Commun. math. Phys. 19, 273 – 275 (1970) © by Springer-Verlag 1970

Spatial Representation of Groups of Automorphisms of von Neumann Algebras with Properly Infinite Commutant

MICHAEL HENLE*

Department of Mathematics, Oberlin College, Oberlin, Ohio, USA

Received June 11, 1970

Abstract

Theorem. Let a topological group G be represented $(a \rightarrow \phi_a)$ by *-automorphisms of a von Neumann algebra **R** acting on a separable Hilbert space **H**. Suppose that

(a) G is locally compact and separable,

(b) \mathbf{R}' is properly infinite,

(c) for any $T \in \mathbf{R}$, $x, y \in \mathbf{H}$ the function

$$a \to \langle \phi_a(T) x, y \rangle_H$$

is measurable on G. Then there exists a strongly continuous unitary representation of G on H, $a \rightarrow U_a$, such that for $T \in \mathbb{R}$, $a \in G$,

$$\phi_a(T) = U_a T U_a^* .$$

Let *R* be a von Neumann algebra acting on a separable Hilbert space *H*. Let *G* be a topological group and the map $a \rightarrow \phi_a (a \in G)$ a representation of *G* by *-automorphisms of *R*.

General Problem. When is there a strongly continuous unitary representation, $a \rightarrow U_a$, of G on H such that for $a \in G$, $T \in \mathbf{R}$, $\phi_a(T) = U_a T U_a^*$? The theorem below gives an affirmative answer for a large class of von Neumann algebras. This result may be of use in Quantum Mechanics. This theorem is a generalization of a theorem of Kallman [2]. The author wishes to express his gratitude to Kallman for suggesting this problem.

Theorem. In the context of the general problem stated above, suppose that

(a) G is locally compact and separable,

- (b) the commutant of \mathbf{R} is a properly infinite von Neumann algebra,
- (c) (weak measurability) for any $T \in \mathbf{R}$, $x, y \in \mathbf{H}$, the function

$$a \rightarrow \langle \phi_a(T) x, y \rangle_H$$

^{*} This research was partially supported by NSF Grant GP 16392, and formed part of the author's dissertation at Yale University under the direction of R. Kallman.

M. Henle:

is measurable on G. Then there exists a strongly continuous unitary representation of G on H, $a \rightarrow U_a$, such that for $T \in \mathbf{R}$, $a \in G$,

$$\phi_a(T) = U_a T U_a^*$$

Proof. Let $L^2(G, H)$ be the set of all square summable functions from G to H. More precisely a function $f: G \to H$ is in $L^2(G, H)$ if (a) f is weakly measurable meaning that the scalar functions $a \to \langle f(a), x \rangle_H$, $x \in H$ are measurable, and (b)

$$||f|| = \left(\int_{G} ||f(a)||^2 da\right)^{\frac{1}{2}} < \infty$$

where da denotes a right invariant Haar measure on G. With this norm and identification of functions differing only on a set of measure zero, $L^2(G, H)$ becomes a Hilbert space ([1], p. 142, Example 2). $L^2(G, H)$ is separable; a countable dense subset may be obtained as follows: take a countable dense subset $\{x_i\}$ of H and a countable dense subset $\{f_i\}$ of $L^2(G)$ (this exists because G is separable), and set

$$P = \{ \text{all products } x_i f_j \},\$$

 $P' = \{ all complex rational combinations of elements of P \}$.

Clearly P' is dense in the closed linear subspace of $L^2(G, H)$ generated by P, and one may show easily that $P^{\perp} = \{o\}$. (This is essentially the construction of [1], p. 149, Proposition 7.)

For $T \in \mathbf{R}$ consider the operator-valued function on G, $a \to \phi_a(T)$. In order that this function define by "multiplication" an operator on $L^2(G, \mathbf{H})$ it must be *weakly measurable*, that is the scalar-valued functions

$$a \to \langle \phi_a(T) f(a), g(a) \rangle_{H} \quad f, g \in L^2(G, H)$$
 (1)

must be measurable. It actually suffices to verify this for f and g in some dense subset of $L^2(G, H)$ ([1], p. 157, Proposition 1), for example for f and g in P'. By hypothesis (c) the function (1) is measurable for constant functions $f \equiv x, g \equiv y, x, y \in H$. It is then measurable for the products in P, and then for the linear combinations in P'. So the formula

$$(\hat{T}f)(a) = \phi_a(T) f(a)$$

defines an operator \hat{T} on $L^2(G, H)$. By ([1], p. 160, Proposition 2), $\|\hat{T}\| = \|T\|$; therefore the map $T \to \hat{T}$ is an isomorphism of **R** onto some algebra $\hat{\mathbf{R}}$ of operators on $L^2(G, H)$.

The map $T \to \hat{T}$ is normal, meaning that if T_n is an increasing sequence of positive operators of **R** with least upper bound T, $T_n \nearrow T$, then also $\hat{T}_n \nearrow \hat{T}$. Sequences are permitted here in place of nets because **H** and $L^2(G, H)$ are separable. From the normality of the map $T \to \hat{T}$ it will follow that \hat{R} is a von Neumann algebra on $L^2(G, H)$ ([1], p. 57, Corollary 2). Let $T_n \uparrow T$. Then $\phi_a(T_n) \uparrow \phi_a(T)$, since all *-automorphisms are normal; therefore for $a \in G$, $f \in L^2(G, H)$

$$\langle \phi_a(T_n) f(a), f(a) \rangle_{\mathbf{H}} \uparrow \langle \phi_a(T) f(a), f(a) \rangle_{\mathbf{H}}$$
.

By the Lebesque Dominated Convergence Theorem,

$$\langle \hat{T}_n f, f \rangle_{L^2(G, \mathbf{H})} = \int_G \langle \phi_a(T_n) f(a), f(a) \rangle_{\mathbf{H}} da$$
$$\uparrow \int_G \langle \phi_a(T) f(a), f(a) \rangle_{\mathbf{H}} da = \langle \hat{T}f, f \rangle_{L^2(G, \mathbf{H})}$$

proving that $\hat{T}_n \uparrow \hat{T}$. The argument of this paragraph, at the suggestion of Kallman, replaces a more complicated argument of the author.

By hypothesis \mathbf{R}' is properly infinite. \mathbf{R}' therefore contains an infinite collection $\{P_i\}$ of mutually orthogonal, mutually equivalent projections of sum I ([1], p. 319, Corollary 2). \mathbf{R}' may be imbedded in $\hat{\mathbf{R}}'$ via the operators of multiplication on $L^2(G, H)$ by the constant functions, $a \rightarrow T$, $T \in \mathbf{R}'$. The image of $\{P_i\}$ is a collection of mutually orthogonal. mutually equivalent projections of sum I in $\hat{\mathbf{R}}'$. All of these properties are algebraic, hence preserved by this imbedding. Thus both \mathbf{R} and $\hat{\mathbf{R}}$ satisfy the hypothesis of Corollary 7 ([1], p. 321), therefore there exists a unitary operator $U: \mathbf{H} \rightarrow L^2(G, \mathbf{H})$ such that $\hat{T} = UT U^*$, $T \in \mathbf{R}$.

On $L^2(G, H)$ consider the shift operator $\hat{U}_b(b \in G)$ defined by

$$(\hat{U}_b f)(a) = f(ab)$$
 $f \in L^2(G, \mathbf{H})$.

These give a strongly continuous representation of G on $L^2(G, H)$ which furthermore implements the automorphisms of G on \hat{R} :

$$(\hat{U}_b \, \hat{T} \, \hat{U}_b^* f) \, (a) = (\hat{T} \, \hat{U}_b^* f) \, (ab) = \phi_{ab}(T) \, (\hat{U}_b^* f) \, (ab)$$
$$= \phi_a(\phi_b(T)) \, f(a) = \widehat{(\phi_b(T)} f) \, (a) \, .$$

Therefore the operators $U_b = U^* \hat{U}_b U$ give the desired representation of G on H.

Bibliography

- 1. Dixmier, J.: Les algebres d'operateurs dans l'espace Hilbertien. Paris: Gauthier Villars 1957.
- 2. Kallman, R.: Spatially induced groups of automorphisms of certain von Neumann algebras (preprint).

Michael Henle Oberlin College Department of Mathematics Oberlin, Ohio 44074, USA