seen
to be an element of Z1(G, Lo) if η e L2. The linear space of these 1-cocycles
will be referred to as B1(G, L2). As would be expected intuitively, these
cocycles exhaust Z1{G,L0)\

Lemma 2. Zι(G, Lo) = B^G, L2) and thus H^G, Lo) may be identified
with L2/L0.

We shall not attempt to prove this lemma, but remark that V does not
contain the trivial representation of G. The lemma then follows from a
general result6 of Araki [23, Lemma 7.2].

Proposition 2. The following statements are equivalent:
(2 a) There exists a continuous projective representation of G on § 0

that implements the automorphisms (3.1).

6 In order to establish the connection with Araki's work, the function h(t) used in
Definition 6.1 of [23] may be chosen to be \e~^A yielding h{λ) = (1 + λ2)'1. Then

3

Σ (l-h(kμ)) = Φ{k)k2{\ + k2y1 and 2 ^ Φ(\k\, k) <; 4 may be used to show that the

space L2 coincides with the space D+ in Araki's notation.
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(2b) A function C(x) on G exists such that \imC(x) = 0 and

\F(f-(x)f)\SC(x)\\f\\0.

(2 c) F admits a unique decomposition F(ί) + F{2\ where F{1) is trans-
lationally invariant and F{2)(f) = 2Im(η,f)0 for some η e L2.

Moreover, the projective representation in (2 a) can be replaced by a
strongly continuous unitary representation.

Proof. (2a)=>(2b)^(2c): Suppose U(x) WF(f) = WF{{x)f) U{x),
where U(x) is unitary for each xeG and χκ>|(Ω, U(x)Ω)\ is continuous.
By Proposition 1, F(f-(x)f) = 21m(ξ(x)J)0 and, using (3.2),

\\ξ(x)- ξ(y)\\2

0= -2\og\(Ω,U(x- y)Ω)\,

so that ξ(x) is continuous. With C(x) = 2\\ξ(x)\\0, the property (2b)
follows. Being a 1-cocycle, ξ(x) may, according to Lemma 2, be written
as ξ(x) = (I - V(x)*)η for some ηeL2, implying that F{1\f) = F{f)
— 2lm(η,f)0 is translationally invariant.

(2c)=>(2a): Use U(x) = U0(x) W0{ξ(x)\ ξ(x) = (I- V(x)*)η9 to imple-
ment the automorphisms (3.1). Note that x^->W0(ξ(x)) as a composition
of continuous maps is continuous.

The last part of the proposition will follow from a structure analysis
of U(x) = U0(x) W0(ξ(x)) with ξ e Z \ G , Lo). We get

ξ(x,y) = Jm{ξ(x),ξ(-y))Q

using Wo(ξ(x))Uo(y)=Uo(y)Wo(V(y)*ξ(x)), the Weyl relations, (3.3),
and the identity V(y)ξ(y)= -ξ(-y) which follows from (3.3). Clearly,
the real function |(x, y) is continuous in each variable, it satisfies the
relation |(x, y) + ξ(x + y,z) = ξ(y, z) + |(x, y + z) and is thus an element
of Z2(G, JR), the space of real-valued 2-cocycles on G. Suppose, there is
some real continuous function ζ(x) with ζ(x + y) — ζ(x) — ζ(y) = ξ(x, y),
then I is called a 2-coboundary, i.e. | G B 2 ( G , R\ and

^ ( X ) ^ ^ ( ^ L / O ( x ) ^ o ( ξ ( x ) ) ?

ξ(x) = (/-7(x)*)ι, ( *

defines a strongly continuous unitary representation Uη of G on § 0 . It
is therefore of vital importance to realize that any 2-cocycle defined by
(3.5) is indeed a 2-coboundary.

Lemma 3. For any ξeZ1 (G, Lo) there is a finite positive Borel measure
μ on R3 which is absolutely continuous relative to Lebesgue measure and
which satisfies

(ξ(χ), ξ(-y))0 = ί dμ(k) ±±£- {e?** -1) {^y - i ) k 0 = | f c | .
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The equation ζ(x + y) — ζ(x) — ζ(y) = Im(ξ(x\ ξ( —y))0 has a solution ζ
and any real continuous solution can be written

1 + k2 \ kx ]
ζ(x) = qx+$ dμ(k) ——Γ- sin/cx - 2 A (3-7)

where qe R4 is arbitrary.

Proof. Being a 1-cocycle, ξ(x) may be written as (I—V(x)*)η with
ηeL2. Then (?/, V(x)η)2 = Jdμ(fc)(expϊfcx)ko = |fc| determines μ with the

required properties. It is further evident that the integral in (3.7) converges
and, as a function of x, has a 2-coboundary which coincides with ξ.
Given two real solutions ζ and ζr, there difference A = ζ — ζ is linear in x.
Hence, Δ(x) = qx for some q e R4, as A is continuous, and (3.7) is suffi-
ciently general. This completes the proof of the lemma and, at the same
time, completes the proof of Proposition 2.

As is well known, the second cohomology group H2(G, R)
= Z2(G, R)/B2(G, R) is not trivial and, as a consequence, there exist
numerous continuous projective representations of G that are not
induced by unitary representations [24]. Surprisingly enough, Proposi-
tion 2 tells us that any continuous projective representation of G on
$ 0 , implementing the automorphisms (3.1), is in fact induced by a con-
tinuous unitary representation Uψ given by (3.6) and (3.7).

From Stone's theorem we infer the existence of a spectral resolution

Uη(x)=$dEη(p)eipx (3.8)

where Eη is a finite projection-valued measure on JR4, the dual of G. The
physical interpretation of (Ω, Eη(B)Ω) is that it predicts the probability
of finding the measured value of the field momentum within the Borel
set £, if the field is in the coherent state EF (so that η is given by (2 c)).
In view of (3.7) the scale of the momentum is determined only up to an
arbitrary vector q which can always be added. However, if the spectrum
is bounded from below, q may be adjusted so as to yield a momentum
spectrum, acceptable from the physical point of view.

4. The Spectral Condition

Let Va denote the forward light cone with vertex a e R4, that is the
set {p + a: p2 g: 0, p0 ^ 0}. The representation Uη of G as defined by (3.6)
and (3.7) is said to satisfy the spectral condition if the following two
statements are verified:

(I) supp(£,)cV0.
(II) If a e Vo and supp(£J C Va, then a = 0.
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As a necessary condition, supp(m) C Vo should hold for the measure
m defined by (Ω, Uη(x)Ω) = \dm{p) expίpx. Evidently, (Ω, Uη(x)Ω)

and, introducing μ and q from Lemma 3,

ikx
log j dm(p)eipx = iqx + j dμ(fc) —-y— <?ik* - 1 - (4.1)

fco=l*l

with a conditionally positive definite function [25] appearing on the right.

Lemma 4. Let μ be a finite positive Borel measure on R3, such that
{0} is a μ-null set, and let the measure m be defined by (4.1). For the support
of m to be contained in Va it is necessary and sufficient that

o/Λo=|Λ|

Proof. For brevity, k = {|fc|, k} always. Assume supp(m)C Va. By the
uniqueness of the analytic continuation,

1 I 1,2 r ku

for any ueV0. Replacing u by su with s > 0, u0 = 1, u — 0, and dividing
by s one gets j* (fs - gs) dμ<,qo-ao, where

1 st

0 0

and
1*1

gs(k)= [1 + (1 + / t 2 ) ~ i ] ~ 1 J dte~st

o
define monotone increasing resp. decreasing sequences of non-negative
bounded measurable functions, each of the integrals \fsdμ and \gsdμ
being defined. Set

1 + k2 ' '

Then, as s tends to infinity, fs approaches / pointwise except for fc = 0.
Since {0} is a μ-null set, lim/ s = / μ-almost everywhere and

ί fsdμ ^ q0 - a0 + J gs dμ S q0 ~ % + f Qo dμ .
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Hence, Is = §fsdμ, being a monotone increasing and bounded sequence,
converges and its limit 7^ is the integral \fdμ [26, §27, Theorem B].
This proves the necessity of (i). Setting

and applying the above inequality, we obtain

and thus v ε Va, for ueV0 was arbitrary. This proves the necessity of (ii).
Conversely, let (i) and (ii) be satisfied. Then the function

K(z) = ± ± ^

is holomorphic and of bounded modulus in the halfplane s > 0. By a
theorem of Schwartz [27, Chap. VI, Proposition 5], K is the Laplace
transform JS?(T) of a distribution TeSf\. On the other hand, JSf(T)(s)
= I dm{p)Qxp( — s(p — v)u) as a consequence of (4.1) and (4.2), showing
that the support of m must be contained in Su= {p:(p — v)u^0} and
hence in the intersection n 5 M e F o = VVC Va. This proves the sufficiency
of (i) and (ii).

We are now prepared to formulate and prove the final result.

Proposition 3. The following statements are equivalent:
(3 a) There exists a strongly continuous unitary representation of G

on ξ>0 that implements the automorphisms (3.1) and satisfies the spectral
condition.

(3 b) There exists a function M(x) on G such that limM(x) = 0 and

\F(f-(x)f)\^M(x)\\f\\ι.
(3c) F admits a unique decomposition F ( 1 ) + F ( 2 ) , where F ( 1 ) is trans-

lationally invariant and Fi2)(f) = 2Im(η,f)0 for some η e L1.
The representation of G, provided it exists, is uniquely determined

and given by

Uη(x) = eί^Uo(x)Wo{ξ(x)) (4.3)

where ξ(x) = (I - V(x)*)η and ζ(x) = lm(η, (V(x) - l)η)0.

Proof. (3 a) => (3 c): Combine Proposition 2, Lemma 3 + 4, and notice
that the condition (i) in Lemma 4 is equivalent to η ε Lx.

(3c)=>(3b): UseM(x) = 2||(/-F(x)*)?7||_1 and (3.4).
(3b)=>(3c): As \f\x ^ | | / | | 0 , the existence of ηeL2 follows from

Proposition 2. Let ξ(x) = (I — V(x)*)η and let μ be defined as in Lemma 3.
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For η to be in Lγ it suffices to show that \k\ ~1 is μ-integrable in some open
neighborhood of k = 0. Now, \F{f-(x)f)\ ^ M(x) H / ^ implies

| _! <M(x) for all x e G, and thus

x < j dμ(k)

for α = {π, 0,0,0}.
(3c)=>(3a): Given ηeLl9 let Uη be defined by (4.3). Our previous

discussion has shown that Uη is a strongly continuous unitary representa-
tion of G implementing (3.1). Let μ and q be defined by Lemma 3. Then

verifies that the condition (i) of Lemma 4 is fulfilled. Further, let v be
defined by (4.2). If v = 0 or, equivalently, if ζ(x) = hn(η,(V{x)-I)η)θ9

then the condition (ii) is satisfied for a = 0, and supp(m) C Vo as a con-
sequence of that lemma, where Jdm(p) expz'px = (Ώ, [/n(x)Ω). Suppose,
there is some aeV0 such that supp(m) C Va. Then α = 0 from v = 0 and
Lemma 4 (b). Thus, Uη satisfies the spectrum condition at least in the
state given by the vector Ω. It remains to show that the same assertion
holds for a sufficient large set of vector states. Given δeL0 we obtain

W0(δ)* Uη(x) W0(δ) = Uη+δ(x) (4.4)

as a result of a simple calculation. Setting Φδ= W0(δ)Ω, we learn that
(Φδ, Uη(x)Φδ) = (Ω, Uη+δ(x)Ω) again has the correct spectrum, since
η + δeLx. So the properties (I) and (II) are verified for the spectral
measure Eη of Uη(x\ as {Φδ: δ e Lo} provides a total set of vectors in <r>0.
This completes the proof.

Several remarks are in order.
(1) Since the quotient L2/Lί is not trivial, one may construct

numerous Weyl systems (<r>0, WF, Ω) that, although admitting a momen-
tum operator, do not satisfy the spectrum condition. In these cases the
energy spectrum necessarily extends to — oo. It is emphasized that such
systems arise in external current models where the Fourier transform
j(k) of the current behaves as singular as \k\ε~2, 0 < ε :§ \, at the vertex
of the light cone.

(2) Disregarding translationally invariant functionals F ( 1 ), we have
an one-to-one correspondence between the elements of LJL0 and certain
sectors that admit a momentum operator with physical spectrum. The
zero vector in LJL0 corresponds to the vacuum sector, whereas all non-
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trivial vectors correspond to so-called infrared sectors. This essentially
confirms some of the results obtained by Kibble [9].

(3) Nowhere have we assumed that ζ(x) is differentiable and the
partial derivatives of ξ(x) are likely to be something outside of Lo.
Apparently, these aspects crucially depend on the high frequency
behavior of η and, so far, were irrelevant for our discussion. However,
let us introduce the unbounded selfadjoint generators of the time trans-
lations: V(x0) = exp//z.x0, Uη(x0) = expίHηx0. If η = 0, Hη becomes the
hamiltonian for the Fock system. There is no problem with first order
derivatives if hη e L_x. In particular,

HηDH0 + A{ihη}+(η,hη)0I (4.5)

which follows from (4.3) and W0(tξ) = QxpίtΛ{ξ}. Symmetric operators
of the form of the right hand side have often been the starting point for
a construction of Uη(x0). Notice, however, that the domain of definition
shrinks for that operator as the high energy behavior of η becomes worse.
In cases where the self-energy term (η, hη)0 is infinite, the three operators
Hη, HQ, A{ihη} have no common vector of definition except the zero
vector.

(4) A space rotation mixes the infrared sectors as can be readily seen.
Consider a state EF with F(f) = 2Im(η,f)θ9 η e L l 5 and let F(JR) be the
strongly continuous unitary representation of the rotation group on
Lx. For η and V{R)*η to define the same sector it is necessary and sufficient
that (/ — V(R)*)η e Lo. Suppose this holds for any rotation R. Let v be
the normalized Haar measure on the rotation group. Since V(R) does not
contain the trivial representation, § dv(R) V{R)*η = 0 and thus η e Lo,
saying that EF is in the vacuum sector. Therefore, the question "What
is the angular momentum carried by the infrared radiation?" does not
make sense. Apparently, it requires a separation of the charged system
from its radiation field which is impossible in principle. Of course, it is
puzzling that the angular momentum should not be defined, although
the ordinary momentum is. Further, it is evident that, if all proper Lorentz
transformations can be unitarily implemented, then EF again is in the
vacuum sector, since any rotation may be written as a product of three
proper Lorentz transformations.

(5) The infrared correction factor, which is used in scattering theory
to account for unobserved low frequency radiation, is simply related
to the spectral resolution of (Ω, Uη(x)Ω). Suppose n incoming and m
outgoing particles take part in a scattering process. Let their momenta
be —Pι,-. ,—pn,pn + ι, ",pn+m relative to the center-of-mass system
and let their charges be —eί9...,—en,en+1,...,en+m, subject to the
restrictions Xpα = 0 and Xβα = 0. With no soft radiation incoming, the
soft photon emission will be almost coherent and is well approximated
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by a state £F, where F(f) = 2Im(η9f)0 = \dx \dy Js

μ(x)D{x-y) φμ{y)
and Js is the low frequency part of the convection current J produced by
the classical point particles:

Jμ(x) = Σe*PϊΊ dλδ(x-λpa). (4.6)
α 0

Though the correct current should take into account the quantum-
mechanical description of the charged particles in question, considerable
deviations from the simple expression (4.6) are not to be expected in the
low frequency range. It is easily checked that ηeLί9 but ηφL0. The
infrared correction factor is then defined to be the probability (Ω, Eη(B)Ω)
for the radiation EF to have a momentum confined to the region B, the
precise shape of B being given by the experimental arrangement and the
resolution of the counters. The general formula

{Ω,Uη(x)Ω) = exp(η,(V{x)-I)η)0,

valid for η e Lx, can be used to yield

•exp W ,tιL 2 ^ r * " l ) 5&aSβ (p .«&L- w " i p x

Here, s is a suitable low frequency cutoff. This expression is widely
known [1].
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